Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electron-transport layers“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electron-transport layers" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electron-transport layers"
Assi, Ahmed Ali, Wasan R. Saleh und Ezzedin Mohajerani. „Effect of Deposit Au thin Layer Between Layers of Perovskite Solar Cell on Cell's Performance“. Iraqi Journal of Physics (IJP) 19, Nr. 51 (01.12.2021): 23–32. http://dx.doi.org/10.30723/ijp.v19i51.696.
Der volle Inhalt der QuelleVasan, R., H. Salman und M. O. Manasreh. „All inorganic quantum dot light emitting devices with solution processed metal oxide transport layers“. MRS Advances 1, Nr. 4 (2016): 305–10. http://dx.doi.org/10.1557/adv.2016.129.
Der volle Inhalt der QuelleWang, Yuxin, und Sin Tee Tan. „Composition of Electron Transport Layers in Organic Solar Cells (OSCs).“ Highlights in Science, Engineering and Technology 12 (26.08.2022): 99–105. http://dx.doi.org/10.54097/hset.v12i.1411.
Der volle Inhalt der QuelleYusuf, Abubakar Sadiq, A. M. Ramalan, A. A. Abubakar und I. K. Mohammed. „Progress on Electron Transport Layers for Perovskite Solar Cells“. Nigerian Journal of Physics 32, Nr. 4 (05.02.2024): 81–90. http://dx.doi.org/10.62292/njp.v32i4.2023.156.
Der volle Inhalt der QuelleLi, Bairu, Jieming Zhen, Yangyang Wan, Xunyong Lei, Lingbo Jia, Xiaojun Wu, Hualing Zeng, Muqing Chen, Guan-Wu Wang und Shangfeng Yang. „Steering the electron transport properties of pyridine-functionalized fullerene derivatives in inverted perovskite solar cells: the nitrogen site matters“. Journal of Materials Chemistry A 8, Nr. 7 (2020): 3872–81. http://dx.doi.org/10.1039/c9ta12188a.
Der volle Inhalt der QuelleVannikov, Anatolii V., Antonina D. Grishina und S. V. Novikov. „Electron transport and electroluminescence in polymer layers“. Russian Chemical Reviews 63, Nr. 2 (28.02.1994): 103–23. http://dx.doi.org/10.1070/rc1994v063n02abeh000074.
Der volle Inhalt der QuelleSynowiec, Z., und B. Paszkiewicz. „Electron transport in implant isolation GaAs layers“. Microelectronics Reliability 43, Nr. 4 (April 2003): 675–79. http://dx.doi.org/10.1016/s0026-2714(03)00016-7.
Der volle Inhalt der QuelleMoiz, Syed Abdul. „Optimization of Hole and Electron Transport Layer for Highly Efficient Lead-Free Cs2TiBr6-Based Perovskite Solar Cell“. Photonics 9, Nr. 1 (31.12.2021): 23. http://dx.doi.org/10.3390/photonics9010023.
Der volle Inhalt der QuelleRani, R., K. Monga und S. Chaudhary. „Recent development in electron transport layers for efficient tin-based perovskite solar cells“. IOP Conference Series: Materials Science and Engineering 1258, Nr. 1 (01.10.2022): 012015. http://dx.doi.org/10.1088/1757-899x/1258/1/012015.
Der volle Inhalt der QuelleMityashin, Alexander, David Cheyns, Barry P. Rand und Paul Heremans. „Understanding metal doping for organic electron transport layers“. Applied Physics Letters 100, Nr. 5 (30.01.2012): 053305. http://dx.doi.org/10.1063/1.3681383.
Der volle Inhalt der QuelleDissertationen zum Thema "Electron-transport layers"
Mavroidis, Constantinos. „Electron transport in GaN epitaxial layers“. Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407135.
Der volle Inhalt der QuelleKusumawati, Yuly. „Oxide and composite electron transport layers for efficient dye-sensitized solar cells“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066240/document.
Der volle Inhalt der QuelleThree kinds of ETL have been developed and studied in this present work as a photoelectrode in DSSC. Those composed of (1) two kinds of TiO2-brookite nanoparticles, (TiO2_B1 and TiO2_B2), (2) the composite of anatase and graphene (TiO2_Gr) and (3) the nanorods like ZnO nanoparticles (ZnO_NR), respectively. All photoelectrode are prepared by doctor blading technique. The morphology of photoelectrodes have been characterized using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The layer thicknesses were measured using profilometry. For the film structural characterizations, a high-resolution X-ray diffractometer was used. The Fourier transform infrared (FTIR) and micro Raman measurement have been carried out to verify the TiO2_Gr composite preparation. The optical film properties (total transmission and total reflection) were recorded with a spectrophotometer equipped with an integrating sphere techniques. The cell performances were obtained by measuring the I-V curves of the cells under calibrated illumination. To achieve an in-deep understanding of the cell functioning, the impedance spectroscopy (IS) technique has been studied over a large applied potential range. By doing IS study, the electronic structure, charge carrier lifetime (tn), transport/collection time (ttr) and electron transport parameters of the layers have been determined. The carefully study of their properties has revealed not only their advantages but also their limitation. This information will be beneficial as a consideration for the future work
Tambwe, Kevin. „P- and e- type Semiconductor layers optimization for efficient perovskite photovoltaics“. University of Western Cape, 2019. http://hdl.handle.net/11394/7414.
Der volle Inhalt der QuellePerovskite solar cells have attracted a tremendous amount of research interest in the scientific community recently, owing to their remarkable performance reaching up to 22% power conversion efficiency (PCE) in merely 6 to 7 years of development. Numerous advantages such as reduced price of raw materials, ease of fabrication and so on, have contributed to their increased popularity.
Bradley, Colin. „Understanding Charge Transport and Selectivitiy in Ionically Functionalized Fullerenes for Electron-Selective Interfacial Layers“. Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23171.
Der volle Inhalt der Quelle10000-01-01
Rushforth, Andrew William. „The transport properties of two dimensional electron gases in spatially random magnetic fields“. Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342029.
Der volle Inhalt der QuelleSchubert, Marcel. „Elementary processes in layers of electron transporting Donor-acceptor copolymers : investigation of charge transport and application to organic solar cells“. Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7079/.
Der volle Inhalt der QuelleDonator-Akzeptor (D-A) Copolymere haben das Feld der organischen Elektronik revolutioniert. Bestehend aus einer elektronen-reichen und einer elektronen-armen molekularen Einheit,ermöglichen diese Polymere die systematische Anpassung ihrer optischen und elektronischen Eigenschaften. Zu diesen zählen insbesondere die optische Bandlücke und die Lage der Energiezustände. Dabei lassen sie sich sehr vielseitig chemisch modifizieren, was zu einer imensen Anzahl an unterschiedlichen Polymerstrukturen geführt hat. Dies hat entscheidend dazu beigetragen, dass D-A-Copolymere heute in Bezug auf ihren Ladungstransport die Effizienz von anorganischen Halbleitern erreichen oder bereits übetreffen. Des Weiteren lassen sich diese Materialien auch hervorragend in Organischen Solarzellen verwenden, welche jüngst eine Effizienz von über 10% überschritten haben. Als Folge der beträchtlichen Anzahl an unterschiedlichen D-A-Copolymeren konnte das physikalische Verständnis ihrer Eigenschaften bisher nicht mit dieser rasanten Entwicklung Schritt halten. Dies liegt nicht zuletzt an der komplexen chemischen und mikroskopischen Struktur im Film, in welchem die Polymere in einem teil-kristallinen Zustand vorliegen. Um ein besseres Verständnis der grundlegenden Funktionsweise zu erlangen, habe ich in meiner Arbeit sowohl den Ladungstransport als auch die photovoltaischen Eigenschaften einer Reihe von prototypischen, elektronen-transportierenden D-A Copolymeren beleuchtet. Im ersten Teil wurden Copolymere mit geringfügigen chemischen Variationen untersucht. Diese Variationen führen zu einer starken Änderung des Ladungstransportverhaltens. Besonders auffällig waren hier die Ergebnisse eines Polymers, welches sehr ungewöhnliche transiente Strom-Charakteristiken zeigte. Die nähere Untersuchung ergab, dass in diesem Material elektrisch aktive Fallenzustände existieren. Dieser Effekt wurde dann benutzt um den Einfluss solcher Fallen auf transiente Messung im Allgemeinen zu beschreiben. Zusätzlich wurde der Elektronentransport in einem neuartigen Copolymer untersucht, welche die bis dato größte gemesse Elektronenmobilität für konjugierte Polymere zeigte. Darauf basierend wurde versucht, die neuartigen Copolymere als Akzeptoren in Organischen Solarzellen zu implementieren. Die Optimierung dieser Zellen erwies sich jedoch als schwierig, konnte aber erreicht werden, indem die Lösungseigenschaften der Copolymere untersucht und systematisch gesteuert wurden. Im Weiteren werden umfangreiche Untersuchungen zu den relevanten Verlustprozessen gezeigt. Besonders hervorzuheben ist hier die Beobachtung, dass hohe Effizienzen nur bei einer coplanaren Packung der Donator/Akzeptor-Kristalle erreicht werden können. Diese Struktureigenschaft wird hier zum ersten Mal beschrieben und stellt einen wichtigen Erkenntnisgewinn zum Verständnis von Polymersolarzellen dar.
Allen, William D. „Aspects of spin polarised transport“. Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368082.
Der volle Inhalt der QuelleSchubert, Marcel [Verfasser], und Dieter [Akademischer Betreuer] Neher. „Elementary processes in layers of electron transporting Donor-acceptor copolymers : investigation of charge transport and application to organic solar cells / Marcel Schubert. Betreuer: Dieter Neher“. Potsdam : Universitätsbibliothek der Universität Potsdam, 2014. http://d-nb.info/1052682847/34.
Der volle Inhalt der QuelleWhitfield, Thomas Britain. „An analysis of copper transport in the insulation of high voltage transformers“. Thesis, University of Surrey, 2001. http://epubs.surrey.ac.uk/843581/.
Der volle Inhalt der QuelleAversa, Pierfrancesco. „Primary Defects in Halide Perovskites : Effect on Stability and Performance for Photovoltaic Applications Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in methyl ammonium lead triiodide spin –coated on p-i-n Solar Sell Substrates Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in triple cation lead mixed halide perovskite spin –coated on p-i-n Solar Sell Substrates Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of methylammonium lead triiodide layers on p-i-n solar cell substrates Electron Irradiation Induced Ageing Effects on Methylammonium Lead Triiodide Based p-i-n Solar Cells Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of Quadruple Cation Organic-Inorganic Perovskite Layers“. Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX050.
Der volle Inhalt der QuelleDuring the last eleven years, Hybrid Organic Inorganic Perovskites (HOIPs) materials have emerged as an exciting topic of research for potential application in solar cell technologies due to their outstanding optoelectronic properties and processing advantages. However, HOIPs materials suffer from several drawbacks with, in peculiar, their lack of stability under operational conditions (light, bias, environment…). To improve this stability is one of the biggest challenges to be addressed before commercialization. The general formula for HOIPs is (A1,A2,A3,A4)Pb(X1,X2)3, where the A sites can be occupied by a distribution of 1 to 4 metallic/organic cations and X sites with halide anions. The role of native vacancy defects has been questioned as a possible cause for HOIPs solar cells degradation. The aim of this work is to understand the defect role in long term stability of HOIPs materials for photovoltaics. For this reason, primary defects were introduced in a controlled way via high energy electron irradiation (1MeV) in sets of layers and solar cells (SCs) fabricated using various HOIPs compounds. Those include the photovoltaic HOIPs prototype, MAPbI3 (A1PbX13), and emergent triple or quadruple cation mixed halide HOIPs, (CsMAFA)Pb(I1-xBrx)3 (A3PbX23) or (GACsMAFA)Pb(I1-yBry)3 (A4PbX23). The HOIPs layers are fabricated according to the same procedure as the HOIPs active SC layers and, subsequently, treated in similar conditions. For A1PbX13 and A3PbX23, the solar cells are of the p-i-n structure with organic hole and electron transport layer (HTL/ETL). The HOIPs layers are deposited on the glass/ITO/HTL (PEDOT:PSS) substrate without or with the top ETL layer (PCBM). For A4PbX23, the solar cells are of the n-i-p type with inorganic ETL (TiO2) and organic HTL (Spiro-OMeTAD) layers. The layers are directly deposited on glass without the ETL layer.Positron Annihilation Spectroscopy (PAS) gives direct evidence for native vacancy-type defects and irradiation induced ones in layers of each HOIP compound. The energy dependence of absorbance shows that natural and after irradiation ageing generates different defect populations in each HOIP compound. These populations strikingly also differ depending on the absence or presence of the top ETL layer for the A1PbX13 and A3PbX23 compounds. The defect populations evolve over ageing duration as long as 3 months. The prominent effects of ageing include (i) band gap modification, (ii) tailing of conduction/valence band extrema and (iii) optical absorption via deep subgap electronic levels. Illumination effects under laser also vary with ageing for each HOIP compound. Asymmetric photoluminescence (PL) peaks in each compound under continuous laser illumination reflect that radiative emission involves Gaussian emission rays with energy, FWHM and height evolving with illumination time. The emission transitions involve shallow localized electronic levels in A3PbX23 and A4PbX23 and resonant ones in A1PbX13. These electronic levels are attributed to specifically illumination-induced defect populations. Natural and after irradiation ageing result in PL decay lifetime spectra resolved into one or two exponential decay components. The decay components number and lifetime are strongly affected by the initial production of irradiation defects and HOIPs composition. Such effects last over 3 months at least in A4PbX23. The p-i-n solar cells exhibit most striking irradiation ageing induced photovoltaics performance. The External Quantum Efficiency (EQE versus photon energy) and the photovoltaic performance (I-V under illumination) of the irradiated solar cells have higher values than those in the reference SCs after 6 to 12 months of ageing. This gives evidence that defect engineering via high energy electron irradiation has a potential for providing innovative processing pathways to enhance the long-term stability of HOIPs photovoltaic performance
Buchteile zum Thema "Electron-transport layers"
Osman, M. A., und N. S. Dogan. „Minority Electron Transport Across Submicron Layers of GaAs and InP“. In Computational Electronics, 107–10. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2124-9_19.
Der volle Inhalt der QuelleMhamad, Shakhawan Ahmad, Abdussamad Mukhtar Mohammed, Madzlan Aziz und Farhana Aziz. „Impact of Electron Transport Layers (ETLs) and Hole Transport Layer (HTLs) on Perovskite Solar Cells Performance“. In Nanostructured Materials for Next-Generation Energy Storage and Conversion, 227–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59594-7_8.
Der volle Inhalt der QuellePopa, M. E. „Applications of Chalcogenides as Electron Transport Layers and Doping Materials in Perovskite Solar Cells“. In IFMBE Proceedings, 173–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31866-6_35.
Der volle Inhalt der QuelleSaxena, Vibha. „Role of Ultrathin Electron Transport Layers in Performance of Dye-Sensitized and Perovskite Solar Cells“. In Recent Advances in Thin Films, 479–505. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6116-0_16.
Der volle Inhalt der QuelleBurlatsky, S. F., G. S. Oshanin und A. I. Chernoutsan. „Anomalous Transport Through Thin Disordered Layers“. In Electron-Electron Correlation Effects in Low-Dimensional Conductors and Superconductors, 121–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76753-1_16.
Der volle Inhalt der QuelleUddin, Rukon, Subrata Bhowmik, Md Eyakub Ali und Sayem Ul Alam. „Hole Transport Layer Free Non-toxic Perovskite Solar Cell Using ZnSe Electron Transport Material“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 486–98. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34622-4_39.
Der volle Inhalt der QuelleNoh, Mohamad Firdaus Mohamad, Nurul Affiqah Arzaee und Mohd Asri Mat Teridi. „Effect of Oxygen Vacancies in Electron Transport Layer for Perovskite Solar Cells“. In Solar Cells, 283–305. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36354-3_11.
Der volle Inhalt der QuelleTilak, Vinayak. „Inversion Layer Electron Transport in 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistors“. In Silicon Carbide, 267–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527629077.ch11.
Der volle Inhalt der QuelleGupta, Nidhi, Shivansh Rastogi, Jampana Gayathri, Omita Nanda und Kanchan Saxena. „Optimization of Electron Transport Layer Based on Cadmium Sulfide for Perovskite Solar Cells“. In Advances in Solar Power Generation and Energy Harvesting, 93–98. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3635-9_10.
Der volle Inhalt der QuelleMandal, Gobind, Ram Bilash Choudhary, Debashish Nayak, Sanjeev Kumar, Jayanta Bauri und Sarfaraz Ansari. „Influence of SiO2 in PANI Matrix as an Electron Transport Layer for OLEDs“. In Recent Advances in Nanomaterials, 201–7. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4878-9_27.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electron-transport layers"
Prabhakar, Rajiv Ramanujam, und Joel Ager. „Electron transport layers for CO2 reduction photocathodes“. In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.217.
Der volle Inhalt der QuelleTham, Rachel, Kevin Prince, Anica Neumann, Caleb Boyd und Lance Wheeler. „Electrodepositing switchable photovoltaic window electron and hole transport layers“. In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300879.
Der volle Inhalt der QuelleFischetti und Laux. „Monte Carlo study of electron transport in silicon inversion layers“. In Proceedings of IEEE International Electron Devices Meeting. IEEE, 1992. http://dx.doi.org/10.1109/iedm.1992.307460.
Der volle Inhalt der QuelleMoran, Keith P., Kyle J. Reiter, Mengjin Yang, David P. Ostrowski und Maikel F. A. M. van Hest. „Blade-Coated Electron Transport Layers to Enable Scalable Perovskite Photovoltaics“. In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300644.
Der volle Inhalt der QuelleAidarkhanov, Damir, Askar Maxim, Zhiwei Ren, Zhuldyz Yelzhanova, Oral Ualibek, Bayan Daniyar, Aheyeerke Saibitihan et al. „Optimization of Electron Transport Layers for High Performance Perovskite Solar Cells“. In 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2020. http://dx.doi.org/10.1109/edtm47692.2020.9118013.
Der volle Inhalt der QuelleGutierrez-d., Edmundo, und Rodrigo Rodriguez-T. „Temperature dependence of the 2D electron transport in Si accumulation layers“. In 2006 International Caribbean Conference on Devices, Circuits and Systems. IEEE, 2006. http://dx.doi.org/10.1109/iccdcs.2006.250830.
Der volle Inhalt der QuelleHasan, Mahmudul, Syeda Maria Sultana, Mosammat Jannatul Ferdous, Israt Jahan Khan und Md Faysal Nayan. „Absorber Layer Thickness Dependent Performance Evaluation of Perovskite Solar Cell for different Electron Transport Layers“. In 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, 2023. http://dx.doi.org/10.1109/ecce57851.2023.10101620.
Der volle Inhalt der QuelleUngersboeck, E., und H. Kosina. „The Effect of Degeneracy on Electron Transport in Strained Silicon Inversion Layers“. In 2005 International Conference On Simulation of Semiconductor Processes and Devices. IEEE, 2005. http://dx.doi.org/10.1109/sispad.2005.201535.
Der volle Inhalt der QuelleHa, Jaewon, Hoyeon Kim, Hyunwoo Lee, Kyung-Geun Lim, Tae-Woo Lee und Seunghyup Yoo. „Hysteresis-free flexible perovskite solar cells with evaporated organic electron transport layers“. In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/pv.2015.jtu5a.32.
Der volle Inhalt der QuelleHabazaki, Hiroki, Shuya Fujita, Hikaru Kobayashi, Mikito Suto, Ryuki Tsuji, Seigo Ito und Sho Kitano. „Cathodic Deposition of TiO2 Electron Transport Layers on FTO and ITO Substrates“. In 6th Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.iperop.2023.055.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Electron-transport layers"
Ellison, C. Leland, K. Matyash, J. B. Parker, Y. Raitses und N. J. Fisch. Three-dimensional Numerical Investigation of Electron Transport with Rotating Spoke in a Cylindrical Anode Layer Hall Plasma Accelerator. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1056800.
Der volle Inhalt der Quelle