Auswahl der wissenschaftlichen Literatur zum Thema „Eliptic curve“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Eliptic curve" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Eliptic curve"

1

Latifah, Ummu Wachidatul, und Puguh Wahyu Prasetyo. „IMPLEMENTASI KRIPTOGRAFI KURVA ELIPTIK ELGAMAL DI LAPANGAN GALOIS PRIMA PADA PROSES ENKRIPSI DAN DEKRIPSI BERBANTUAN SOFTWARE PYTHON“. Journal of Fundamental Mathematics and Applications (JFMA) 4, Nr. 1 (01.07.2021): 45–60. http://dx.doi.org/10.14710/jfma.v4i1.9278.

Der volle Inhalt der Quelle
Annotation:
Perkembangan teknologi memberikan dampak terhadap kemajuan di segala bidang kehidupan manusia terutama dalam bidang informasi. Hal ini memberikan dampak positif dan negatif. Salah satu dampak positifnya adalah mudahnya bertukar informasi dari yang bersifat umum atau rahasia melalui internet. Dampak negatifnya adalah data yang bersifat rahasia menjadi kurang aman dan dapat disalahgunakan oleh pihak yang tidak berwenang. Kriptografi kurva eliptik El-Gamal (ECC: Eliptic Curve Cryptosystem) memberikan solusi untuk keamanan suatu informasi. ECC merupakan salah satu metode kriptografi kunci publik yang mempunyai tingkat keamanan tinggi dibandingkan dengan algoritma kunci publik lainnya. Tujuan dari penelitian ini adalah memahami konsep kriptografi kurva eliptik El-Gamal yang akan didefinisikan di Galois field prima. Hasil dari penelitian ini, yaitu penggunaan kurva eliptik El-Gamal di Galois field prima untuk proses pembentukan kunci, proses enkripsi dan proses dekripsi pada suatu data dengan menggunakan Python.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Miao, Xiao Yu, und Guang Guo Han. „Cryptanalysis of an Eliptic Curve Based Threshold Proxy Signature Scheme“. Advanced Materials Research 926-930 (Mai 2014): 3604–7. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.3604.

Der volle Inhalt der Quelle
Annotation:
In 2006, Pomykala et al. proposed an elliptic curve based threshold proxy signature scheme as well as a proxy-protected version. They claimed that their scheme had the properties of secrecy, unforgeability, non-repudiation and signer’s identification, and the proxy-protected version could assure the proxy-protection property. In this paper, we show attacks on the basic scheme and we also point out that even if the central authority is engaged, the basic model is not proxy-protected.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Miao, Xiao Yu. „Improvement of an Eliptic Curve Based Threshold Proxy Signature Scheme“. MATEC Web of Conferences 44 (2016): 02017. http://dx.doi.org/10.1051/matecconf/20164402017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Weku, Winsy. „Model Proyeksi (X/Z2, Y/Z2) pada Kurva Hesian Secara Paralel Menggunakan Mekanisme Kriptografi Kurva Eliptik“. JURNAL ILMIAH SAINS 12, Nr. 1 (30.04.2012): 65. http://dx.doi.org/10.35799/jis.12.1.2012.404.

Der volle Inhalt der Quelle
Annotation:
MODEL PROYEKSI (X/Z2, Y/Z2) PADA KURVA HESIAN SECARA PARALEL MENGGUNAKAN MEKANISME KRIPTOGRAFI KURVA ELIPTIKABSTRAK Suatu kunci publik, Elliptic Curve Cryptography (ECC) dikenal sebagai algoritma yang paling aman yang digunakan untuk memproteksi informasi sepanjang melakukan transmisi. ECC dalam komputasi aritemetika didapatkan berdasarkan operasi inversi modular. Inversi modular adalah operasi aritmetika dan operasi yang sangat panjang yang didapatkan berdasar ECC crypto-processor. Penggunaan koordinat proyeksi untuk menentukan Kurva Eliptik/ Elliptic Curves pada kenyataannya untuk memastikan koordinat proyeksi yang sebelumnya telah ditentukan oleh kurva eliptik E: y2 = x3 + ax + b yang didefinisikan melalui Galois field GF(p)untuk melakukan operasi aritemtika dimana dapat diketemukan bahwa terdapat beberapa multiplikasi yang dapat diimplementasikan secara paralel untuk mendapatkan performa yang tinggi. Pada penelitian ini, akan dibahas tentang sistem koordinat proyeksi Hessian (X/Z2, Y,Z2) untuk meningkatkan operasi penggandaan ECC dengan menggunakan pengali paralel untuk mendapatkan paralel yang maksimum untuk mendapatkan hasil maksimal. Kata kunci: Elliptic Curve Cryptography, Public-Key Cryptosystem, Galois Fields of Primes GF(p PROJECTION MODEL (X/Z2, Y/Z2) ON PARALLEL HESIAN CURVE USING CRYPTOGRAPHY ELIPTIC CURVE MECHANISM ABSTRACT As a public key cryptography, Elliptic Curve Cryptography (ECC) is well known to be the most secure algorithms that can be used to protect information during the transmission. ECC in its arithmetic computations suffers from modular inversion operation. Modular Inversion is a main arithmetic and very long-time operation that performed by the ECC crypto-processor. The use of projective coordinates to define the Elliptic Curves (EC) instead of affine coordinates replaced the inversion operations by several multiplication operations. Many types of projective coordinates have been proposed for the elliptic curve E: y2 = x3 + ax + b which is defined over a Galois field GF(p) to do EC arithmetic operations where it was found that these several multiplications can be implemented in some parallel fashion to obtain higher performance. In this work, we will study Hessian projective coordinates systems (X/Z2, Y,Z2) over GF (p) to perform ECC doubling operation by using parallel multipliers to obtain maximum parallelism to achieve maximum gain. Keywords: Elliptic Curve Cryptography , Public-Key Cryptosystem , Galois Fields of Primes GF(p)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sibarani, Edy Budi Harjono, M. Zarlis und Rahmat Widya Sembiring. „ANALISIS KRIPTO SISTEM ALGORITMA AES DAN ELLIPTIC CURVE CRYPTOGRAPHY (ECC) UNTUK KEAMANAN DATA“. InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan) 1, Nr. 2 (07.03.2017): 106–12. http://dx.doi.org/10.30743/infotekjar.v1i2.71.

Der volle Inhalt der Quelle
Annotation:
Kriptografi merupakan salah satu solusi atau metode pengamanan data yang tepat untuk menjaga kerahasiaan dan keaslian data, serta dapat meningkatkan aspek keamanan suatu data atau informasi. Metode ini bertujuan agar informasi yang bersifat rahasia dan dikirim melalui suatu jaringan, seperti LAN atau Internet, tidak dapat diketahui atau dimanfaatkan oleh orang atau pihak yang tidak berkepentingan. Kriptografi mendukung kebutuhan dua aspek keamanan informasi, yaitu perlindungan terhadap kerahasiaan data informasi dan perlindungan terhadap pemalsuan dan pengubahan informasi yang tidak diinginkan. AES-Rinjdael merupakan salah satu algoritma kriptografi yang digunakan dalam mengamankan pesan menggunakan panjang kunci sampai 256 bit, yang mana untuk meghindari kriptanalisis, maka dilakukan metode kombinasi dengan algoritma Eliptic Curve Criptografi (ECC) dalam pengenkripsian pesan.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dychka, I. A. ,., M. V. Onai und T. P. Drozda. „MODIFIED METHOD FOR ELIPTIC CURVE SCALAR POINT MULTIPLICATION OVER GF(P)“. Radio Electronics, Computer Science, Control, Nr. 2 (25.08.2016). http://dx.doi.org/10.15588/1607-3274-2016-2-12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Villanueva Polanco, Ricardo. „Algoritmos Basicos Para La Multiplicacion De Puntos En Una Curva Eliptica“. Investigacion e Innovación en Ingenierias 2, Nr. 1 (01.01.2014). http://dx.doi.org/10.17081/invinno.2.1.2057.

Der volle Inhalt der Quelle
Annotation:
La criptografía de curva elíptica fue introducida por Neal Koblitz y Víctor Miller en el año de 1985. La razón por la cual es atractiva, es que no se conocen algoritmos eficientes para resolver el problema del logaritmo discreto. Es muy importante además, que se mejoren los tiempos de ejecución de los algoritmos usados para la implementación de las curvas elípticas. Por consiguiente, en este artículo se describen algoritmos básicos para la multiplicación de puntos en una curva elíptica. A medida que se avanza en la lectura, se detallan técnicas más eficientes y se brindan ciertas recomendaciones para la implementación eficiente de estos métodos con parámetros reales. AbstractElliptic Curve Cryptography was introduced by Neal Koblitz and Victor Miller in 1985. The reason why is so attractive is that there is no known efficient algorithm to solve the logarithm problem. Is very important to improve the running time of the algorithms used for elliptic curve implementation. Therefore, in this article are described the basic algorithms for point multiplication in an elliptic curve. As the reading progresses, improved techniques are introduced and information is provided to know how to efficiently implement these methods with real parameter.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Скуратовський, Руслан Вячеславович. „Constructing eliptic curves with zero trace of Frobenius endomorphism“. Ukrainian Information Security Research Journal 20, Nr. 1 (27.03.2018). http://dx.doi.org/10.18372/2410-7840.20.12208.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Carrera Troyano, Miguel, und José Ignacio Antón. „Las relaciones entre equidad y crecimiento y la nueva agenda para América latina“. América Latina Hoy 48 (03.12.2008). http://dx.doi.org/10.14201/alh.1358.

Der volle Inhalt der Quelle
Annotation:
RESUMEN: El objetivo de este trabajo es analizar los cambios ocurridos en la teoría económica acerca de las relaciones entre equidad y crecimiento y su influencia sobre las nuevas agendas propuestas para el desarrollo de América Latina. Para ello se parte de la elipsis de las cuestiones distributivas en las recomendaciones de política económica formuladas en las décadas de 1980 y 1990, comenzando por el Consenso de Washington. A continuación se presentan las propuestas teóricas (y los ejercicios empíricos realizados a partir de ellas) que analizan el nexo entre crecimiento y desigualdad y que ponen en cuestión la existencia de una «curva de Kuznets». También se exponen los distintos postulados sobre el efecto que la desigualdad tiene sobre el crecimiento económico y se abordan los cambios en la teoría del crecimiento y los resultados de los ejercicios empíricos que han llevado a la consolidación de una relación negativa entre desigualdad y crecimiento. Finalmente se analiza el impacto de estos cambios sobre las propuestas de política económica que se han realizado en los últimos años para renovar la agenda latinoamericana.ABSTRACT: The aim of this paper is to analyse the changes in economic theory regarding the relationship between equity and growth and their influence on the development agendas proposed for Latin America. We departed from the ellipsis of distributional issues in the advised economic policies formulated in the 80s and 90s, beginning with the Washington Consensus. Then, the theoretical proposals (and the corresponding empirical evidence) that analyse the nexus between growth and equity and that question the existence of the «Kuznets Curve» are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Eliptic curve"

1

Vertaľ, Damián. „Bezkontaktní mikropočítačová karta jako skrýš pro geokešing“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442363.

Der volle Inhalt der Quelle
Annotation:
This master’s thesis focuses on the possibility of using contactless smart cards as an electronic hiding place in an activity known as Geocaching. The first part explains the theoretical knowledge about cards, smart card programming, the development of android applications for communication with the smart card using the NFC interface and usage of eliptic curves to sign digital messages. The second part is dedicated to the design of a Java card application and an Android application, which are able to communicate
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sartori, Karina Kfouri. „Curvas elipticas : algumas aplicações em criptografia e em teoria dos numeros“. [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306310.

Der volle Inhalt der Quelle
Annotation:
Orientador: Paulo Roberto Brumatti
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-06T03:04:00Z (GMT). No. of bitstreams: 1 Sartori_KarinaKfouri_M.pdf: 722364 bytes, checksum: c380a542b9451e40e6788d0e8987b556 (MD5) Previous issue date: 2006
Resumo: O objetivo central de estudo neste trabalho é introduzir o conceito de curvas elípticas. Tal assunto é clássico dentro da geometria algébrica e tem aplicações em Criptografia e Teoria dos Números. Neste trabalho descrevemos algumas delas: em Criptografia, apresentamos sistemas análogos aos de Diffie-Helman, Massey-Omura e ElGamal que são baseados no grupo abeliano finito de um curva elíptica definida sobre um corpo finito. Em Teoria dos Números descrevemos o método de Lenstra para descobrir fatores primos de um número inteiro, que, por sinal, também tem uma relação muito estreita com certo tipo de sistema criptográfico. Ainda em Teoria dos Números, apresentamos uma caracterização de números congruentes através da estrutura do grupo de uma determinada curva elíptica
Abstract: The central objective of study in this work is to introduce the concept of elliptic curves. Such subject is classic inside of algebraic geometry and has applications in Cryptography and Number Theory. In this work we describe some of them: in Cryptography, we present analogous systems to the ones of Diffie-Helman, Massey-Omura and ElGamal that are based on the finite abelian group of an elliptic curve defined over a finite field. In Number Theory, we describe the method of Lenstra to discover prime factors of a whole number, that, by the way, also has a very narrow relation with certain type of cryptosystem. Still in Number Theory, we present a characterization of congruentes numbers through the structure of the group of one determined elliptic curve
Mestrado
Algebra
Mestre em Matemática
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Silva, Rosemberg André da 1969. „Analise de seleção de parametros em criptografia baseada em curvas elipticas“. [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276086.

Der volle Inhalt der Quelle
Annotation:
Orientador: Ricardo Dahab
Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-11T02:09:49Z (GMT). No. of bitstreams: 1 Silva_RosembergAndreda_M.pdf: 824860 bytes, checksum: 48ed40bc241415f1692ca283d3e1f65b (MD5) Previous issue date: 2006
Resumo: A escolha dos parâmetros sobre os quais uma dada implementação de Criptografia sobre Curvas Elípticas baseia-se tem influência direta sobre o desempenho das operações associadas bem como sobre seu grau de segurança. Este trabalho visa analisar a forma como os padrões mais usados na atulalidade lidam com este processo de seleção, mostrando as implicações que tais escolhas acarretam
Abstract: The choice of parameters associated with a given implementation of ECC (Elliptic Curve Cryptography) has direct impact on its performance and security leveI. This dissertation aims to compare the most common standards used now-a-days, taking into account their selection criteria and their implications on performance and security
Mestrado
Engenharia de Software
Mestre em Ciência da Computação
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dias, Mauricio Araujo. „Um sistema criptografico para curvas elipticas sobre GF(2m) implementado em circuitos programaveis“. [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260923.

Der volle Inhalt der Quelle
Annotation:
Orientador: Jose Raimundo de Oliveira
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-09T13:54:55Z (GMT). No. of bitstreams: 1 Dias_MauricioAraujo_D.pdf: 794928 bytes, checksum: a328a640d35118ea7fb606ac9f4ab2b2 (MD5) Previous issue date: 2007
Resumo: Este trabalho propõe um sistema criptográfico para Criptografia baseada em Curvas Elípticas (ECC). ECC é usada alternativamente a outros sistemas criptográficos, como o algoritmo RSA (Rivest-Shamir-Adleman), por oferecer a menor chave e a maior segurança por bit. Ele realiza multiplicação de pontos (Q = kP) para curvas elípticas sobre corpos finitos binários. Trata-se de um criptosistema programável e configurável. Graças às propriedades do circuito programável (FPGA) é possível encontrar soluções otimizadas para diferentes curvas elípticas, corpos finitos e algoritmos. A característica principal deste criptosistema é o uso de um circuito combinacional para calcular duplicações e adições de pontos, por meio da aritmética sobre corpos finitos. Os resultados deste trabalho mostram que um programa de troca de chaves fica aproximadamente 20.483 vezes mais rápido com a ajuda do nosso sistema criptográfico. Para desenvolver este projeto, nós consideramos que o alto desempenho tem prioridade sobre a área ocupada pelos seus circuitos. Assim, nós recomendamos o uso deste circuito para os casos em que não sejam impostas restrições de área, mas seja exigido alto desempenho do sistema
Abstract: This work proposes a cryptosystem for Elliptic Curve Cryptography (ECC). ECC has been used as an alternative to other public-key cryptosystems such as the RSA (Rivest-Shamir-Adleman algorithm) by offering the smallest key size and the highest strength per bit. The cryptosystem performs point multiplication (Q = kP) for elliptic curves over binary polynomial fields (GF(2m)). This is a programmable and scalable cryptosystem. It uses the abilities of reconfigurable hardware (FPGA) to make possible optimized circuitry solutions for different elliptic curves, finite fields and algorithms. The main feature of this cryptosystem is the use of a combinatorial circuit to calculate point doublings and point additions, through finite field arithmetic. The results of this work show that the execution of a key-exchange program is, approximately, 20,483 times faster with the help of our cryptosystem. To develop this project we considered that high-performance has priority over area occupied by its circuit. Thus, we recommend the use of this circuit in the cases for which no area constraints are imposed but high performance systems are required.
Doutorado
Engenharia de Computação
Doutor em Engenharia Elétrica
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bars, Cortina Francesc. „On the Tamagawa number conjecture“. Doctoral thesis, Universitat Autònoma de Barcelona, 2001. http://hdl.handle.net/10803/3072.

Der volle Inhalt der Quelle
Annotation:
En la tesis es resolt la conjectura del nombre de Tamagawa en dues situacions: per a corbes el.líptiques E+ definides sobre Q amb multiplicació complexa donada per un cos imaginari quadràtic K, i per a caràcters de Hecke Ak--K*.
In the thesis we solve the Tamagawa number conjecture in two situations: for elliptic cuves E+ with complex multiplication an imaginary quadratic field K, where we impose that E+ is defined over Q, and for Hecke characters of the form, Ak--K*.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Fujdiak, Radek. „Kryptografický protokol s veřejným klíčem“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220309.

Der volle Inhalt der Quelle
Annotation:
The Master thesis is an introduction to cryptology. The Thesis describe cryptosystems and selects one ideal cypher for low-power microcontroler. In thesis provides manual for instal development program COde Composer Studio, basic implementation of selected cryptosystem with small numbers and suggestion for implementation selected cyptosystem with big numbers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Szturc, Jakub. „Softwarová podpora výuky kryptosystémů založených na eliptických křivkách“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-218147.

Der volle Inhalt der Quelle
Annotation:
The master‘s thesis is focusing on cryptography based on elliptical curves consists of four main parts. The first part provides an overview of the basic cryptographic and mathematical concepts. A key element of this work is the second part which are described in detail the mechanisms of counting two points on elliptic curve and counting point to themselves over the various fields. On this mechanism is based almost the entire issue. In the third section provides the best-known algorithms and protocols for key exchange, encryption and digital signature. The goal of this paper is to devise software to support teaching. This material is created as a web presentation, which described the theoretical foundations and the main characteristics of cryptosystems based on elliptical curves. The whole issue is supported by practical examples of calculations examples, there are also examples for independent work. Additionally, java applets are prepared that allow an interactive opportunity to try the basic parameters of curves, or verify the calculations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Herbrych, Daniel. „Generování eliptických křivek pro kryptografický protokol“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-401955.

Der volle Inhalt der Quelle
Annotation:
This thesis deals with creation of elliptic curves generator. MIRACL library and C++ language are used. One of important issues is to determine the order of the elliptic curve group. SEA algorithm (Schoof–Elkies–Atkin) is used for point counting on the elliptic curve. Method with this algorithm is called as counting points method, SEA method etc. Next method is CM method. Both methods are available in the generator. The measurements of dependency of basic operations speed on the group size and parameters were done. ECIES hybrid scheme was implemented. It is practical verification of proper functionality of the generator. Another benchmarks measured dependency of ECIES encryption and decryption on various parameters, e.g. size of the curve, generating method, message size etc.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Flose, Vania Batista Schunck [UNESP]. „Criptografia e curvas elípticas“. Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94347.

Der volle Inhalt der Quelle
Annotation:
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-11-18Bitstream added on 2014-06-13T18:55:35Z : No. of bitstreams: 1 flose_vbs_me_rcla.pdf: 506170 bytes, checksum: ee89356ded1c14f6f5c21428bb68671a (MD5)
Com o crescimento da comunicação nos dias atuais, a segurança na troca de informa- ções tem se tornado cada vez mais importante o que tem dado destaque a Criptografia. A criptografia consiste de técnicas baseadas em conceitos matemáticos que tem por objetivo transmitir informações sigilosas forma segura através de canais monitorados por terceiros. Um ramo da Criptografia que vem crescendo está ligado ao estudo de curvas elípticas, que é uma das áreas mais ricas da matemática. O nome curvas elípticas é de certa forma enganoso, pois diferente do sentido literal da palavra, que leva a pensar em elipses, se trata de equações relacionadas a um determinado tipo de curva algébrica. Neste trabalho, as curvas elípticas serão estudadas do ponto de vista da álgebra e da teoria dos números com o objetivo de conhecer a Criptografia de Curvas Elípticas que é uma variação do Problema do Logaritmo Discreto
With the growth of communication these days, security in exchange for information has become increasingly important what has given prominence to Cryptography. Encryption techniques is based on concepts mathematical aims to transmit sensitive information securely through channels monitored by third parties. A branch of cryptography that has growing up is connected to the study of elliptic curves, which is one of the most rich mathematics. The name elliptic curves is somewhat misleading, as di erent from the literal sense of the word, which makes one think of ellipses if equations is related to a certain type of algebraic curve. in this work, elliptic curves are studied from the viewpoint of algebra and of number theory in order to know the Curve Cryptography Elliptic is a variation of the discrete logarithm problem
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mravec, Roman. „Elektronické doklady“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317036.

Der volle Inhalt der Quelle
Annotation:
This master thesis deals with an implementation of Diffie-Hellman protocol on smart card which is based on MULTOS OS. Defines the smart cards based on MULTOS OS and their usage. Output of this thesis are applications for a smart card and for a client using Diffie-Hellman protocol for establishing of a secret key between two communication sides through unsecured communication channel.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie