Auswahl der wissenschaftlichen Literatur zum Thema „Electron-transport layers“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electron-transport layers" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Electron-transport layers"

1

Assi, Ahmed Ali, Wasan R. Saleh und Ezzedin Mohajerani. „Effect of Deposit Au thin Layer Between Layers of Perovskite Solar Cell on Cell's Performance“. Iraqi Journal of Physics (IJP) 19, Nr. 51 (01.12.2021): 23–32. http://dx.doi.org/10.30723/ijp.v19i51.696.

Der volle Inhalt der Quelle
Annotation:
The present work aims to fabricate n-i-p forward perovskite solar cell (PSC) withئ structure (FTO/ compact TiO2/ compact TiO2/ MAPbI3 Perovskite/ hole transport layer/ Au). P3HT, CuI and Spiro-OMeTAD were used as hole transport layers. A nano film of 25 nm gold layer was deposited once between the electron transport layer and the perovskite layer, then between the hole transport layer and the perovskite layer. The performance of the forward-perovskite solar cell was studied. Also, the role of each electron transport layer and the hole transport layer in the perovskite solar cell was presented. The structural, morphological and electrical properties were studied with X-ray diffractometer, field emission scanning electron microscope and current-voltage (J-V) characteristic curves, respectively. J-V curves revealed that the deposition of the Au layer between the electron transport layer (ETL) and Perovskite layer (PSK) reduced the power conversion efficiency (PCE) from 3% to 0.08% when one layer of C. TiO2 is deposited in the PSC and to 0.11% with two layers of C. TiO2. Power conversion efficiency, with CuI as the hole transport layer (HTL), showed an increase from 0.5% to 2.7% when Au layer was deposited between PSK and CuI layers. Also, Isc increased from 6.8 mA to 17.4 mA and Voc from 0.3 V to 0.5V. With depositing Au layer between P3HT and PSK layers, the results showed an increase in the efficiency from 1% to 2.6% and an increase in Isc from 10.7 mA to 30.5 mA, while Voc decreased from 0.75 V to 0.5V
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Vasan, R., H. Salman und M. O. Manasreh. „All inorganic quantum dot light emitting devices with solution processed metal oxide transport layers“. MRS Advances 1, Nr. 4 (2016): 305–10. http://dx.doi.org/10.1557/adv.2016.129.

Der volle Inhalt der Quelle
Annotation:
ABSTRACTAll inorganic quantum dot light emitting devices with solution processed transport layers are investigated. The device consists of an anode, a hole transport layer, a quantum dot emissive layer, an electron transport layer and a cathode. Indium tin oxide coated glass slides are used as substrates with the indium tin oxide acting as the transparent anode electrode. The transport layers are both inorganic, which are relatively insensitive to moisture and other environmental factors as compared to their organic counterparts. Nickel oxide acts as the hole transport layer, while zinc oxide nanocrystals act as the electron transport layer. The nickel oxide hole transport layer is formed by annealing a spin coated layer of nickel hydroxide sol-gel. On top of the hole transport layer, CdSe/ZnS quantum dots synthesized by hot injection method is spin coated. Finally, zinc oxide nanocrystals, dispersed in methanol, are spin coated over the quantum dot emissive layer as the electron transport layer. The material characterization of different layers is performed by using absorbance, Raman scattering, XRD, and photoluminescence measurements. The completed device performance is evaluated by measuring the IV characteristics, electroluminescence and quantum efficiency measurements. The device turn on is around 4V with a maximum current density of ∼200 mA/cm2 at 9 V.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Yuxin, und Sin Tee Tan. „Composition of Electron Transport Layers in Organic Solar Cells (OSCs).“ Highlights in Science, Engineering and Technology 12 (26.08.2022): 99–105. http://dx.doi.org/10.54097/hset.v12i.1411.

Der volle Inhalt der Quelle
Annotation:
The research on organic solar cells has attracted researcher attention because of their flexibility, low cost and relatively simple processing methods. However, the efficiency issue is the shortcoming of organic solar energy, and one of the key factors affecting the power conversion rate is the utilization of electron transport layer. Among the materials used for the electron transport layer, metal oxides are widely used due to their stability, ease of preparation and tunable energy band structure. This article review the advantages and disadvantages of metal oxides as electron transport layers particulary focus on SnO2, TiO2 and ZnO. The different nanostructures properties of the materials is also explores. A brief discussion on the use of metal oxides as electron transport layers in improving the performance of organic solar cells in the future is also elucidated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yusuf, Abubakar Sadiq, A. M. Ramalan, A. A. Abubakar und I. K. Mohammed. „Progress on Electron Transport Layers for Perovskite Solar Cells“. Nigerian Journal of Physics 32, Nr. 4 (05.02.2024): 81–90. http://dx.doi.org/10.62292/njp.v32i4.2023.156.

Der volle Inhalt der Quelle
Annotation:
The photovoltaic industry is very interested in designing and developing next-generation device architectures using organic-inorganic perovskite hybrid solar cell materials. In fact, perovskites represent one of the most promising materials for high efficiency, low-cost solar cells. This is most apparent in the power conversion efficiency of perovskite solar cells (PSCs) going from 3.8 to 24.2 % in recent years. One of the primary challenges of developing PSC’s however is the realization of an appropriate electron transport layer. As such, this review focuses on recent developments in the electron transport layer (ETL) of perovskite solar cells. It examines and summarises designs, electron transport layers and perovskite active layers for efficient perovskite solar cells. The performance and stability issues with organic-inorganic halide perovskite solar cells are also discussed with some recommendations for additional research on the ETL and perovskite active layer were offered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Li, Bairu, Jieming Zhen, Yangyang Wan, Xunyong Lei, Lingbo Jia, Xiaojun Wu, Hualing Zeng, Muqing Chen, Guan-Wu Wang und Shangfeng Yang. „Steering the electron transport properties of pyridine-functionalized fullerene derivatives in inverted perovskite solar cells: the nitrogen site matters“. Journal of Materials Chemistry A 8, Nr. 7 (2020): 3872–81. http://dx.doi.org/10.1039/c9ta12188a.

Der volle Inhalt der Quelle
Annotation:
Three pyridine-functionalized fullerene derivatives with variable nitrogen sites were synthesized and used as electron transport layers of iPSCs, exhibiting tunable interactions with the perovskite layer and different electron transport properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Vannikov, Anatolii V., Antonina D. Grishina und S. V. Novikov. „Electron transport and electroluminescence in polymer layers“. Russian Chemical Reviews 63, Nr. 2 (28.02.1994): 103–23. http://dx.doi.org/10.1070/rc1994v063n02abeh000074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Synowiec, Z., und B. Paszkiewicz. „Electron transport in implant isolation GaAs layers“. Microelectronics Reliability 43, Nr. 4 (April 2003): 675–79. http://dx.doi.org/10.1016/s0026-2714(03)00016-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Moiz, Syed Abdul. „Optimization of Hole and Electron Transport Layer for Highly Efficient Lead-Free Cs2TiBr6-Based Perovskite Solar Cell“. Photonics 9, Nr. 1 (31.12.2021): 23. http://dx.doi.org/10.3390/photonics9010023.

Der volle Inhalt der Quelle
Annotation:
The methylammonium lead halide solar cell has attracted a great deal of attention due to its lightweight, low cost, and simple fabrication and processing. Despite these advantages, these cells are still far from commercialization because of their lead-based toxicity. Among lead-free perovskites, cesium-titanium (IV) bromide (Cs2TiBr6) is considered one of the best alternatives, but it faces a lack of higher PCE (power conversion efficiency) due to the unavailability of the matched hole and electron transport layers. Therefore, in this study, the ideal hole and electron transport layer parameters for the Cs2TiBr6-based solar cell were determined and discussed based on a simulation through SCAPS-1D software. It was observed that the maximum PCE of 20.4% could be achieved by using the proper hole and electron transport layers with optimized parameters such as energy bandgap, electron affinity, doping density, and thickness. Unfortunately, no hole and electron transport material with the required electronic structure was found. Then, polymer NPB and CeOx were selected as hole and electron transport layers, respectively, based on their closed electronic structure compared to the simulation results, and, hence, the maximum PCE was found as ~17.94% for the proposed CeOx/Cs2TiBr6/NPB solar cell.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rani, R., K. Monga und S. Chaudhary. „Recent development in electron transport layers for efficient tin-based perovskite solar cells“. IOP Conference Series: Materials Science and Engineering 1258, Nr. 1 (01.10.2022): 012015. http://dx.doi.org/10.1088/1757-899x/1258/1/012015.

Der volle Inhalt der Quelle
Annotation:
Hybrid organic-inorganic tin (Sn)-based perovskite materials became a promising choice as an alternative to lead-free perovskite solar cells (PSCs) due to their outstanding optical and electrical properties. But, so far, a power conversion efficiency (PCE) of only 13% has been achieved for Sn-based PSCs. To achieve highly efficient and stable PSCs, not only the properties of the active layer but the charge selective contacts (electron and hole transport layers) should be selected wisely. The interfaces between the perovskite active layer and charge transport layers play an important role in achieving the better performance of PSCs. In the present review, the spotlight is on the recent developments made on the optimization of electron transport layers (ETLs) for the efficient Sn-based hybrid organic-inorganic PSCs. Further, we comprehensively discuss the significance and the impact of the lowest unoccupied molecular orbital level of electron transport material on the charge transport, which additionally affects the photovoltaic performance of the device. In summary, with continuous research on the Sn-based hybrid organic-inorganic perovskite materials as an absorbing layer, conventional ETLs (metal oxides) cannot be used. Thus, the optimum candidate for befitted ETLs must be explored and investigated in detail for efficient PSCs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mityashin, Alexander, David Cheyns, Barry P. Rand und Paul Heremans. „Understanding metal doping for organic electron transport layers“. Applied Physics Letters 100, Nr. 5 (30.01.2012): 053305. http://dx.doi.org/10.1063/1.3681383.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Electron-transport layers"

1

Mavroidis, Constantinos. „Electron transport in GaN epitaxial layers“. Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kusumawati, Yuly. „Oxide and composite electron transport layers for efficient dye-sensitized solar cells“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066240/document.

Der volle Inhalt der Quelle
Annotation:
Trois types des ETLs ont été développés et étudiés dans cette travaille comme une photoélectrode dans la cellule solaire à colorant (DSSC). Ils sont composés de (1) deux types de nanoparticules de TiO2-brookite, (2) le composite d'anatase et graphène et (3) la nanoparticule de ZnO qui a nanobâtonnet structure, respectivement. Toutes photoélectrodes sont préparées par le technique « doctor blade ». La morphologie des photoélectrodes ont été caractérisées par microscopie électronique à transmission (MET) et microscopie électronique à balayage (MEB). Les épaisseurs de couche sont mesurées en utilisant la profilométrie. Pour les films caractérisations structurelles, une haute résolution diffractomètre à rayons X a été utilisée. La spectroscopie infrarouge à transformée de Fourier (FTIR) et micro-Raman ont été effectués pour vérifier la préparation composite TiO2_Gr. Les propriétés des films optiques ont été enregistrées avec un spectrophotomètre équipé d'une sphère d'intégration de techniques. Les performances de cellules ont été obtenues en mesurant les courbes IV des cellules sous illumination calibré. Pour atteindre une compréhension profonde du fonctionnement de la cellule, la spectroscopie d'impédance (IS) technique a été étudiée sur une grande gamme de potentiel appliquée. En faisant est l'étude, la structure électronique, porteurs de charge à vie (tn), le transport / heure de collecte (ttr) et les paramètres de transport d'électrons des couches ont été déterminées. L'étude soin de leurs propriétés a révélé non seulement leurs avantages mais aussi leur limitation. Cette information sera bénéfique comme une considération pour les travaux futurs
Three kinds of ETL have been developed and studied in this present work as a photoelectrode in DSSC. Those composed of (1) two kinds of TiO2-brookite nanoparticles, (TiO2_B1 and TiO2_B2), (2) the composite of anatase and graphene (TiO2_Gr) and (3) the nanorods like ZnO nanoparticles (ZnO_NR), respectively. All photoelectrode are prepared by doctor blading technique. The morphology of photoelectrodes have been characterized using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The layer thicknesses were measured using profilometry. For the film structural characterizations, a high-resolution X-ray diffractometer was used. The Fourier transform infrared (FTIR) and micro Raman measurement have been carried out to verify the TiO2_Gr composite preparation. The optical film properties (total transmission and total reflection) were recorded with a spectrophotometer equipped with an integrating sphere techniques. The cell performances were obtained by measuring the I-V curves of the cells under calibrated illumination. To achieve an in-deep understanding of the cell functioning, the impedance spectroscopy (IS) technique has been studied over a large applied potential range. By doing IS study, the electronic structure, charge carrier lifetime (tn), transport/collection time (ttr) and electron transport parameters of the layers have been determined. The carefully study of their properties has revealed not only their advantages but also their limitation. This information will be beneficial as a consideration for the future work
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tambwe, Kevin. „P- and e- type Semiconductor layers optimization for efficient perovskite photovoltaics“. University of Western Cape, 2019. http://hdl.handle.net/11394/7414.

Der volle Inhalt der Quelle
Annotation:
>Magister Scientiae - MSc
Perovskite solar cells have attracted a tremendous amount of research interest in the scientific community recently, owing to their remarkable performance reaching up to 22% power conversion efficiency (PCE) in merely 6 to 7 years of development. Numerous advantages such as reduced price of raw materials, ease of fabrication and so on, have contributed to their increased popularity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bradley, Colin. „Understanding Charge Transport and Selectivitiy in Ionically Functionalized Fullerenes for Electron-Selective Interfacial Layers“. Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23171.

Der volle Inhalt der Quelle
Annotation:
Significant improvements in power conversion efficiency (>10%) of emerging thin-film photovoltaics have been achieved in the last 5 years. High efficiencies would not be possible without the development of new selective interfacial layers. However, a complete understanding of how interfacial layers function to improve the selectivity of charge extracting contacts in thin-film photovoltaics is still being sought. The goal of this work is to contribute to the understanding of the operation of selective interfacial layers based on the study of ionically functionalized fullerenes. Just as other ionically functionalized materials have shown promise as electron-selective interfacial layers in organic photovoltaics and mixed organic-inorganic halide perovskites, Chapter II demonstrates the utility of ionically functionalized fullerenes. High performing solar cells necessitate the use of conductive interfacial layers; anomalously high conductivity in ionically functionalized materials, which have been used as interfacial layers, has been ascribed to self-doping. This work demonstrates that less than 1% of an ionically functionalized fullerene is reduced in its highly conductive pristine state and is concurrent with the presence of distinct chemical species. These studies describe how the chemical origin of the high conductivity of ionically functionalized fullerenes does not require the invocation of direct anion reduction or significant chemical transformations such as Hofmann-like elimination reactions occurring to a stoichiometric degree. This work also addresses the question of how the selectivity of a charge extracting contact is improved by the presence of an interfacial layer. The quantification of energy barrier reduction, which is often discussed in terms of work function modification or energy-level alignment, is demonstrated using metal|semiconductor junctions modified with an ionically functionalized fullerene. The barrier height of high work function electrodes was reduced significantly, by as much as 0.45 V, and was correlated to thin (2–5 nm) portions of the film rather than fullerene aggregates. The studies that comprise this work form a coherent model for understanding the key factors that have resulted in the continued use of ionically functionalized interfacial layers, their high conductivity, and energy barrier modification of the charge extracting electrodes. This dissertation contains coauthored, previously published, and unpublished work.
10000-01-01
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rushforth, Andrew William. „The transport properties of two dimensional electron gases in spatially random magnetic fields“. Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schubert, Marcel. „Elementary processes in layers of electron transporting Donor-acceptor copolymers : investigation of charge transport and application to organic solar cells“. Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7079/.

Der volle Inhalt der Quelle
Annotation:
Donor-acceptor (D-A) copolymers have revolutionized the field of organic electronics over the last decade. Comprised of a electron rich and an electron deficient molecular unit, these copolymers facilitate the systematic modification of the material's optoelectronic properties. The ability to tune the optical band gap and to optimize the molecular frontier orbitals as well as the manifold of structural sites that enable chemical modifications has created a tremendous variety of copolymer structures. Today, these materials reach or even exceed the performance of amorphous inorganic semiconductors. Most impressively, the charge carrier mobility of D-A copolymers has been pushed to the technologically important value of 10 cm^{2}V^{-1}s^{-1}. Furthermore, owed to their enormous variability they are the material of choice for the donor component in organic solar cells, which have recently surpassed the efficiency threshold of 10%. Because of the great number of available D-A copolymers and due to their fast chemical evolution, there is a significant lack of understanding of the fundamental physical properties of these materials. Furthermore, the complex chemical and electronic structure of D-A copolymers in combination with their semi-crystalline morphology impede a straightforward identification of the microscopic origin of their superior performance. In this thesis, two aspects of prototype D-A copolymers were analysed. These are the investigation of electron transport in several copolymers and the application of low band gap copolymers as acceptor component in organic solar cells. In the first part, the investigation of a series of chemically modified fluorene-based copolymers is presented. The charge carrier mobility varies strongly between the different derivatives, although only moderate structural changes on the copolymers structure were made. Furthermore, rather unusual photocurrent transients were observed for one of the copolymers. Numerical simulations of the experimental results reveal that this behavior arises from a severe trapping of electrons in an exponential distribution of trap states. Based on the comparison of simulation and experiment, the general impact of charge carrier trapping on the shape of photo-CELIV and time-of-flight transients is discussed. In addition, the high performance naphthalenediimide (NDI)-based copolymer P(NDI2OD-T2) was characterized. It is shown that the copolymer posses one of the highest electron mobilities reported so far, which makes it attractive to be used as the electron accepting component in organic photovoltaic cells.par Solar cells were prepared from two NDI-containing copolymers, blended with the hole transporting polymer P3HT. I demonstrate that the use of appropriate, high boiling point solvents can significantly increase the power conversion efficiency of these devices. Spectroscopic studies reveal that the pre-aggregation of the copolymers is suppressed in these solvents, which has a strong impact on the blend morphology. Finally, a systematic study of P3HT:P(NDI2OD-T2) blends is presented, which quantifies the processes that limit the efficiency of devices. The major loss channel for excited states was determined by transient and steady state spectroscopic investigations: the majority of initially generated electron-hole pairs is annihilated by an ultrafast geminate recombination process. Furthermore, exciton self-trapping in P(NDI2OD-T2) domains account for an additional reduction of the efficiency. The correlation of the photocurrent to microscopic morphology parameters was used to disclose the factors that limit the charge generation efficiency. Our results suggest that the orientation of the donor and acceptor crystallites relative to each other represents the main factor that determines the free charge carrier yield in this material system. This provides an explanation for the overall low efficiencies that are generally observed in all-polymer solar cells.
Donator-Akzeptor (D-A) Copolymere haben das Feld der organischen Elektronik revolutioniert. Bestehend aus einer elektronen-reichen und einer elektronen-armen molekularen Einheit,ermöglichen diese Polymere die systematische Anpassung ihrer optischen und elektronischen Eigenschaften. Zu diesen zählen insbesondere die optische Bandlücke und die Lage der Energiezustände. Dabei lassen sie sich sehr vielseitig chemisch modifizieren, was zu einer imensen Anzahl an unterschiedlichen Polymerstrukturen geführt hat. Dies hat entscheidend dazu beigetragen, dass D-A-Copolymere heute in Bezug auf ihren Ladungstransport die Effizienz von anorganischen Halbleitern erreichen oder bereits übetreffen. Des Weiteren lassen sich diese Materialien auch hervorragend in Organischen Solarzellen verwenden, welche jüngst eine Effizienz von über 10% überschritten haben. Als Folge der beträchtlichen Anzahl an unterschiedlichen D-A-Copolymeren konnte das physikalische Verständnis ihrer Eigenschaften bisher nicht mit dieser rasanten Entwicklung Schritt halten. Dies liegt nicht zuletzt an der komplexen chemischen und mikroskopischen Struktur im Film, in welchem die Polymere in einem teil-kristallinen Zustand vorliegen. Um ein besseres Verständnis der grundlegenden Funktionsweise zu erlangen, habe ich in meiner Arbeit sowohl den Ladungstransport als auch die photovoltaischen Eigenschaften einer Reihe von prototypischen, elektronen-transportierenden D-A Copolymeren beleuchtet. Im ersten Teil wurden Copolymere mit geringfügigen chemischen Variationen untersucht. Diese Variationen führen zu einer starken Änderung des Ladungstransportverhaltens. Besonders auffällig waren hier die Ergebnisse eines Polymers, welches sehr ungewöhnliche transiente Strom-Charakteristiken zeigte. Die nähere Untersuchung ergab, dass in diesem Material elektrisch aktive Fallenzustände existieren. Dieser Effekt wurde dann benutzt um den Einfluss solcher Fallen auf transiente Messung im Allgemeinen zu beschreiben. Zusätzlich wurde der Elektronentransport in einem neuartigen Copolymer untersucht, welche die bis dato größte gemesse Elektronenmobilität für konjugierte Polymere zeigte. Darauf basierend wurde versucht, die neuartigen Copolymere als Akzeptoren in Organischen Solarzellen zu implementieren. Die Optimierung dieser Zellen erwies sich jedoch als schwierig, konnte aber erreicht werden, indem die Lösungseigenschaften der Copolymere untersucht und systematisch gesteuert wurden. Im Weiteren werden umfangreiche Untersuchungen zu den relevanten Verlustprozessen gezeigt. Besonders hervorzuheben ist hier die Beobachtung, dass hohe Effizienzen nur bei einer coplanaren Packung der Donator/Akzeptor-Kristalle erreicht werden können. Diese Struktureigenschaft wird hier zum ersten Mal beschrieben und stellt einen wichtigen Erkenntnisgewinn zum Verständnis von Polymersolarzellen dar.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Allen, William D. „Aspects of spin polarised transport“. Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368082.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schubert, Marcel [Verfasser], und Dieter [Akademischer Betreuer] Neher. „Elementary processes in layers of electron transporting Donor-acceptor copolymers : investigation of charge transport and application to organic solar cells / Marcel Schubert. Betreuer: Dieter Neher“. Potsdam : Universitätsbibliothek der Universität Potsdam, 2014. http://d-nb.info/1052682847/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Whitfield, Thomas Britain. „An analysis of copper transport in the insulation of high voltage transformers“. Thesis, University of Surrey, 2001. http://epubs.surrey.ac.uk/843581/.

Der volle Inhalt der Quelle
Annotation:
Examination of the paper insulation and copper stress braiding during stripdown of a number of Current Transformers (FMK type 400kV) has revealed the presence of dark deposits. Copper foils are often interspersed within layers of paper insulation and mineral oil found in transformer windings. The dark deposits were often found in association with these foils, affecting several layers of paper in addition to the layer in contact with the copper foil. This thesis describes the research undertaken to identify these deposits and establish a mechanism for the transportation through the paper layers. Preliminary investigation using scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDX) has shown these dark deposits to be copper based. X-ray photoelectron spectroscopy was used to show that the transport of the copper deposit through the paper insulation was working under the influence of a diffusion controlled process, related to Fick's law. Laboratory studies in support of work designed to eliminate the problem have shown that corrosion of copper occurs in mineral oils containing a trace of oxygen. This corrosion is non protective in character and leads to migration of copper into adjacent layers of paper. It has been shown that the transport of copper through several layers of paper can be measured by XPS and that the concentration from one paper winding to the next declines in accord with Fick's law for non-steady state diffusion. Measurements of surface concentrations by XPS correlate well with measurements made with atomic absorption spectroscopy on solutions of extracts of the contaminated paper. The laboratory measurements have allowed determination of the diffusion coefficients and activation energy for the transport process and thus give a basis for interpretation of the diffusion profiles found in the transformer in terms of time and temperature of operation. The diffusion process is temperature dependant. The results have been used to produce long term prediction curves.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Aversa, Pierfrancesco. „Primary Defects in Halide Perovskites : Effect on Stability and Performance for Photovoltaic Applications Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in methyl ammonium lead triiodide spin –coated on p-i-n Solar Sell Substrates Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in triple cation lead mixed halide perovskite spin –coated on p-i-n Solar Sell Substrates Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of methylammonium lead triiodide layers on p-i-n solar cell substrates Electron Irradiation Induced Ageing Effects on Methylammonium Lead Triiodide Based p-i-n Solar Cells Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of Quadruple Cation Organic-Inorganic Perovskite Layers“. Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX050.

Der volle Inhalt der Quelle
Annotation:
Ces onze dernières années ont vu apparaitre les pérovskites organiques inorganiques hybrides (HOIPs) comme un passionnant domaine de recherche pour leur application potentielle dans les technologies du photovoltaïque (PV) en raison de leurs exceptionnelles propriétés optoélectroniques et de leur facilité de mise en oeuvre. Cependant, les matériaux HOIPs ont plusieurs inconvénients dont leur manque de stabilité en conditions opérationnelles. Améliorer celle-ci est l'un des plus grands défis à relever avant commercialisation. La formule générale est (A1,A2,A3,A4)Pb(X1,X2)3, où les sites A occupés par une distribution de 1 à 4 cations métalliques/organiques et les sites X par celle d’anions halogénures. Les défauts lacunaires natifs sont considérés comme une cause possible de dégradation des cellules solaires HOIPs. L'objectif de ce travail est de comprendre le rôle des défauts dans la stabilité à long terme des matériaux PV HOIPs. A cette fin, des défauts primaires ont été introduits de manière contrôlée par irradiation avec des électrons de haute énergie (1MeV) dans des lots de couches et cellules solaires (SCs) à base de divers composés HOIPs. Il s'agit notamment du prototype PV HOIPs, MAPbI3 (A1PbX13), et de nouveaux composés mixtes d’halogénures à triple ou quadruple cations, (CsMAFA)Pb(I1-xBrx)3 (A3PbX23) ou (GACsMAFA)Pb(I1-yBry)3 (A4PbX23). Les couches sont fabriquées selon la même procédure que les couches actives SCs et, ensuite, traitées dans des conditions similaires. Pour A1PbX13/A3PbX23, la structure SC est de type p-i-n avec des couches organiques pour le transport des trous et des électrons (HTL/ETL). Les couches sont déposées sur le substrat verre/ITO/HTL (PEDOT:PSS) sans ou avec couche supérieure ETL (PCBM). Pour A4PbX23, la structure SC est de type n-i-p avec des couches ETL inorganiques (TiO2) et HTL organiques (Spiro-OMeTAD). Les couches sont directement déposées sur du verre.La spectroscopie d'annihilation de positons donne une évidence directe de l'existence de défauts lacunaires natifs et induits par irradiation dans chaque composé. Les spectres d’absorbance en fonction de l’énergie montrent que le vieillissement naturel et après irradiation génère différentes populations de défauts dans chaque composé. De plus, celles-ci pour A1PbX13 et A3PbX23 diffèrent selon l'absence ou la présence de la couche supérieure ETL. Les populations de défauts évoluent pendant au moins 3 mois. Le vieillissement modifie (i) la bande interdite, (ii) les queues de bande de conduction/valence et (iii) l'absorption optique via des niveaux électroniques profonds. Les effets d’illumination sous laser varient aussi en fonction du vieillissement. L’asymétrie des pics de photoluminescence (PL) dans chaque composé sous illumination laser continue reflète une superposition de raies d’émission gaussiennes à énergie, FWHM et hauteur évoluant avec le temps d'illumination. Les transitions d'émission impliquent des niveaux électroniques localisés peu profonds dans A3PbX23/A4PbX23 et résonnants dans A1PbX13. De tels effets durent au moins 3 mois dans A4PbX23. Ces niveaux électroniques sont attribués à des populations de défauts spécifiquement induits par illumination. Le vieillissement naturel et après irradiation donne des spectres PL à décroissance temporelle résolue en une ou deux exponentielles. Le nombre et la durée de vie sont fortement influencés par l’irradiation initiale et la composition. Une amélioration frappante du fonctionnement PV pour le type SC p-i-n est induite par le vieillissement dû à l'irradiation. Le rendement quantique externe et les performances PVs ont des valeurs plus élevées pour l’état irradié que de référence durant 6 à 12 mois de vieillissement. Cela prouve que l'ingénierie des défauts par irradiation d'électrons à haute énergie a le potentiel de fournir des voies de traitement innovantes pour améliorer la stabilité à long terme des performances photovoltaïques HOIPs
During the last eleven years, Hybrid Organic Inorganic Perovskites (HOIPs) materials have emerged as an exciting topic of research for potential application in solar cell technologies due to their outstanding optoelectronic properties and processing advantages. However, HOIPs materials suffer from several drawbacks with, in peculiar, their lack of stability under operational conditions (light, bias, environment…). To improve this stability is one of the biggest challenges to be addressed before commercialization. The general formula for HOIPs is (A1,A2,A3,A4)Pb(X1,X2)3, where the A sites can be occupied by a distribution of 1 to 4 metallic/organic cations and X sites with halide anions. The role of native vacancy defects has been questioned as a possible cause for HOIPs solar cells degradation. The aim of this work is to understand the defect role in long term stability of HOIPs materials for photovoltaics. For this reason, primary defects were introduced in a controlled way via high energy electron irradiation (1MeV) in sets of layers and solar cells (SCs) fabricated using various HOIPs compounds. Those include the photovoltaic HOIPs prototype, MAPbI3 (A1PbX13), and emergent triple or quadruple cation mixed halide HOIPs, (CsMAFA)Pb(I1-xBrx)3 (A3PbX23) or (GACsMAFA)Pb(I1-yBry)3 (A4PbX23). The HOIPs layers are fabricated according to the same procedure as the HOIPs active SC layers and, subsequently, treated in similar conditions. For A1PbX13 and A3PbX23, the solar cells are of the p-i-n structure with organic hole and electron transport layer (HTL/ETL). The HOIPs layers are deposited on the glass/ITO/HTL (PEDOT:PSS) substrate without or with the top ETL layer (PCBM). For A4PbX23, the solar cells are of the n-i-p type with inorganic ETL (TiO2) and organic HTL (Spiro-OMeTAD) layers. The layers are directly deposited on glass without the ETL layer.Positron Annihilation Spectroscopy (PAS) gives direct evidence for native vacancy-type defects and irradiation induced ones in layers of each HOIP compound. The energy dependence of absorbance shows that natural and after irradiation ageing generates different defect populations in each HOIP compound. These populations strikingly also differ depending on the absence or presence of the top ETL layer for the A1PbX13 and A3PbX23 compounds. The defect populations evolve over ageing duration as long as 3 months. The prominent effects of ageing include (i) band gap modification, (ii) tailing of conduction/valence band extrema and (iii) optical absorption via deep subgap electronic levels. Illumination effects under laser also vary with ageing for each HOIP compound. Asymmetric photoluminescence (PL) peaks in each compound under continuous laser illumination reflect that radiative emission involves Gaussian emission rays with energy, FWHM and height evolving with illumination time. The emission transitions involve shallow localized electronic levels in A3PbX23 and A4PbX23 and resonant ones in A1PbX13. These electronic levels are attributed to specifically illumination-induced defect populations. Natural and after irradiation ageing result in PL decay lifetime spectra resolved into one or two exponential decay components. The decay components number and lifetime are strongly affected by the initial production of irradiation defects and HOIPs composition. Such effects last over 3 months at least in A4PbX23. The p-i-n solar cells exhibit most striking irradiation ageing induced photovoltaics performance. The External Quantum Efficiency (EQE versus photon energy) and the photovoltaic performance (I-V under illumination) of the irradiated solar cells have higher values than those in the reference SCs after 6 to 12 months of ageing. This gives evidence that defect engineering via high energy electron irradiation has a potential for providing innovative processing pathways to enhance the long-term stability of HOIPs photovoltaic performance
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Electron-transport layers"

1

Osman, M. A., und N. S. Dogan. „Minority Electron Transport Across Submicron Layers of GaAs and InP“. In Computational Electronics, 107–10. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2124-9_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mhamad, Shakhawan Ahmad, Abdussamad Mukhtar Mohammed, Madzlan Aziz und Farhana Aziz. „Impact of Electron Transport Layers (ETLs) and Hole Transport Layer (HTLs) on Perovskite Solar Cells Performance“. In Nanostructured Materials for Next-Generation Energy Storage and Conversion, 227–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59594-7_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Popa, M. E. „Applications of Chalcogenides as Electron Transport Layers and Doping Materials in Perovskite Solar Cells“. In IFMBE Proceedings, 173–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31866-6_35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Saxena, Vibha. „Role of Ultrathin Electron Transport Layers in Performance of Dye-Sensitized and Perovskite Solar Cells“. In Recent Advances in Thin Films, 479–505. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6116-0_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Burlatsky, S. F., G. S. Oshanin und A. I. Chernoutsan. „Anomalous Transport Through Thin Disordered Layers“. In Electron-Electron Correlation Effects in Low-Dimensional Conductors and Superconductors, 121–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76753-1_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Uddin, Rukon, Subrata Bhowmik, Md Eyakub Ali und Sayem Ul Alam. „Hole Transport Layer Free Non-toxic Perovskite Solar Cell Using ZnSe Electron Transport Material“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 486–98. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34622-4_39.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Noh, Mohamad Firdaus Mohamad, Nurul Affiqah Arzaee und Mohd Asri Mat Teridi. „Effect of Oxygen Vacancies in Electron Transport Layer for Perovskite Solar Cells“. In Solar Cells, 283–305. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36354-3_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tilak, Vinayak. „Inversion Layer Electron Transport in 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistors“. In Silicon Carbide, 267–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527629077.ch11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gupta, Nidhi, Shivansh Rastogi, Jampana Gayathri, Omita Nanda und Kanchan Saxena. „Optimization of Electron Transport Layer Based on Cadmium Sulfide for Perovskite Solar Cells“. In Advances in Solar Power Generation and Energy Harvesting, 93–98. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3635-9_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mandal, Gobind, Ram Bilash Choudhary, Debashish Nayak, Sanjeev Kumar, Jayanta Bauri und Sarfaraz Ansari. „Influence of SiO2 in PANI Matrix as an Electron Transport Layer for OLEDs“. In Recent Advances in Nanomaterials, 201–7. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4878-9_27.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Electron-transport layers"

1

Prabhakar, Rajiv Ramanujam, und Joel Ager. „Electron transport layers for CO2 reduction photocathodes“. In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.217.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tham, Rachel, Kevin Prince, Anica Neumann, Caleb Boyd und Lance Wheeler. „Electrodepositing switchable photovoltaic window electron and hole transport layers“. In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300879.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fischetti und Laux. „Monte Carlo study of electron transport in silicon inversion layers“. In Proceedings of IEEE International Electron Devices Meeting. IEEE, 1992. http://dx.doi.org/10.1109/iedm.1992.307460.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Moran, Keith P., Kyle J. Reiter, Mengjin Yang, David P. Ostrowski und Maikel F. A. M. van Hest. „Blade-Coated Electron Transport Layers to Enable Scalable Perovskite Photovoltaics“. In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300644.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Aidarkhanov, Damir, Askar Maxim, Zhiwei Ren, Zhuldyz Yelzhanova, Oral Ualibek, Bayan Daniyar, Aheyeerke Saibitihan et al. „Optimization of Electron Transport Layers for High Performance Perovskite Solar Cells“. In 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2020. http://dx.doi.org/10.1109/edtm47692.2020.9118013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gutierrez-d., Edmundo, und Rodrigo Rodriguez-T. „Temperature dependence of the 2D electron transport in Si accumulation layers“. In 2006 International Caribbean Conference on Devices, Circuits and Systems. IEEE, 2006. http://dx.doi.org/10.1109/iccdcs.2006.250830.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hasan, Mahmudul, Syeda Maria Sultana, Mosammat Jannatul Ferdous, Israt Jahan Khan und Md Faysal Nayan. „Absorber Layer Thickness Dependent Performance Evaluation of Perovskite Solar Cell for different Electron Transport Layers“. In 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, 2023. http://dx.doi.org/10.1109/ecce57851.2023.10101620.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ungersboeck, E., und H. Kosina. „The Effect of Degeneracy on Electron Transport in Strained Silicon Inversion Layers“. In 2005 International Conference On Simulation of Semiconductor Processes and Devices. IEEE, 2005. http://dx.doi.org/10.1109/sispad.2005.201535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ha, Jaewon, Hoyeon Kim, Hyunwoo Lee, Kyung-Geun Lim, Tae-Woo Lee und Seunghyup Yoo. „Hysteresis-free flexible perovskite solar cells with evaporated organic electron transport layers“. In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/pv.2015.jtu5a.32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Habazaki, Hiroki, Shuya Fujita, Hikaru Kobayashi, Mikito Suto, Ryuki Tsuji, Seigo Ito und Sho Kitano. „Cathodic Deposition of TiO2 Electron Transport Layers on FTO and ITO Substrates“. In 6th Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.iperop.2023.055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Electron-transport layers"

1

Ellison, C. Leland, K. Matyash, J. B. Parker, Y. Raitses und N. J. Fisch. Three-dimensional Numerical Investigation of Electron Transport with Rotating Spoke in a Cylindrical Anode Layer Hall Plasma Accelerator. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1056800.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie