Auswahl der wissenschaftlichen Literatur zum Thema „Electronic Microscope and microscopy“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electronic Microscope and microscopy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Electronic Microscope and microscopy"

1

Chen, Xiaodong, Bin Zheng und Hong Liu. „Optical and Digital Microscopic Imaging Techniques and Applications in Pathology“. Analytical Cellular Pathology 34, Nr. 1-2 (2011): 5–18. http://dx.doi.org/10.1155/2011/150563.

Der volle Inhalt der Quelle
Annotation:
The conventional optical microscope has been the primary tool in assisting pathological examinations. The modern digital pathology combines the power of microscopy, electronic detection, and computerized analysis. It enables cellular-, molecular-, and genetic-imaging at high efficiency and accuracy to facilitate clinical screening and diagnosis. This paper first reviews the fundamental concepts of microscopic imaging and introduces the technical features and associated clinical applications of optical microscopes, electron microscopes, scanning tunnel microscopes, and fluorescence microscopes. The interface of microscopy with digital image acquisition methods is discussed. The recent developments and future perspectives of contemporary microscopic imaging techniques such as three-dimensional and in vivo imaging are analyzed for their clinical potentials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Daberkow, I., und M. Schierjott. „Possibilities And Examples For Remote Microscopy Including Digital Image Acquisition, Transfer, and Archiving“. Microscopy and Microanalysis 4, S2 (Juli 1998): 2–3. http://dx.doi.org/10.1017/s1431927600020134.

Der volle Inhalt der Quelle
Annotation:
Recent developments promise the possibility to externally control every aspect of microscopes through a computer interface. In combination with high-resolution cameras and feedback to the microscope, this can be leveraged to create highly automatic routines, e.g., to remotely correct astigmatism. Together with the development of fast computer networks this creates a new branch of microscopy, the so-called “telemicroscopy”. The goal of telemicroscopy is the control of a microscope over a large distance including the transfer of images with an acceptable repetition rate. A big advantage for electron microscopy in particular is the possibility of having access to expensive and well-equipped microscopes. In the field of light microscopy the branch “telemedicine” was created, meaning the “virtual” presence of a colleague or specialist for discussion or diagnosis.Using transmission electron microscopy as an example, the history and special requirements for automation and telemicroscopy will be discussed. In the late 80's the first TEM with a remote control was revealed. Shortly thereafter, first automatic functions for defocus control and astigmatism correction were developed using a video camera as electronic image converter.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Liu, J., und J. R. Ebner. „Nano-Characterization of Industrial Heterogeneous Catalysts“. Microscopy and Microanalysis 4, S2 (Juli 1998): 740–41. http://dx.doi.org/10.1017/s1431927600023825.

Der volle Inhalt der Quelle
Annotation:
Catalyst characterization plays a vital role in new catalyst development and in troubleshooting of commercially catalyzed processes. The ultimate goal of catalyst characterization is to understand the structure-property relationships associated with the active components and supports. Among many characterization techniques, only electron microscopy and associated analytical techniques can provide local information about the structure, chemistry, morphology, and electronic properties of industrial heterogeneous catalysts. Three types of electron microscopes are usually used for characterizing industrial supported catalysts: 1) scanning electron microscope (SEM), 2) scanning transmission electron microscope (STEM), and 3) transmission electron microscope (TEM). Each type of microscope has its unique capabilities. However, the integration of all electron microscopic techniques has proved invaluable for extracting useful information about the structure and the performance of industrial catalysts.Commercial catalysts usually have a high surface area with complex geometric structures to enable reacting gases or fluids to access as much of the active surface of the catalyst as possible.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kordesch, Martin E. „Introduction to emission electron microscopy for the in situ study of surfaces“. Proceedings, annual meeting, Electron Microscopy Society of America 51 (01.08.1993): 506–7. http://dx.doi.org/10.1017/s0424820100148368.

Der volle Inhalt der Quelle
Annotation:
The Photoelectron Emission Microscope (PEEM) and Low Energy Electron Microscope (LEEM) are parallel-imaging electron microscopes with highly surface-sensitive image contrast mechanisms. In PEEM, the electron yield at the illumination wavelength determines image contrast, in LEEM, the intensity of low energy (< 100 eV) electrons back-diffracted from the surface, as well as interference effects, are responsible for image contrast. Mirror Electron Microscopy is also possible with the LEEM apparatus. In MEM, no electron penetration into the solid occurs, and an image of surface electronic potentials is obtained.While the emission microscope techniques named above are not high resolution methods, the unique contrast mechanisms, the ability to use thick single crystal samples, their compatibility with uhv surface science methods and new material-growth methods, coupled with real-time imaging capability, make them very useful.These microscopes do not depend on scanning probes, and some are compatible with pressures up to 10-3 Torr and specimen temperatures above 1300K.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Vilà, Anna, Sergio Moreno, Joan Canals und Angel Diéguez. „A Compact Raster Lensless Microscope Based on a Microdisplay“. Sensors 21, Nr. 17 (03.09.2021): 5941. http://dx.doi.org/10.3390/s21175941.

Der volle Inhalt der Quelle
Annotation:
Lensless microscopy requires the simplest possible configuration, as it uses only a light source, the sample and an image sensor. The smallest practical microscope is demonstrated here. In contrast to standard lensless microscopy, the object is located near the lighting source. Raster optical microscopy is applied by using a single-pixel detector and a microdisplay. Maximum resolution relies on reduced LED size and the position of the sample respect the microdisplay. Contrarily to other sort of digital lensless holographic microscopes, light backpropagation is not required to reconstruct the images of the sample. In a mm-high microscope, resolutions down to 800 nm have been demonstrated even when measuring with detectors as large as 138 μm × 138 μm, with field of view given by the display size. Dedicated technology would shorten measuring time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kondo, Y., K. Yagi, K. Kobayashi, H. Kobayashi und Y. Yanaka. „Construction Of UHV-REM-PEEM for Surface Studies“. Proceedings, annual meeting, Electron Microscopy Society of America 48, Nr. 1 (12.08.1990): 350–51. http://dx.doi.org/10.1017/s0424820100180501.

Der volle Inhalt der Quelle
Annotation:
Recent development of ultra-high vacuum electron microscopy (UHV-EM) is very rapid. This is due to the fact that it can be applied to variety of surface science fields.There are various types of surface imaging in UHV condition; low energy electron microscopy (LEEM) [1], transmission (TEM) and reflection electron microscopy (REM) [2] using conventional transmission electron microscopes (CTEM) (including scanning TEM and REM)), scanning electron microscopy, photoemission electron microscopy (PEEM) [3] and scanning tunneling microscopy (STM including related techniques such as scanning tunneling spectroscopy (STS), atom force microscopy and magnetic force microscopy)[4]. These methods can be classified roughly into two; in one group image contrast is mainly determined by surface atomic structure and in the other it is determined by surface electronic structure. Information obtained by two groups of surface microscopy is complementary with each other. A combination of the two methods may give images of surface crystallography and surface electronic structure. STM-STS[4] and LEEM-PEEM [3] so far developed are typical examples.In the present work a combination of REM(TEM) and PEEM (Fig. 1) was planned with use of a UHV CTEM. Several new designs were made for the new microscope.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Katoh, Kazuo. „Software-Based Three-Dimensional Deconvolution Microscopy of Cytoskeletal Proteins in Cultured Fibroblast Using Open-Source Software and Open Hardware“. Journal of Imaging 5, Nr. 12 (23.11.2019): 88. http://dx.doi.org/10.3390/jimaging5120088.

Der volle Inhalt der Quelle
Annotation:
As conventional fluorescence microscopy and confocal laser scanning microscopy generally produce images with blurring at the upper and lower planes along the z-axis due to non-focal plane image information, the observation of biological images requires “deconvolution.” Therefore, a microscope system’s individual blur function (point spread function) is determined theoretically or by actual measurement of microbeads and processed mathematically to reduce noise and eliminate blurring as much as possible. Here the author describes the use of open-source software and open hardware design to build a deconvolution microscope at low cost, using readily available software and hardware. The advantage of this method is its cost-effectiveness and ability to construct a microscope system using commercially available optical components and open-source software. Although this system does not utilize expensive equipment, such as confocal and total internal reflection fluorescence microscopes, decent images can be obtained even without previous experience in electronics and optics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schwarzer, Robert. „Orientation Microscopy Using the Analytical Scanning Electron Microscope“. Practical Metallography 51, Nr. 3 (17.03.2014): 160–79. http://dx.doi.org/10.3139/147.110280.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dantas de Oliveira, Allisson, Carles Rubio Maturana, Francesc Zarzuela Serrat, Bruno Motta Carvalho, Elena Sulleiro, Clara Prats, Anna Veiga et al. „Development of a low-cost robotized 3D-prototype for automated optical microscopy diagnosis: An open-source system“. PLOS ONE 19, Nr. 6 (21.06.2024): e0304085. http://dx.doi.org/10.1371/journal.pone.0304085.

Der volle Inhalt der Quelle
Annotation:
In a clinical context, conventional optical microscopy is commonly used for the visualization of biological samples for diagnosis. However, the availability of molecular techniques and rapid diagnostic tests are reducing the use of conventional microscopy, and consequently the number of experienced professionals starts to decrease. Moreover, the continuous visualization during long periods of time through an optical microscope could affect the final diagnosis results due to induced human errors and fatigue. Therefore, microscopy automation is a challenge to be achieved and address this problem. The aim of the study is to develop a low-cost automated system for the visualization of microbiological/parasitological samples by using a conventional optical microscope, and specially designed for its implementation in resource-poor settings laboratories. A 3D-prototype to automate the majority of conventional optical microscopes was designed. Pieces were built with 3D-printing technology and polylactic acid biodegradable material with Tinkercad/Ultimaker Cura 5.1 slicing softwares. The system’s components were divided into three subgroups: microscope stage pieces, storage/autofocus-pieces, and smartphone pieces. The prototype is based on servo motors, controlled by Arduino open-source electronic platform, to emulate the X-Y and auto-focus (Z) movements of the microscope. An average time of 27.00 ± 2.58 seconds is required to auto-focus a single FoV. Auto-focus evaluation demonstrates a mean average maximum Laplacian value of 11.83 with tested images. The whole automation process is controlled by a smartphone device, which is responsible for acquiring images for further diagnosis via convolutional neural networks. The prototype is specially designed for resource-poor settings, where microscopy diagnosis is still a routine process. The coalescence between convolutional neural network predictive models and the automation of the movements of a conventional optical microscope confer the system a wide range of image-based diagnosis applications. The accessibility of the system could help improve diagnostics and provide new tools to laboratories worldwide.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Faruqi, A. R., und Sriram Subramaniam. „CCD detectors in high-resolution biological electron microscopy“. Quarterly Reviews of Biophysics 33, Nr. 1 (Februar 2000): 1–27. http://dx.doi.org/10.1017/s0033583500003577.

Der volle Inhalt der Quelle
Annotation:
1. Introduction 11.1 The ‘band gap’ in silicon 22. Principles of CCD detector operation 32.1 Direct detection 32.2 Electron energy conversion into light 42.3 Optical coupling: lens or fibre optics? 62.4 Readout speed and comparison with film 83. Practical considerations for electron microscopic applications 93.1 Sources of noise 93.1.1 Dark current noise 93.1.2 Readout noise 93.1.3 Spurious events due to X-rays or cosmic rays 103.2 Efficiency of detection 113.3 Spatial resolution and modulation transfer function 123.4 Interface to electron microscope 143.5 Electron diffraction applications 154. Prospects for high-resolution imaging with CCD detectors 185. Alternative technologies for electronic detection 235.1 Image plates 235.2 Hybrid pixel detectors 246. References 26During the past decade charge-coupled device (CCD) detectors have increasingly become the preferred choice of medium for recording data in the electron microscope. The CCD detector itself can be likened to a new type of television camera with superior properties, which makes it an ideal detector for recording very low exposure images. The success of CCD detectors for electron microscopy, however, also relies on a number of other factors, which include its fast response, low noise electronics, the ease of interfacing them to the electron microscope, and the improvements in computing that have made possible the storage and processing of large images.CCD detectors have already begun to be routinely used in a number of important biological applications such as tomography of cellular organelles (reviewed by Baumeister, 1999), where the resolution requirements are relatively modest. However, in most high- resolution microscopic applications, especially where the goal of the microscopy is to obtain structural information at near-atomic resolution, photographic film has continued to remain the medium of choice. With the increasing interest and demand for high-throughput structure determination of important macromolecular assemblies, it is clearly important to have tools for electronic data collection that bypass the slow and tedious process of processing images recorded on photographic film.In this review, we present an analysis of the potential of CCD-based detectors to fully replace photographic film for high-resolution electron crystallographic applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Electronic Microscope and microscopy"

1

Yu, Enhua. „Crossed and uncrossed retinal fibres in normal and monocular hamsters : light and electron microscopic studies /“. [Hong Kong : University of Hong Kong], 1990. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13014316.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Morgan, Scott Warwick. „Gaseous secondary electron detection and cascade amplification in the environmental scanning electron microscope /“. Electronic version, 2005. http://adt.lib.uts.edu.au/public/adt-NTSM20060511.115302/index.html.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Harland, C. J. „Detector and electronic developments for scanning electron microscopy“. Thesis, University of Sussex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370435.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

于恩華 und Enhua Yu. „Crossed and uncrossed retinal fibres in normal and monocular hamsters: light and electron microscopic studies“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1990. http://hub.hku.hk/bib/B31232449.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bélisle, Jonathan. „Design and assembly of a multimodal nonlinear laser scanning microscope“. Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100765.

Der volle Inhalt der Quelle
Annotation:
The objective of this thesis is to present the fabrication of a multiphoton microscope and the underlying theory responsible for its proper functioning. A basic introduction to nonlinear optics will give the necessary knowledge to the reader to understand the optical effects involved. Femtosecond laser pulses will be presented and characterized. Each part of the microscope, their integration and the design of the microscope will be discussed. The basic concepts of laser scanning microscopy are also required to explain the design of the scanning optics. Fast scanning problems and their solutions are also briefly viewed. As a working proof, the first images taken with the microscope will be presented. Fluorescent beads, rat tail tendon, gold nanoparticles and pollen grain images using various nonlinear effects will be shown and discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

El, Hajraoui Khalil. „Études in-situ dans un microscope électronique en transmission des réactions à l’état solide entre métal et nanofil de Ge“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY012/document.

Der volle Inhalt der Quelle
Annotation:
Le domaine des nanofils semi-conducteurs est en pleine expansion depuis ces dix dernières années grâce à leurs applications dans de nombreux domaines tels que l’électronique ou la conversion d’énergie. Dans cette étude on part d’une base de nanofil de germanium (le canal), on dépose des contacts métalliques qui seront chauffés par effet joule. Une différence de potentiel est alors appliquée au contact d’entrée (la source), le courant électrique est récupéré et mesuré par le contact de sortie (le drain). Une réaction à l’état solide permet aux atomes du métal de diffuser dans le nanofil. La propagation d'une phase métal/semi-conducteur est suivie dans un microscope électronique en transmission (MET) dont la résolution permet une observation à l’échelle atomique au niveau de la source, le drain et le canal. Les dispositifs caractérisés au cours de ce stage ont été élaborés à partir de deux types de membranes, l’une plane et l’autre avec des trous. Chacune d’entre elles sont constituées d’une couche de nitrate de silicium Si3N4 à leurs surfaces présentant l’avantage d’être transparents aux électrons et isolants au courant
Semiconductor nanowires (NWs) are promising candidates for many device applications ranging from electronics and optoelectronics to energy conversion and spintronics. However, typical NW devices are fabricated using electron beam lithography and therefore source, drain and channel length still depend on the spatial resolution of the lithography. In this work we show fabrication of NW devices in a transmission electron microscope (TEM) where we can obtain atomic resolution on the channel length using in-situ propagation of a metallic phase in the semiconducting NW independent of the lithography resolution. We show results on semiconducting NW devices fabricated on two different electron transparent Si3N4 membranes: a planar membrane and a membrane where devices are suspended over holes. First we show the process of making lithographically defined reliable electrical contacts on individual NWs. Second we show first results on in-situ propagation of a metal-semiconductor phase in Ge NWs by joule heating, while measuring the current through the device. Two different devices are studied: one with platinum metal contacts and one with copper contacts. Different phenomena can occur in CuGe NWs during phase propagation
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Romero, Leiro Freddy José. „Poly-articulated microrobotics for correlative AFM-in-SEM microscopy“. Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS520.pdf.

Der volle Inhalt der Quelle
Annotation:
La microscopie corrélative est le résultat de la combinaison de deux ou plusieurs techniques de microscopie pour fournir des informations complémentaires sur un échantillon. En utilisant un microscope électronique à balayage (MEB) et un microscope à force atomique (AFM), la microscopie corrélative AFM-in-SEM permet non seulement la caractérisation 3D d'échantillons observés à l'intérieur d'un MEB, mais aussi la manipulation de micro- et nanostructures avec une très grande précision. Cette technique peut être appliquée à divers échantillons dans les domaines de la biologie, de l'électronique et de la science des matériaux. Bien que les solutions AFM-in-SEM existantes dans l'état actuel soient puissantes, elles nécessitent des utilisateurs experts, elles ne sont pas assez polyvalentes pour être utilisées pour différents types de tâches et elles utilisent des robots AFM cartésiens qui limitent fortement la dextérité et la performance du système d'imagerie. L'objectif de cette thèse est d'étudier et d'expérimenter un concept original d'AFM basé sur la robotique poly-articulée pour la microscopie corrélative AFM-in-SEM. Un système robotique AFM à 6 ddls (3 translations et 3 rotations) est développé et intégré à l'intérieur d'un MEB. La capacité de contrôler 3 positions et 3 rotations d'une sonde AFM de taille micrométrique tout en maintenant le centre de rotation à proximité d'une micro-structure est un véritable défi. Cela est principalement dû aux incertitudes inhérentes à l'assemblage des systèmes micro-robotiques et aux jeux mécaniques dans les articulations du robot qui sont du même ordre de grandeur que la précision requise pour le positionnement de la sonde AFM. Les méthodes d'étalonnage des robots et la théorie du contrôle peuvent cependant surmonter ces limitations, comme le démontre cette thèse. Des stratégies de contrôle et une interface utilisateur sont étudiées pour faire fonctionner le système d'imagerie corrélative multi-ddl de manière polyvalente et intuitive. Plusieurs caractéristiques clés qui vont au-delà de l'état de l'art sont mises en œuvre, notamment - Le contrôle par vision électronique (MEB) permet l'atterrissage rapide et automatisé d'une sonde AFM sur un échantillon de taille micrométrique, avec une robustesse par rapport au grossissement du MEB. L'utilisateur peut sélectionner n'importe quelle région d'intérêt (ROI) sur un échantillon en cliquant simplement sur l'écran du MEB. Quel que soit le grossissement du MEB, l'algorithme de contrôle assure un atterrissage sûr de la sonde AFM sur la région d'intérêt. La surface de l'échantillon peut atteindre plusieurs centimètres carrés et le positionnement peut être réalisé avec une précision micrométrique. - Rotation dans le plan et hors du plan d'un échantillon par rapport à la sonde AFM tout en maintenant le centre de rotation autour de la pointe de l'AFM. Le centre de rotation est défini par l'utilisateur par un clic de souris sur l'écran du MEB. Cette fonction est utile pour les tâches de manipulation et de topographie, ainsi que pour les observations multi-angles d'un échantillon à l'intérieur d'un MEB. - Modes de sélection de la trajectoire et de la vitesse de la sonde AFM. Mode AFM à faible vitesse pour une imagerie topographique détaillée. Mode AFM rapide (4fps) pour des observations dynamiques à l'échelle nanométrique. Les utilisateurs ont également accès aux paramètres de contrôle. Ils peuvent être modifiés en fonction de leurs besoins. - Mode AFM mosaïque pour étendre la zone de balayage de la topographie à l'intérieur d'un MEB. Toutes ces caractéristiques s'appuient sur les travaux de recherche en robotique, mécatronique et contrôle réalisés au cours de la thèse. Ces derniers ont le potentiel d'ouvrir la porte à une nouvelle ère de microscopes à force atomique poly-articulés utilisés en microscopie corrélative
Correlative microscopy is the result of the combination of two or more microscopy techniques to provide complementary information on a sample. When using a scanning electron microscope (SEM) and an atomic force microscope (AFM), AFM-in-SEM correlative microscopy not only enables the 3D characterization of samples observed inside a SEM, but also the manipulation of micro- and nanostructures with an extremely high precision. This technique can be applied to various samples in biology, electronics and materials science. Although existing AFM-in-SEM solutions in the current state of the art are powerful, they require expert users; they are not versatile enough to be used for different types of tasks; and they use Cartesian AFM robots that severely limit the dexterity and performance of the imaging system. The aim of this thesis is to study and experiment an original concept of an AFM based on poly- articulated robotics for AFM-in-SEM correlative microscopy. A homemade 6 DoF (3 translations and 3 rotations) robotic AFM system is developed and integrated inside a SEM. The ability to control 3 positions and 3 rotations of a micrometer sized AFM probe while keeping the center of rotation at the close proximity of a micro-structure is very challenging. This is mainly due to the uncertainties inherent to the assembly of micro-robotic systems and clearances in the joints of the robot that are of the same order of magnitude as the required AFM probe positioning accuracy. Robot calibration methods and control theory can however overcome these limitations as demonstrated in the thesis. Control strategies and a user interface are studied to operate the multi DoF correlative imaging system in a versatile and intuitive way for low-level end users while keeping it enough powerful for high-level end users. Several key features that go beyond the state of the art are implemented, including - Vision based control for fast and automated landing of an AFM probe on a micrometer sized sample with robustness with respect to the SEM magnification. The user can select any region of interest (ROI) on a sample by simply performing a mouse click on the SEM screen. Whatever the SEM magnification, the control algorithm ensures a safe landing of the AFM probe on the ROI. The surface of the sample can be as high as several square centimeters and the positioning can be achieved with a micrometric precision. - In-plane and out-of-plane rotation of a sample relatively to the AFM probe while keeping the center of rotation around the tip of the AFM. The center of rotation is defined by the user with a mouse click on the SEM screen. This feature is useful for manipulation and topography tasks, as well as for multi-angle observations of a sample inside a SEM. - Trajectory/speed selection modes. Low speed AFM mode for a detailed topography imaging. Fast AFM mode (4fps) for dynamic observations at the nanoscale. The users also have access to the control parameters. They can be modified to suit their needs. - Mosaic AFM mode to extend the topography scanning area inside a SEM. All these features rely on research works in robotics, mechatronics and control made during the thesis. The latter has the potential to opens the door to a new era of poly-articulated atomic force microscopes used in correlative microscopy
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Leane, Robert B. „Scanning tunnelling microscopy“. Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.291716.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Marturi, Naresh. „Vison and visual servoing for nanomanipulation and nanocharacterization using scanning electron microscope“. Thesis, Besançon, 2013. http://www.theses.fr/2013BESA2014/document.

Der volle Inhalt der Quelle
Annotation:
Avec les dernières avancées en matière de nanotechnologies, il est devenu possible de concevoir, avec une grande efficacité, de nouveaux dispositifs et systèmes nanométriques. Il en résulte la nécessité de développer des méthodes de pointe fiables pour la nano manipulation et la nano caractérisation. La d´étection directe par l’homme n’ étant pas une option envisageable à cette échelle, les tâches sont habituellement effectuées par un opérateur humain expert `a l’aide de microscope électronique à balayage équipé de dispositifs micro nano robotiques. Toutefois, en raison de l’absence de méthodes efficaces, ces tâches sont toujours difficiles et souvent fastidieuses à réaliser. Grâce à ce travail, nous montrons que ce problème peut être résolu efficacement jusqu’ à une certaine mesure en utilisant les informations extraites des images. Le travail porte sur l’utilisation des images électroniques pour développer des méthodes automatiques fiables permettant d’effectuer des tâches de nano manipulation et nano caractérisation précises et efficaces. En premier lieu, puisque l’imagerie électronique à balayage est affectée par les instabilités de la colonne électronique, des méthodes fonctionnant en temps réel pour surveiller la qualité des images et compenser leur distorsion dynamique ont été développées. Ensuite des lois d’asservissement visuel ont été développées pour résoudre deux problèmes. La mise au point automatique utilisant l’asservissement visuel, développée, assure une netteté constante tout au long des processus. Elle a permis d’estimer la profondeur inter-objet, habituellement très difficile à calculer dans un microscope électronique à balayage. Deux schémas d’asservissement visuel ont été développés pour le problème du nano positionnement dans un microscope électronique. Ils sont fondés sur l’utilisation directe des intensités des pixels et l’information spectrale, respectivement. Les précisions obtenues par les deux méthodes dans diff érentes conditions expérimentales ont été satisfaisantes. Le travail réalisé ouvre la voie à la réalisation d’applications précises et fiables telles que l’analyse topographique,le sondage de nanostructures ou l’extraction d’ échantillons pour microscope électronique en transmission
With the latest advances in nanotechnology, it became possible to design novel nanoscale devicesand systems with increasing efficiency. The consequence of this fact is an increase in the need for developing reliable and cutting edge processes for nanomanipulation and nanocharacterization. Since the human direct sensing is not a feasible option at this particular scale, the tasks are usually performedby an expert human operator using a scanning electron microscope (SEM) equipped withmicro-nanorobotic devices. However, due to the lack of effective processes, these tasks are always challenging and often tiresome to perform. Through this work we show that, this problem can be tackle deffectively up to an extent using the microscopic vision information. It is concerned about using the SEM vision to develop reliable automated methods in order to perform accurate and efficient nanomanipulation and nano characterization. Since, SEM imaging is affected by the non-linearities and instabilities present in the electron column, real time methods to monitor the imaging quality and to compensate the time varying distortion were developed. Later, these images were used in the development of visual servoing control laws. The developed visual servoing-based autofocusing method ensures a constant focus throughout the process and was used for estimating the inter-object depth that is highly challenging to compute using a SEM. Two visual servoing schemes were developed toperform accurate nanopositioning using a nanorobotic station positioned inside SEM. They are basedon the direct use of global pixel intensities and Fourier spectral information respectively. The positioning accuracies achieved by both the methods at different experimental conditions were satisfactory.The achieved results facilitate in developing accurate and reliable applications such as topographic analysis, nanoprobing and sample lift-out using SEM
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tomic, Aleksandra T. „Scanning tunneling microscopy of complex electronic materials“. Diss., Connect to online resource - MSU authorized users, 2008.

Den vollen Inhalt der Quelle finden
Annotation:
Thesis (Ph.D.)--Michigan State University. Dept. of Physics and Astronomy, 2008.
Title from PDF t.p. (viewed on Mar. 27, 2009) Includes bibliographical references (p. 95-102). Also issued in print.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Electronic Microscope and microscopy"

1

The principles and practice of electron microscopy. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Doane, Frances W. Canadian contributions to microscopy: An historical account of the development of the first electron microscope in North America and the first 20 years of the Microscopical Society of Canada/Société de microscopie du Canada. Toronto: Microscopical Society of Canada, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

W, Doane F., Simon G. T und Watson J. H. L, Hrsg. Canadian contributions to microscopy: An historical account of the development of the first electron microscope in North America and the first 20 years of the Microscopical Society of Canada / Société de Microscopie du Canada. Toronto, Ont: Microscopial Society of Canada, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Reimer, Ludwig. Scanning electron microscopy: Physics of image formation and microanalysis. 2. Aufl. Berlin: Springer, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Scanning electron microscopy: Physics of image formation and microanalysis. Berlin: Springer-Verlag, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

J, Goodhew Peter, Hrsg. Thin foil preparation for electron microscopy. Amsterdam: Elsevier, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hayat, M. A. Basic techniques for transmission electron microscopy. Orlando: Academic Press, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Champness, P. E. Electron diffraction in the transmission electron microscope. Oxford: BIOS Scientific Publishers, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

R, Lewis P., Hrsg. Biological specimen preparation for transmission electron microscopy. Princeton, N.J: Princeton University Press, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ayache, Jeanne. Sample preparation handbook for transmission electron microscopy: Techniques. New York: Springer, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Electronic Microscope and microscopy"

1

Badiye, Ashish, Neeti Kapoor und Ritesh K. Shukla. „Forensic Applications of Electron Microscope“. In Forensic Microscopy, 251–70. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.4324/9781003120995-20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Milne, R. H. „Reflection Microscopy in a Scanning Transmission Electron Microscope“. In NATO ASI Series, 317–28. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5580-9_23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sims, Paul, Ralph Albrecht, James B. Pawley, Victoria Centonze, Thomas Deerinck und Jeff Hardin. „When Light Microscope Resolution Is Not Enough:Correlational Light Microscopy and Electron Microscopy“. In Handbook Of Biological Confocal Microscopy, 846–60. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-45524-2_49.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Williams, David B., und C. Barry Carter. „The Transmission Electron Microscope“. In Transmission Electron Microscopy, 3–22. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76501-3_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Williams, David B., und C. Barry Carter. „The Transmission Electron Microscope“. In Transmission Electron Microscopy, 3–17. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gerber, Ch, G. Binnig, H. Fechs, O. Marti und H. Rohrer. „Scanning tunneling microscope combined with a scanning electron microscope“. In Scanning Tunneling Microscopy, 79–82. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-011-1812-5_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Reimer, Ludwig. „Electron Optics of a Scanning Electron Microscope“. In Scanning Electron Microscopy, 13–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-13562-4_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Reimer, Ludwig. „Elements of a Transmission Electron Microscope“. In Transmission Electron Microscopy, 79–142. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-14824-2_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Reimer, Ludwig. „Elements of a Transmission Electron Microscope“. In Transmission Electron Microscopy, 86–135. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-21556-2_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Reimer, Ludwig. „Elements of a Transmission Electron Microscope“. In Transmission Electron Microscopy, 86–135. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-21579-1_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Electronic Microscope and microscopy"

1

Monachon, C., M. S. Zielinski, D. Gachet, S. Sonderegger, S. Muckenhirn, J. Berney, D. Poppitz, A. Graff, S. Breuer und L. Kirste. „Failure Analysis and Defect Inspection of Electronic Devices by High-Resolution Cathodoluminescence“. In ISTFA 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.istfa2017p0349.

Der volle Inhalt der Quelle
Annotation:
Abstract Quantitative cathodoluminescence (CL) microscopy is a new optical spectroscopy technique that measures electron beam-induced optical emission over large field of view with a spatial resolution close to that of a scanning electron microscope (SEM). Correlation of surface morphology (SE contrast) with spectrally resolved and highly material composition sensitive CL emission opens a new pathway in non-destructive failure and defect analysis at the nanometer scale. Here we present application of a modern CL microscope in defect and homogeneity metrology, as well as failure analysis in semiconducting electronic materials
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Yatagai, Toyohiko, Katsuyuki Ohmura und Shigeo Iwasaki. „Phase sensitive analysis of electron holograms“. In Holography. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/holography.1986.wb3.

Der volle Inhalt der Quelle
Annotation:
Holography has been used in electron microscopy since the field emission electron microscope was developed.[1] Tonomura et al described the interference microscope based on the electron holography to evaluate microscopic distribution of the magnetic field. [2] To gain high sensitivity the use of the optical phase multiplication technique was discussed so as to obtain 10 time magnification of the reconstructed phase. [3] Recently Takeda et al applied the FFT method of the subfringe analysis for electron holographic fringes.[4] They mentioned phase variations much smaller than 2 π could be detected without recource to optical reconstruction or optical interferometric measurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Baibyrin, V. B., P. I. Anisimov, N. P. Konnov, A. A. Shcherbakov und U. P. Volkov. „Near field scanning optical microscope for biological applications“. In Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/lacea.1996.lwd.9.

Der volle Inhalt der Quelle
Annotation:
In our biophysical laboratory systematic investigations of plague and choler microbes are carried out by different methods (conventional electron microscopy, scanning tunneling microscopy and atomic force microscopy). At present for the investigations we have develop a near field scanning optical microscope (NSOM).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Webb, Robert H. „Microlaser microscope“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.mpp4.

Der volle Inhalt der Quelle
Annotation:
A scanned laser microscope with no moving parts is described. The source for this device is an array of 250 000 microlasers on a single substrate, each laser being typically 2 mm in diameter. The entire array is imaged on the microscope's object plane, but only one laser emits light at a given instant. Thus, as the array is electronically scanned, the illumination spot moves over the object. In the simplest configuration, a beam splitter returns light from the object to a detector, and the resulting voltage stream is synchronously displayed on a television monitor. The microscope can thus be packaged in a volume of ~1 cm3 (plus electronics). Variants on the basic microscope permit random access to any pixel, transmission microscopy, and a wide range of field sizes. Later versions will incorporate a synchronous solid-state detector array, which makes this a confocal microscope, and multiplexing of the array elements so that the device has both the scanning laser (confocal) microscope's brightness and the tandem-scanning (confocal) microscope's Felgetts advantage. This detector array can be used to run much faster than television scanning rates or to use much less light, thus avoiding fluorophore bleaching. Ultimately, the microscope can be further miniaturized so that it can be introduced into body cavities and other difficult places. Finally, the same technology can be used to make an inexpensive high-brightness display that is small enough to be worn on an eyeglass frame.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Villarraga-Gómez, Herminso, Kyle Crosby, Masako Terada und Mansoureh Norouzi Rad. „Assessing Electronics with Advanced 3D X-ray Microscopy Techniques and Electron Microscopy“. In ISTFA 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.istfa2023p0554.

Der volle Inhalt der Quelle
Annotation:
Abstract This paper presents advanced workflows that combine 3D Xray microscopy (XRM), nanoscale tomography, and electron microscopy to generate a detailed visualization of the interior of electronic devices and assemblies to enable the study of internal components for failure analysis (FA). Newly developed techniques such as the integration of deep-learning (DL) based algorithms for 3D image reconstruction are also discussed in this article. In addition, a DL-based tool (called DeepScout) is introduced that uses high-resolution 3D XRM datasets as training data for lower-resolution, larger field-of-view datasets and scales larger-volume data using a neural network model. Ultimately, these workflows can be run independently or complementary to other multiscale correlative microscopy evaluations, e.g., electron microscopy, and will provide valuable insights into the inner workings of electronic packages and integrated circuits at multiple length scales, from macroscopic features on electronic devices (i.e., hundreds of mm) to microscopic details in electronic components (in the tens of nm). Understanding advanced electronic systems through X-ray imaging and electron microscopy, and possibly complemented with some additional correlative microscopy investigations, can speed development time, increase cost efficiency, and simplify FA and quality inspection of printed circuit boards (PCBs) and electronic devices assembled with new emerging technologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sandoz, P., J. L. Pretet, R. Zeggari, L. Froehly, C. Mougin und M. P. Bernal. „Micro-patterned microscope slides for position referencing in optical microscopy“. In 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/cleoe-iqec.2007.4386655.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Larkin, Kieran G., Carol J. Cogswell, John W. O'Byrne und Matthew R. Arnison. „High-resolution, multiple optical mode confocal microscope: II. Theoretical aspects of confocal transmission microscopy“. In IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, herausgegeben von Carol J. Cogswell und Kjell Carlsson. SPIE, 1994. http://dx.doi.org/10.1117/12.172106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Postek, Michael T., András E. Vladár, William Keery, Michael Bishop, Benjamin Bunday und John Allgair. „NEW scanning electron microscope magnification calibration reference material (RM) 8820“. In Scanning Microscopy 2010, herausgegeben von Michael T. Postek, Dale E. Newbury, S. Frank Platek und David C. Joy. SPIE, 2010. http://dx.doi.org/10.1117/12.859118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Miyasaka, C., und B. R. Tittmann. „Application of Scanning Acoustic Microscopy to Electric and Electronic Parts“. In ISTFA 2000. ASM International, 2000. http://dx.doi.org/10.31399/asm.cp.istfa2000p0303.

Der volle Inhalt der Quelle
Annotation:
Abstract Ever since the invention of the scanning acoustic microscope (SAM), a key objective has been the enhancement of the resolution in an interior image. Thus, an acoustic lens that can form an interior image with a shear wave has been designed. The use of this lens gives benefits such as an increase of lateral resolution in the interior image, a reduction in background noise caused by surface roughness, and a reduction of spherical aberration. Significantly, with the current trend towards microminiaturization of microelectronic packages, acoustic microscopy with higher resolution and removal of surface roughness can play an important role in diagnostic examinations and failure analysis. In this paper, applications for the lens in microelectronic IC packages will be summarized.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Schmahl, Gunter. „X-ray microscopy studies of biological specimens in their natural state“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tuee1.

Der volle Inhalt der Quelle
Annotation:
First, an improved x-ray microscope is described which is installed at the BESSY electron storage ring in Berlin. The x-ray optical setup consists of an x-ray condenser zone plate and a high resolution microzone plate. Both types of zone plate are germanium phase zone plates. They are produced in our institute by ultraviolet laser lithography and electron lithography with zone widths down to 30 nm. X-ray microscopy studies of biological specimens in their natural state (chromatin structures of chromosomes, cytoskeleton structures, etc.) are performed with this microscope with 2.4-nm radiation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Electronic Microscope and microscopy"

1

De Lozanne, Alejandro. Nanofabrication of Electronic Devices With the Scanning Tunneling Microscope. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1994. http://dx.doi.org/10.21236/ada292463.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cobden, David. Combined microscopy studies of complex electronic materials. Final report. Office of Scientific and Technical Information (OSTI), Oktober 2019. http://dx.doi.org/10.2172/1570390.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

LeRoy, Brian. Understanding and Controlling the Electronic Properties of Graphene Using Scanning Probe Microscopy. Fort Belvoir, VA: Defense Technical Information Center, Juli 2014. http://dx.doi.org/10.21236/ada612223.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yazdani, Ali. Probing Electronic States of Magnetic Semiconductors Using Atomic Scale Microscopy & Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2013. http://dx.doi.org/10.21236/ada614343.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Davis, Seamus, und Paul L. McEuen. Electronic Wavefunction Imaging and Spectroscopy in Metallic and Magnetic Nanostructures by Millikelvin Scanning Tunneling Microscopy. Fort Belvoir, VA: Defense Technical Information Center, Mai 2002. http://dx.doi.org/10.21236/ada414343.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Williams, Clayton, und Christoph Boehme. Room Temperature Single-Spin Tunneling Force Microscopy for Characterization of Paramagnetic Defects in Electronic Materials. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada604959.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Barbara, Paul F. Ultrafast Near-Field Scanning Optical Microscopy (NSOM) of Emerging Display Technology Media: Solid State Electronic Structure and Dynamics,. Fort Belvoir, VA: Defense Technical Information Center, Mai 1995. http://dx.doi.org/10.21236/ada294879.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wolf, E. L. Control of the Residual Sub-Electronic Charge on a Mesoscopic Conductor by Means of a Scanning Tunneling Microscope Tip. Fort Belvoir, VA: Defense Technical Information Center, März 1994. http://dx.doi.org/10.21236/ada277290.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Crewe, A. V., und O. H. Kapp. Electron microscope studies. Office of Scientific and Technical Information (OSTI), Juni 1991. http://dx.doi.org/10.2172/6000131.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Crewe, A. V., und O. H. Kapp. Electron microscope studies. Office of Scientific and Technical Information (OSTI), Juli 1992. http://dx.doi.org/10.2172/7015892.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie