Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Electronics front-end.

Zeitschriftenartikel zum Thema „Electronics front-end“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Electronics front-end" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Salomon, F., P. Edelbruck, G. Brulin, A. Boiano, G. Tortone, A. Ordine, M. Bini, S. Barlini und S. Valdré. „FAZIA front-end electronics“. EPJ Web of Conferences 88 (2015): 01015. http://dx.doi.org/10.1051/epjconf/20158801015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hall, G. „LHC front-end electronics“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 453, Nr. 1-2 (Oktober 2000): 353–64. http://dx.doi.org/10.1016/s0168-9002(00)00657-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Luengo, S., D. Gascón, A. Comerma, L. Garrido, J. Riera, S. Tortella und X. Vilasís. „SPD very front end electronics“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 567, Nr. 1 (November 2006): 310–14. http://dx.doi.org/10.1016/j.nima.2006.05.112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Antonelli, A., G. Corradi, M. Moulson, C. Paglia, M. Raggi, T. Spadaro, D. Tagnani et al. „The NA62 LAV front-end electronics“. Journal of Instrumentation 7, Nr. 01 (26.01.2012): C01097. http://dx.doi.org/10.1088/1748-0221/7/01/c01097.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bailly, P., C. Beigbeder, R. Bernier, D. Breton, G. Bonneaud, T. Caceres, R. Chase et al. „BaBar DIRC electronics front-end chain“. IEEE Transactions on Nuclear Science 45, Nr. 4 (1998): 1898–906. http://dx.doi.org/10.1109/23.710959.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cardarelli, R., G. Aielli, P. Camarri, A. Di Ciaccio, L. Di Stante, B. Liberti, E. Pastori, R. Santonico und A. Zerbini. „RPC performance vs. front-end electronics“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 661 (Januar 2012): S198—S200. http://dx.doi.org/10.1016/j.nima.2010.09.136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Manfredi, P. F., und M. Manghisoni. „Front-end electronics for pixel sensors“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 465, Nr. 1 (Juni 2001): 140–47. http://dx.doi.org/10.1016/s0168-9002(01)00374-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

De Geronimo, G., P. O'Connor, V. Radeka und B. Yu. „Front-end electronics for imaging detectors“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 471, Nr. 1-2 (September 2001): 192–99. http://dx.doi.org/10.1016/s0168-9002(01)00963-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Weilhammer, Peter. „Front-end electronics for RICH detectors“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 433, Nr. 1-2 (August 1999): 413–25. http://dx.doi.org/10.1016/s0168-9002(99)00541-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Artuso, Marina. „The BTeV RICH front end electronics“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 553, Nr. 1-2 (November 2005): 130–34. http://dx.doi.org/10.1016/j.nima.2005.08.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

FARTHOUAT, PHILIPPE. „ATLAS ELECTRONICS: AN OVERVIEW“. International Journal of Modern Physics A 25, Nr. 09 (10.04.2010): 1761–84. http://dx.doi.org/10.1142/s0217751x10049335.

Der volle Inhalt der Quelle
Annotation:
The readout electronics development of ATLAS has been driven by the large number of channels of the different subdetectors and by particular environment constraints. This paper gives an overview of the developments made for the front-end electronics, the front-end links, the back-end electronics and the power distribution. It also shows how common issues across the experiment have been handled.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Shchablo, K., A. Samalan, M. Tytgat, N. Zaganidis, G. A. Alves, F. Marujo, F. Torres Da Silva De Araujo et al. „Front-end electronics for CMS iRPC detectors“. Journal of Instrumentation 16, Nr. 05 (01.05.2021): C05002. http://dx.doi.org/10.1088/1748-0221/16/05/c05002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Shitenkov, M., D. Dementev, A. Voronin, I. Kovalev, I. Kudryashov, A. Kurganov und Yu Murin. „Front-End Electronics for BM@N STS“. Physics of Particles and Nuclei 52, Nr. 4 (Juli 2021): 826–29. http://dx.doi.org/10.1134/s1063779621040559.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Buchanan, N. J., L. Chen, D. M. Gingrich, S. Liu, H. Chen, D. Damazio, F. Densing et al. „ATLAS liquid argon calorimeter front end electronics“. Journal of Instrumentation 3, Nr. 09 (22.09.2008): P09003. http://dx.doi.org/10.1088/1748-0221/3/09/p09003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Raut, Anil N., Vilas Bhalerao und A. Praveen Kumar. „Front-end electronics for the upgraded GMRT“. IOP Conference Series: Materials Science and Engineering 44 (23.04.2013): 012025. http://dx.doi.org/10.1088/1757-899x/44/1/012025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Salomon, F., P. Edelbruck, G. Brulin, B. Borderie, A. Richard, M. F. Rivet, G. Verde et al. „Front-end electronics for the FAZIA experiment“. Journal of Instrumentation 11, Nr. 01 (26.01.2016): C01064. http://dx.doi.org/10.1088/1748-0221/11/01/c01064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Antilogus, P., D. Aston, T. Bienz, F. Bird, S. Dasu, W. Dunwoodie, G. Hallewell et al. „Cherenkov Ring Imaging Detector front-end electronics“. IEEE Transactions on Nuclear Science 38, Nr. 2 (April 1991): 408–16. http://dx.doi.org/10.1109/23.289334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Klein, S. R., P. Barale, E. Beuville, F. Bieser, K. Dao, S. Kleinfelder, V. Lindenstruth et al. „Front end electronics for the STAR TPC“. IEEE Transactions on Nuclear Science 43, Nr. 3 (Juni 1996): 1768–72. http://dx.doi.org/10.1109/23.507219.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Aielli, G., P. Camarri, R. Cardarelli, A. Di Ciaccio, L. Di Stante, B. Liberti, A. Paoloni, E. Pastori und R. Santonico. „Test of ATLAS RPCs Front-End electronics“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 508, Nr. 1-2 (August 2003): 189–93. http://dx.doi.org/10.1016/s0168-9002(03)01349-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Wang, Yaping, Ke Ma, Hans Muller, Xu Cai, Daicui Zhou, Zhongbao Yin, Terry C. Awes und Dong Wang. „Front-end electronics for the ALICE calorimeters“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 617, Nr. 1-3 (Mai 2010): 369–71. http://dx.doi.org/10.1016/j.nima.2009.09.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Arfelli, F., V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, P. Cristaudo, M. Di Michiel et al. „SYRMEP front-end and read-out electronics“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 409, Nr. 1-3 (Mai 1998): 351–53. http://dx.doi.org/10.1016/s0168-9002(97)01297-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Lutz, G., W. Buttler, H. Bergmann, P. Holl, B. J. Hosticka, P. F. Manfredi und G. Zimmer. „Low noise monolithic CMOS front end electronics“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 263, Nr. 1 (Januar 1988): 163–73. http://dx.doi.org/10.1016/0168-9002(88)91030-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Drake, G., T. F. Droege, C. A. Nelson, S. L. Segler, W. Stuermer, K. J. Turner und S. Kuhlmann. „CDF front end electronics: The rabbit system“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 269, Nr. 1 (Juni 1988): 68–81. http://dx.doi.org/10.1016/0168-9002(88)90863-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Cundiff, T., J. W. Dawson, L. Dalmonte, G. Drake, T. Fitzpatrick, W. Haberichter, D. Huffman et al. „The MINOS near detector front end electronics“. IEEE Transactions on Nuclear Science 53, Nr. 3 (Juni 2006): 1347–55. http://dx.doi.org/10.1109/tns.2006.876771.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Barbosa, Joao, Federico Alessio, Luis Cardoso, Clara Gaspar und Paolo Durante. „Front-End Electronics Control and Monitoring for the LHCb Upgrade“. EPJ Web of Conferences 214 (2019): 01002. http://dx.doi.org/10.1051/epjconf/201921401002.

Der volle Inhalt der Quelle
Annotation:
The LHCb experiment, one of the four operating in the LHC, will be enduring a major upgrade of its electronics during the third long shutdown period of the particle accelerator. One of the main objectives of the upgrade effort is to implement a 40MHz readout of collision data. For this purpose, the Front-End electronics will make extensive use of a radiation resistant chipset, the Gigabit Transceiver (GBT), for readout as well as for slow control, monitoring and synchronization. At LHCb, the tools to operate the front-end electronics are developed by a central team and distributed to the users. This contribution describes the architecture of the system that implements the slow control and monitoring of all Front-End electronics using the GBT chipset, namely the GBTx and GBT-SCA. The system is implemented in 3 layers starting with an FPGA based electronic board that interfaces the GBT chipset directly through optical fibers. The second layer is composed by a PCIe driver and a number of processes to operate these boards. The user operates the system in the third layer which is the WinCC OA SCADA that is interfaced with the Front-Ends via a message broker called DIM. The requirements of the system as well as the design and integration of each layer are discussed in detail. The results of the firmware implementation in hardware and operational tests are shown and the overall performance of the system is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Abgrall, N., M. Amman, I. J. Arnquist, F. T. Avignone, A. S. Barabash, C. J. Barton, P. J. Barton et al. „The Majorana Demonstrator readout electronics system“. Journal of Instrumentation 17, Nr. 05 (01.05.2022): T05003. http://dx.doi.org/10.1088/1748-0221/17/05/t05003.

Der volle Inhalt der Quelle
Annotation:
Abstract The Majorana Demonstrator comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper provides a description of all components of the Majorana Demonstrator readout electronics, spanning the front-end electronics and internal cabling, back-end electronics, digitizer, and power supplies, along with the grounding scheme. The spectroscopic performance achieved with these readout electronics is also demonstrated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Sanjuán, J., A. Lobo, M. Nofrarias, J. Ramos-Castro und P. J. Riu. „Thermal diagnostics front-end electronics for LISA Pathfinder“. Review of Scientific Instruments 78, Nr. 10 (Oktober 2007): 104904. http://dx.doi.org/10.1063/1.2800776.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Penny, R. D., D. K. Lathrop, B. D. Thorson, B. R. Whitecotton, R. H. Koch und J. R. Rosen. „Wideband front end for high-frequency SQUID electronics“. IEEE Transactions on Appiled Superconductivity 7, Nr. 2 (Juni 1997): 2323–26. http://dx.doi.org/10.1109/77.621704.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Antonelli, A., G. Corradi, F. Gonnella, M. Moulson, C. Paglia, M. Raggi, T. Spadaro et al. „Performance of the NA62 LAV front-end electronics“. Journal of Instrumentation 8, Nr. 01 (15.01.2013): C01020. http://dx.doi.org/10.1088/1748-0221/8/01/c01020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bailly, P., C. Beigbeder, R. Bernier, D. Breton, G. Bonneaud, T. Caceres, R. Chase et al. „The DIRC front-end electronics chain for BaBar“. IEEE Transactions on Nuclear Science 47, Nr. 6 (2000): 2106–13. http://dx.doi.org/10.1109/23.903856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Drake, G., D. Frei, S. R. Hahn, C. A. Nelson, S. L. Segler und W. Stuermer. „The upgraded CDF front end electronics for calorimetry“. IEEE Transactions on Nuclear Science 39, Nr. 5 (1992): 1281–85. http://dx.doi.org/10.1109/23.173191.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Anderson, B. E., K. Anderson, A. Charalambous, A. Cotta-Ramusino, M. Dallavalle, H. Evans, A. Eyring et al. „The OPAL silicon-tungsten calorimeter front end electronics“. IEEE Transactions on Nuclear Science 41, Nr. 4 (1994): 845–52. http://dx.doi.org/10.1109/23.322818.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Hall, G. „Front end electronics for silicon tracking at LHC“. IEEE Transactions on Nuclear Science 41, Nr. 4 (1994): 1086–90. http://dx.doi.org/10.1109/23.322863.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Lo, C. C., S. Olson und J. Bistirlich. „Front end electronics for the Jet Drift Chamber“. IEEE Transactions on Nuclear Science 36, Nr. 1 (1989): 462–64. http://dx.doi.org/10.1109/23.34483.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Chen, H., G. De Geronimo, F. Lanni, D. Lissauer, D. Makowiecki, V. Radeka, S. Rescia, C. Thorn und B. Yu. „Front End Readout Electronics of the MicroBooNE Experiment“. Physics Procedia 37 (2012): 1287–94. http://dx.doi.org/10.1016/j.phpro.2012.02.471.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Sakaguchi, T., Y. Akiba, K. Ebisu, S. Frank, H. Hamagaki, H. Hara, R. S. Hayano et al. „Development of front end electronics for PHENIX RICH“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 453, Nr. 1-2 (Oktober 2000): 382–85. http://dx.doi.org/10.1016/s0168-9002(00)00661-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Yin, Zhongbao, Hans Muller, Rui Pimenta, Dieter Röhrich, Iouri Sibiriak, Bernhard Skaali, Dong Wang, Yaping Wang und Daicui Zhou. „Front-end electronics of the ALICE photon spectrometer“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 623, Nr. 1 (November 2010): 472–74. http://dx.doi.org/10.1016/j.nima.2010.03.040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Baur, R., P. Ernst, G. Gramegna und M. Richter. „Front-end electronics for the CERES TPC-detector“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 409, Nr. 1-3 (Mai 1998): 278–85. http://dx.doi.org/10.1016/s0168-9002(97)01280-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Bailly, P., J. Chauveau, L. Del Buono, J. F. Genat, H. Lebbolo, L. Roos, B. Zhang et al. „The DIRC front-end electronics chain for BaBar“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 433, Nr. 1-2 (August 1999): 450–55. http://dx.doi.org/10.1016/s0168-9002(99)00461-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Sauerzopf, Clemens, Lukas Gruber, Ken Suzuki, Johann Zmeskal und Eberhard Widmann. „Intelligent Front-end Electronics for Silicon photodetectors (IFES)“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 819 (Mai 2016): 163–66. http://dx.doi.org/10.1016/j.nima.2016.02.098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Garozzo, S., D. Marano, G. Bonanno, A. Grillo, G. Romeo, M. C. Timpanaro, D. Lo Presti et al. „Front-end electronics for the Muon Portal project“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 833 (Oktober 2016): 169–80. http://dx.doi.org/10.1016/j.nima.2016.07.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Phogat, Aman, Ankit Gaur, Moh Rafik, Ashok Kumar und Md Naimuddin. „New front-end electronics for INO-ICAL experiment“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 905 (Oktober 2018): 193–98. http://dx.doi.org/10.1016/j.nima.2018.07.070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Badura, E., R. Seifert, A. H. Walenta und H. Z. Xu. „Front-end electronics for the ZEUS vertex detector“. Nuclear Physics B - Proceedings Supplements 23, Nr. 1 (Juli 1991): 239–46. http://dx.doi.org/10.1016/0920-5632(91)90054-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Amoroso, A., M. Colantoni, O. Denisov, A. Ferrero, V. Frolov, A. Grasso, A. Korentchenko et al. „The front-end electronics for the COMPASS MWPCs“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 518, Nr. 1-2 (Februar 2004): 495–97. http://dx.doi.org/10.1016/j.nima.2003.11.067.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Beneyton, R., C. Gaspar, B. Jost und S. Schmeling. „Controlling front-end electronics boards using commercial solutions“. IEEE Transactions on Nuclear Science 49, Nr. 2 (April 2002): 474–77. http://dx.doi.org/10.1109/tns.2002.1003779.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Barish, K., W. C. Chang, O. Dietzsch, T. Ferdousi, A. Franz, J. Fried, S. Y. Fung et al. „Front-end electronics for PHENIX time expansion chamber“. IEEE Transactions on Nuclear Science 49, Nr. 3 (Juni 2002): 1141–46. http://dx.doi.org/10.1109/tns.2002.1039627.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Capra, S., G. Secci, B. Million, L. Manara, S. Coelli, M. Citterio, D. De Salvador et al. „N3G project: front-end electronics and mechanical advances“. Journal of Instrumentation 19, Nr. 01 (01.01.2024): C01011. http://dx.doi.org/10.1088/1748-0221/19/01/c01011.

Der volle Inhalt der Quelle
Annotation:
Abstract The higher counting-rate and radiation hardness required by modern gamma spectroscopy experiments highlight the need for a new generation of High-Purity Germanium detectors based on electrons-collecting electrodes. To achieve this goal, new doping technologies are required. The one studied by the N3G (Next Generation Germanium Gamma detectors) project is the Pulsed Laser Melting. Besides the development of innovative segmented High-Purity Germanium crystals, the project is also aimed at developing a detector case complete of contact structures and front-end electronics. A specific integrated circuit pre-amplifier is being designed: a first version was tested at room temperature, using a pulser as pre-amplifier input. A resolution of 1.08 keV with 15 pF input capacitance, reproducing the one of a detector single segment, was obtained with 6 µs shaping time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Axani, S. N., S. Futagi, M. Garcia, C. Grant, K. Hosokawa, S. Ieki, K. Inoue et al. „RFSoC-based front-end electronics for pulse detection“. Journal of Instrumentation 19, Nr. 03 (01.03.2024): P03013. http://dx.doi.org/10.1088/1748-0221/19/03/p03013.

Der volle Inhalt der Quelle
Annotation:
Abstract Radiation measurement relies on pulse detection, which can be performed using various configurations of high-speed analog-to-digital converters (ADCs) and field-programmable gate arrays (FPGAs). For optimal power consumption, design simplicity, system flexibility, and the availability of DSP slices, we consider the Radio Frequency System-on-Chip (RFSoC) to be a more suitable option than traditional setups. To this end, we have developed custom RFSoC-based electronics and verified its feasibility. The ADCs on RFSoC exhibit a flat frequency response of 1–125 MHz. The root-mean-square (RMS) noise level is 2.1 ADC without any digital signal processing. The digital signal processing improves the RMS noise level to 0.8 ADC (input equivalent 40 μVrms). Baseline correction via digital signal processing can effectively prevent photomultiplier overshoot after a large pulse. Crosstalk between all channels is less than -55 dB. The measured data transfer speed can support up to 32 kHz trigger rates (corresponding to 750 Mbps). Overall, our RFSoC-based electronics are highly suitable for pulse detection, and after some modifications, they will be employed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Farnese, Christian. „The new front end and DAQ of the ICARUS detector“. EPJ Web of Conferences 182 (2018): 03003. http://dx.doi.org/10.1051/epjconf/201818203003.

Der volle Inhalt der Quelle
Annotation:
ICARUS is the largest imaging LAr TPC ever operated. During its LNGS run on the CNGS neutrino beam, from 2010 to 2013, produced some thousands neutrino events of unprecedented quality. This was possible thanks its mechanical precision and stability, liquid argon purity and electronics front-end and DAQ. Actually ICARUS T600, in view of its operation at FNAL on the SBN neutrino beam, is undergoing a major overhauling that implies cathode mechanics improvement, additional PMTs installation and a new electronics front-end and DAQ. This electronics implements a new architecture, integrated onto the flange proprietary design, and a new front-end that improves S/N and induction signals treatment. This issue will be presented in detail together with data recently recorder at CERN in the FLIC, 50 litres, LAr facility.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Flatscher, M., M. Neumayer und T. Bretterklieber. „Holistic analysis for electrical capacitance tomography front-end electronics“. Journal of Physics: Conference Series 1065 (August 2018): 092008. http://dx.doi.org/10.1088/1742-6596/1065/9/092008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie