Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Electron-poor alkenes.

Zeitschriftenartikel zum Thema „Electron-poor alkenes“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Electron-poor alkenes" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Bower, John F., Timothy P. Aldhous, Raymond W. M. Chung und Andrew G. Dalling. „Enantioselective Intermolecular Murai-Type Alkene Hydroarylation Reactions“. Synthesis 53, Nr. 17 (25.05.2021): 2961–75. http://dx.doi.org/10.1055/s-0040-1720406.

Der volle Inhalt der Quelle
Annotation:
AbstractStrategies that enable the efficient assembly of complex building blocks from feedstock chemicals are of paramount importance to synthetic chemistry. Building upon the pioneering work of Murai and co-workers in 1993, C–H-activation-based enantioselective hydroarylations of alkenes offer a particularly promising framework for the step- and atom-economical installation of benzylic stereocenters. This short review presents recent intermolecular enantioselective Murai-type alkene hydroarylation methodologies and the mechanisms by which they proceed.1 Introduction2 Enantioselective Hydroarylation Reactions of Strained Bicyclic Alkenes3 Enantioselective Hydroarylation Reactions of Electron-Rich Acyclic Alkenes4 Enantioselective Hydroarylation Reactions of Electron-Poor Acyclic Alkenes5 Enantioselective Hydroarylation Reactions of Minimally Polarized Acyclic Alkenes6 Conclusion and Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hajdók, Imre, Falk Lissner, Martin Nieger, Sabine Strobel und Dietrich Gudat. „Diphosphination of Electron Poor Alkenes“. Organometallics 28, Nr. 6 (23.03.2009): 1644–51. http://dx.doi.org/10.1021/om801179k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Clennan, Edward L., Jakub P. Sram, Andrea Pace, Katie Vincer und Sophia White. „Intrazeolite Photooxidations of Electron-Poor Alkenes“. Journal of Organic Chemistry 67, Nr. 11 (Mai 2002): 3975–78. http://dx.doi.org/10.1021/jo025657c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mieusset, Jean-Luc, Michael Abraham und Udo H. Brinker. „Carbene−Alkene Complexes between a Nucleophilic Carbene and Electron-Poor Alkenes†“. Journal of the American Chemical Society 130, Nr. 44 (05.11.2008): 14634–39. http://dx.doi.org/10.1021/ja8042118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dixon, Craig E., Jeffrey A. Cooke und Kim M. Baines. „The Reaction of Group 14 Dimetallenes with Alkenes: Electron-Poor Alkenes“. Organometallics 16, Nr. 25 (Dezember 1997): 5437–40. http://dx.doi.org/10.1021/om970638s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Navarro, Miquel, Alberto Toledo, Sonia Mallet-Ladeira, E. Daiann Sosa Carrizo, Karinne Miqueu und Didier Bourissou. „Versatility and adaptative behaviour of the P^N chelating ligand MeDalphos within gold(i) π complexes“. Chemical Science 11, Nr. 10 (2020): 2750–58. http://dx.doi.org/10.1039/c9sc06398f.

Der volle Inhalt der Quelle
Annotation:
The hemilabile P^N ligand MeDalphos enables access to a wide range of stable gold(i) π-complexes with unbiased alkenes and alkynes, as well as electron-rich alkenes and for the first time electron-poor ones.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Baird, Mark S., Michele E. Gerrard und Robert J. G. Searle. „Trapping of the tribromomethylanion by electron poor alkenes“. Tetrahedron Letters 26, Nr. 51 (1985): 6353–56. http://dx.doi.org/10.1016/s0040-4039(01)84597-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bonini, Carlo, Maurizio D'Auria, Rachele Ferri, Rachele Pucciariello und Anna Rita Sabia. „Graft copolymers of lignin with electron poor alkenes“. Journal of Applied Polymer Science 90, Nr. 4 (27.08.2003): 1163–71. http://dx.doi.org/10.1002/app.12801.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ballini, R., L. Barboni, G. Bosica, D. Fiorini und A. Palmieri. „Synthesis of fine chemicals by the conjugate addition of nitroalkanes to electrophilic alkenes“. Pure and Applied Chemistry 78, Nr. 10 (01.01.2006): 1857–66. http://dx.doi.org/10.1351/pac200678101857.

Der volle Inhalt der Quelle
Annotation:
Several aliphatic nitro compounds have been employed as stabilized carbanions in the conjugate addition to a variety of electron-poor alkenes (Michael reaction). Depending on the nature of the alkene, new carbon-carbon single or double bonds can be generated. However, all the Michael adducts can be efficiently utilized as key building blocks for the synthesis of a huge array of fine chemicals, including homo- and heterocyclic structures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Inés, Blanca, David Palomas, Sigrid Holle, Sebastian Steinberg, Juan A. Nicasio und Manuel Alcarazo. „Metal-Free Hydrogenation of Electron-Poor Allenes and Alkenes“. Angewandte Chemie International Edition 51, Nr. 49 (04.11.2012): 12367–69. http://dx.doi.org/10.1002/anie.201205348.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Xin, Jing-Rui, Yan-Hong He und Zhi Guan. „Metal-free aerobic oxidative direct C–H amination of electron-deficient alkenes via photoredox catalysis“. Organic Chemistry Frontiers 5, Nr. 10 (2018): 1684–88. http://dx.doi.org/10.1039/c8qo00161h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Ballini, Roberto, Giovanna Bosica, Dennis Fiorini, Alessandro Palmieri und Marino Petrini. „Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes: Recent Results“. Chemical Reviews 105, Nr. 3 (März 2005): 933–72. http://dx.doi.org/10.1021/cr040602r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Adembri, Giorgio, Angela M. Celli und Mirella Scotton. „1,3-Dipolar cycloadditions of aryl nitrilimines to electron-poor alkenes“. Journal of Heterocyclic Chemistry 25, Nr. 1 (Januar 1988): 249–51. http://dx.doi.org/10.1002/jhet.5570250140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Strappaveccia, Giacomo, Luca Bianchi, Simone Ziarelli, Stefano Santoro, Daniela Lanari, Ferdinando Pizzo und Luigi Vaccaro. „PS-BEMP as a basic catalyst for the phospha-Michael addition to electron-poor alkenes“. Organic & Biomolecular Chemistry 14, Nr. 14 (2016): 3521–25. http://dx.doi.org/10.1039/c6ob00242k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Cermenati, Laura, Maurizio Fagnoni und Angelo Albini. „TiO2-photocatalyzed reactions of some benzylic donors“. Canadian Journal of Chemistry 81, Nr. 6 (01.06.2003): 560–66. http://dx.doi.org/10.1139/v03-048.

Der volle Inhalt der Quelle
Annotation:
TiO2-photocatalyzed oxidation of toluene (1a), benzyltrimethylsilane (1b), and 4-methoxybenzyltrimethylsilane (1c) has been carried out in acetonitrile under oxygen, under nitrogen, and in the presence of electrophilic alkenes under various conditions (using Ag2SO4 as electron acceptor, adding 2.5% H2O, changing solvent to CH2Cl2). Benzyl radicals, formed via electron transfer and fragmentation, are trapped. A good material balance is often obtained. The overall efficiency of the process depends on the donor Eox, on the rate of fragmentation of the radical cation, and on the acceptor present (Ag+ is an efficient oxidant, an electrophilic alkene a poor one, O2 is intermediate). With ring-unsubstituted benzyl derivatives 1a and 1b, oxidative fragmentation occurs mainly close to the catalyst surface. The benzyl radicals form at a high local concentration and give benzaldehyde under O2, bibenzyl under N2 and dibenzylated derivatives by attack on the alkenes (acrylonitrile, fumaronitrile, maleic acid). In this case, using CH2Cl2–O2 enhances the yield of benzaldehyde. With methoxylated 1c, however, the radical cation migrates into the solution before fragmentation and, therefore, the free benzyl radical is formed. This radical in part is oxidized to the cation, giving a considerable amount of benzylacetamide (or of the alcohol with water), and in part is trapped by the alkenes. The last reaction is less efficient in this case and yields monobenzyl derivatives.Key words: photocatalysis, oxidation, alkylation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ruiz, Javier, Marta P. Gonzalo, Marilín Vivanco und Santiago García-Granda. „Synthesis and derivatization of highly-functionalized λ5-phospholes“. Chem. Commun. 50, Nr. 42 (2014): 5597–99. http://dx.doi.org/10.1039/c4cc02089h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Messire, Gatien, Fabien Massicot, Laura Pascual, Emmanuel Riguet, Jean-Luc Vasse und Jean-Bernard Behr. „Broadening the reaction scope of unprotected aldoses via their corresponding nitrones: 1,3-dipolar cycloadditions with alkenes“. Organic & Biomolecular Chemistry 18, Nr. 29 (2020): 5708–25. http://dx.doi.org/10.1039/d0ob01350a.

Der volle Inhalt der Quelle
Annotation:
Condensation reactions of unprotected tetroses and pentoses with hydroxylamines afforded nitrones, which were easily converted to densely functionalized isoxazolidines in the presence of electron-poor alkenes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Liu, Kun, Dirk Leifert und Armido Studer. „Cooperative triple catalysis enables regioirregular formal Mizoroki–Heck reactions“. Nature Synthesis 1, Nr. 7 (Juli 2022): 565–75. http://dx.doi.org/10.1038/s44160-022-00101-9.

Der volle Inhalt der Quelle
Annotation:
AbstractThe Mizoroki–Heck reaction between alkenes and aryl halides represents one of the most important methods for C−C bond formation in synthetic chemistry. Governed by their electronic and steric nature, alkenes are generally arylated with high regioselectivity, which conversely hampers diversity, in particular, if the regioirregular isomer is targeted. Usually, electron-poor alkenes selectively afford the corresponding β-coupled products, and achieving the opposite regioselectivity to obtain their α-arylated congeners is highly challenging. It would be desirable to access the irregular α-regioisomer by simple variation of the reaction conditions, keeping the standard substrates, thereby significantly enlarging the product space. Herein, we describe an intermolecular α-arylation of electron-poor alkenes through cooperative nickel, photoredox and sulfinate catalysis. This triple catalysis system operates under mild conditions and features excellent functional group tolerance. The orchestration of radical, transition metal and ionic bond-forming and -cleaving reactions in a single process is highly challenging, but certainly opens valuable doors in terms of reactivity. Moreover, the intermolecular α-arylation, α-alkenylation and α-alkynylation of styrenes could also be achieved through a one-pot process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Huval, C. C., K. M. Church und D. A. Singleton. „Free-Radical Mediated [3 + 2] Methylenecyclopentane Annulations of Electron-Poor Alkenes“. Synlett 1994, Nr. 04 (1994): 273–74. http://dx.doi.org/10.1055/s-1994-22825.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Ines, Blanca, David Palomas, Sigrid Holle, Sebastian Steinberg, Juan A. Nicasio und Manuel Alcarazo. „ChemInform Abstract: Metal-Free Hydrogenation of Electron-Poor Allenes and Alkenes.“ ChemInform 44, Nr. 22 (13.05.2013): no. http://dx.doi.org/10.1002/chin.201322072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Shukla, Prashant, Manorama Singh, Vijai K. Rai und Ankita Rai. „Regioselective installation of enolizable ketones and unprotected mercaptoacetic acid into olefins using GO as a phase transfer catalyst“. New Journal of Chemistry 46, Nr. 7 (2022): 3297–304. http://dx.doi.org/10.1039/d1nj05870c.

Der volle Inhalt der Quelle
Annotation:
Unprecedented regioselective conjugate addition of enolizable ketones and unprotected mercaptoacetic acid to electron poor alkenes using GO as a phase transfer catalyst is reported in excellent yield of products (up to 92%) and recyclability of the catalyst up to five times.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Baker, S. Richard, Karen Goodall, Andrew F. Parsons und Michelle Wilson. „Tributyltin Hydride-Mediated Tandem reactions of Dehydroalanines Leading to α-Substituted Pyroglutamates“. Journal of Chemical Research 2000, Nr. 7 (Juli 2000): 312–13. http://dx.doi.org/10.3184/030823400103167651.

Der volle Inhalt der Quelle
Annotation:
Tributyltin hydride-mediated cyclisation of dehydroalanines produces an intermediate captodative radical, which can be trapped by reaction with oxygen- or carbon-centred radicals or (principally) electron-poor alkenes, to provide a quick approach to a variety of α-substituted pyroglutamates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Rocchetti, Maria Teresa, Vincenzo Fino, Vito Capriati, Saverio Florio und Renzo Luisi. „Michael Addition of Chloroalkyloxazolines to Electron-Poor Alkenes: Synthesis of Heterosubstituted Cyclopropanes†“. Journal of Organic Chemistry 68, Nr. 4 (Februar 2003): 1394–400. http://dx.doi.org/10.1021/jo026661r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Swager, Timothy, und Cagatay Dengiz. „Homoconjugated and Spiro Push–Pull Systems: Cycloadditions of Naphtho- and Anthradiquinones with Electron-Rich Alkynes“. Synlett 28, Nr. 12 (11.04.2017): 1427–31. http://dx.doi.org/10.1055/s-0036-1588771.

Der volle Inhalt der Quelle
Annotation:
We report the synthesis and characterization of three new classes of push–pull chromophores using [2+2]-cycloaddition reactions of electron-rich alkynes and electron-poor alkenes. Previous investigations have focused on the reactions of cyano-substituted electron acceptors. This study demonstrates that cyano-free electron acceptors, naphtho- and anthradiquinones, can also be used to access extended push–pull systems. The effects of the structural changes on the spectroscopic and electronic properties were investigated by UV/vis spectroscopy. Structures were confirmed by X-ray and NMR analysis in solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

D’Auria, Maurizio, Rocco Racioppi, Orazio Attanasi und Fabio Mantellini. „Unusual [4+2]-Cycloaddition Reaction between Electron-Poor 1,2-Diaza-1,3-dienes and Electron-Poor Alkenes: Useful Entry to Novel Tetrahydropyridazines“. Synlett 2010, Nr. 09 (15.04.2010): 1363–66. http://dx.doi.org/10.1055/s-0029-1219834.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Reekie, Tristan A., Etienne J. Donckele, Laurent Ruhlmann, Corinne Boudon, Nils Trapp und François Diederich. „Ester-Substituted Electron-Poor Alkenes for Cycloaddition-Retroelectrocyclization (CA-RE) and Related Reactions“. European Journal of Organic Chemistry 2015, Nr. 33 (19.10.2015): 7264–75. http://dx.doi.org/10.1002/ejoc.201501085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Attanasi, Orazio, Luca Bianchi, Maurizio D’Auria, Fabio Mantellini und Rocco Racioppi. „Novel Tetrahydropyridazines by Unusual Aza-Diels-Alder Reaction of Electron-poor 1,2-Diaza-1,3-dienes with Electron-poor Alkenes Under Solvent Free Conditions“. Current Organic Synthesis 10, Nr. 4 (30.06.2013): 631–39. http://dx.doi.org/10.2174/1570179411310040006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

D'Auria, Maurizio, Rocco Racioppi, Orazio A. Attanasi und Fabio Mantellini. „ChemInform Abstract: Unusual [4 + 2]-Cycloaddition Reaction Between Electron-Poor 1,2-Diaza-1,3-dienes and Electron-Poor Alkenes: Useful Entry to Novel Tetrahydropyridazines.“ ChemInform 41, Nr. 41 (16.09.2010): no. http://dx.doi.org/10.1002/chin.201041145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Campbell, Matthew J., Patrick D. Pohlhaus, Geanna Min, Kohsuke Ohmatsu und Jeffrey S. Johnson. „An “Anti-Baldwin” 3-Exo-DigCyclization: Preparation of Vinylidene Cyclopropanes from Electron-Poor Alkenes“. Journal of the American Chemical Society 130, Nr. 29 (Juli 2008): 9180–81. http://dx.doi.org/10.1021/ja803553a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Lattanzi, Alessandra, und Alessio Russo. „Asymmetric Oxidations of Electron-Poor Alkenes Promoted by the β-Amino Alcohol/TBHP System“. Synthesis 2009, Nr. 09 (14.04.2009): 1551–56. http://dx.doi.org/10.1055/s-0029-1216638.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Kowalczyk, Rafał, Aleksandra J. Wierzba, Przemysław J. Boratyński und Julia Bąkowicz. „Enantioselective conjugate addition of aliphatic thiols to divergently activated electron poor alkenes and dienes“. Tetrahedron 70, Nr. 35 (September 2014): 5834–42. http://dx.doi.org/10.1016/j.tet.2014.06.035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

HUVAL, C. C., K. M. CHURCH und D. A. SINGLETON. „ChemInform Abstract: Free-Radical Mediated (3 + 2)Methyleneccylopentane Annulations of Electron-Poor Alkenes (II).“ ChemInform 25, Nr. 52 (18.08.2010): no. http://dx.doi.org/10.1002/chin.199452085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Marinetti, Angela, und Fran�ois Mathey. „[2 + 2] Cycloadditions between electron-poor phospha-alkene complexes and electron-rich alkenes or alkynes, a new route to phosphetane and 1,2-dihydrophosphete rings“. Journal of the Chemical Society, Chemical Communications, Nr. 2 (1990): 153. http://dx.doi.org/10.1039/c39900000153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Mamantov, Andrew. „Halocarbenes May Deplete Atmospheric Ozone“. Progress in Reaction Kinetics and Mechanism 42, Nr. 4 (Dezember 2017): 307–33. http://dx.doi.org/10.3184/146867817x14954764850360.

Der volle Inhalt der Quelle
Annotation:
Photooxidation of tetrachloroethylene (PERC) and trichloroethylene (TCE) in simulated tropospheric smog chamber studies occurs with a time delay, accelerating simultaneous decreasing O3/chlorinated ethylene (CE) concentrations along with increasing CCl2O, which is attributed to CCl2 in the case of PERC and CCl2 or CHCl for TCE. The carbenes, chlorinated acetyl chlorides and CCl2O products may result from the rearrangement of the oxidised and/or excited oxidised CE, e.g. an epoxide. Analyses indicate scavenging experiments have not proved the existence of Cl atoms as being responsible for chlorinated acetyl chloride formation. Halocarbenes may form complexes with O3 which can undergo electron transfer (ET) and lead to dissociation of O3 to O2 and O and regeneration of carbene, resulting in a chain reaction. The direction of ET may be determined by the smallest differential HOMO–LUMO energy between the carbene and O3 which results in greater transition state stabilisation. Similarities in the reactions of O3 with carbenes and simple alkenes, nucleophilic carbenes with electron-poor alkenes and electrophilic carbene PhCCl with alkyl-substituted alkenes, i.e. (1) complex formation, (2) very low or negative activation energies and (3) the ability to undergo ET reactions with alkylalkenes are discussed. The possibility of the world-wide used perhalocarbons, e.g. perfluorinated carbons, hydroperhalocarbons, their halogenated replacements and starting materials degrading to halocarbenes which may degrade O3, is analysed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Choi, Anthony, Rebecca M. Morley und Iain Coldham. „Synthesis of pyrrolo[1,2-a]quinolines by formal 1,3-dipolar cycloaddition reactions of quinolinium salts“. Beilstein Journal of Organic Chemistry 15 (03.07.2019): 1480–84. http://dx.doi.org/10.3762/bjoc.15.149.

Der volle Inhalt der Quelle
Annotation:
Quinolinium salts, Q+-CH2-CO2Me Br− and Q+-CH2-CONMe2 Br− (where Q = quinoline), were prepared from quinolines. Deprotonation of these salts with triethylamine promoted the reaction of the resulting quinolinium ylides (formally azomethine ylides) with electron-poor alkenes by conjugate addition followed by cyclization or by [3 + 2] dipolar cycloaddition. The pyrroloquinoline products were formed as single regio- and stereoisomers. These could be converted to other derivatives by Suzuki–Miyaura coupling, reduction or oxidation reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Maji, Kakoli, Pramod Rai und Biplab Maji. „Visible‐Light Mediated Metal‐Free Cross‐Electrophile Coupling of Isatin Derivatives with Electron‐Poor Alkenes“. Asian Journal of Organic Chemistry 10, Nr. 7 (28.05.2021): 1708–12. http://dx.doi.org/10.1002/ajoc.202100308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ramazani, Ali, Abbas Azizian, Maryam Bandpey und Nader Noshiranzadeh. „One-Step Synthesis of Electron-Poor Alkenes from Triphenylphosphine, Acetylenic Esters, 2,2,2-Trichloroethanol, and Ninhydrin“. Phosphorus, Sulfur, and Silicon and the Related Elements 181, Nr. 12 (22.11.2006): 2731–34. http://dx.doi.org/10.1080/10426500600864437.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Rostoll-Berenguer, Jaume, Gonzalo Blay, José R. Pedro und Carlos Vila. „Photocatalytic Giese Addition of 1,4-Dihydroquinoxalin-2-ones to Electron-Poor Alkenes Using Visible Light“. Organic Letters 22, Nr. 20 (01.10.2020): 8012–17. http://dx.doi.org/10.1021/acs.orglett.0c02953.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Pan, Yang, Zhenyu Sheng, Xiaodong Ye, Zhuo Ao, Gaosheng Chu, Jinghua Dai und Shuqin Yu. „Photochemistry of quinoxaline derivatives and mechanism of the triplet state quenching by electron-poor alkenes“. Journal of Photochemistry and Photobiology A: Chemistry 174, Nr. 2 (August 2005): 98–105. http://dx.doi.org/10.1016/j.jphotochem.2005.02.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Vijender, Medamoni, P. Kishore und B. Satyanarayana. „Cadmium Chloride (CdCl2): An Efficient Catalyst for Conjugate Addition of Amines to Electron‐Poor Alkenes“. Synthetic Communications 37, Nr. 4 (März 2007): 589–92. http://dx.doi.org/10.1080/00397910601055115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Qrareya, Hisham, Daniele Dondi, Davide Ravelli und Maurizio Fagnoni. „Decatungstate-Photocatalyzed Si−H/C−H Activation in Silyl Hydrides: Hydrosilylation of Electron-Poor Alkenes“. ChemCatChem 7, Nr. 20 (02.09.2015): 3350–57. http://dx.doi.org/10.1002/cctc.201500562.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Palacios, Francisco, Itziar Perez de Heredia und Gloria Rubiales. „Synthesis and Reactivity of Electron-Poor 2-Azadienes. [4 + 2] Cycloaddition Reactions with Alkenes and Enamines“. Journal of Organic Chemistry 60, Nr. 8 (April 1995): 2384–90. http://dx.doi.org/10.1021/jo00113a017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Goretti, Marta, Chiara Ponzoni, Elisa Caselli, Elisabetta Marchigiani, Maria Rita Cramarossa, Benedetta Turchetti, Pietro Buzzini und Luca Forti. „Biotransformation of electron-poor alkenes by yeasts: Asymmetric reduction of (4S)-(+)-carvone by yeast enoate reductases“. Enzyme and Microbial Technology 45, Nr. 6-7 (Dezember 2009): 463–68. http://dx.doi.org/10.1016/j.enzmictec.2009.09.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kowalczyk, Rafal, Aleksandra J. Wierzba, Przemyslaw J. Boratynski und Julia Bakowicz. „ChemInform Abstract: Enantioselective Conjugate Addition of Aliphatic Thiols to Divergently Activated Electron Poor Alkenes and Dienes.“ ChemInform 46, Nr. 4 (Januar 2015): no. http://dx.doi.org/10.1002/chin.201504081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Rodríguez-Flórez, Lesly V., María González-Marcos, Eduardo García-Mingüens, María de Gracia Retamosa, Misa Kawase, Elisabet Selva und José M. Sansano. „Phosphine Catalyzed Michael-Type Additions: The Synthesis of Glutamic Acid Derivatives from Arylidene-α-amino Esters“. Molecules 29, Nr. 2 (10.01.2024): 342. http://dx.doi.org/10.3390/molecules29020342.

Der volle Inhalt der Quelle
Annotation:
The reaction of arylidene-α-amino esters with electrophilic alkenes to yield Michael-type addition compounds is optimized using several phosphines as organocatalysts. The transformation is very complicated due to the generation of several final compounds, including those derived from the 1,3-dipolar cycloadditions. For this reason, the selection of the reaction conditions is a very complex task and the slow addition of the acrylic system is very important to complete the process. The study of the variation in the structural components of the starting imino ester is performed as well as the expansion of other electron-poor alkenes. The crude products have a purity higher than 90% in most cases without any purification. A plausible mechanism is detailed based on the bibliography and the experimental results. The synthesis of pyroglutamate entities, after the reduction of the imino group and cyclization, is performed in high yields. In addition, the hydrolysis of the imino group, under acidic media, represents a direct access to glutamate surrogates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Pizzo, Erika, Paolo Sgarbossa, Alessandro Scarso, Rino A. Michelin und Giorgio Strukul. „Second-Generation Electron-Poor Platinum(II) Complexes as Efficient Epoxidation Catalysts for Terminal Alkenes with Hydrogen Peroxide“. Organometallics 25, Nr. 12 (Juni 2006): 3056–62. http://dx.doi.org/10.1021/om060194c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Qrareya, Hisham, Daniele Dondi, Davide Ravelli und Maurizio Fagnoni. „ChemInform Abstract: Decatungstate-Photocatalyzed Si-H/C-H Activation in Silyl Hydrides: Hydrosilylation of Electron-Poor Alkenes.“ ChemInform 47, Nr. 9 (Februar 2016): no. http://dx.doi.org/10.1002/chin.201609058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ganis, Paolo, Ida Orabona, Francesco Ruffo und Aldo Vitagliano. „The First Class of Square-Planar Platinum(II) Complexes Containing Electron-Poor Alkenes. Rare Insertion of an Alkene into a Pt−Alkyl Bond†“. Organometallics 17, Nr. 12 (Juni 1998): 2646–50. http://dx.doi.org/10.1021/om9800750.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

PALACIOS, F., I. PEREZ DE HEREDIA und G. RUBIALES. „ChemInform Abstract: Synthesis and Reactivity of Electron-Poor 2-Azadienes. (4 + 2) Cycloaddition Reactions with Alkenes and Enamines.“ ChemInform 26, Nr. 36 (17.08.2010): no. http://dx.doi.org/10.1002/chin.199536043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Vinokurov, Nikolai, Anna Michrowska, Anna Szmigielska, Zbigniew Drzazga, Grzegorz Wójciuk, Oleg M Demchuk, Karol Grela, K. Michał Pietrusiewicz und Holger Butenschön. „Homo- and Cross-Olefin Metathesis Coupling of Vinylphosphane Oxides and Electron-Poor Alkenes: Access to P-Stereogenic Dienophiles“. Advanced Synthesis & Catalysis 348, Nr. 7-8 (Mai 2006): 931–38. http://dx.doi.org/10.1002/adsc.200505463.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie