Auswahl der wissenschaftlichen Literatur zum Thema „Electron pairs“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electron pairs" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Electron pairs"

1

Feist, Armin, Guanhao Huang, Germaine Arend, Yujia Yang, Jan-Wilke Henke, Arslan Sajid Raja, F. Jasmin Kappert et al. „Cavity-mediated electron-photon pairs“. Science 377, Nr. 6607 (12.08.2022): 777–80. http://dx.doi.org/10.1126/science.abo5037.

Der volle Inhalt der Quelle
Annotation:
Quantum information, communication, and sensing rely on the generation and control of quantum correlations in complementary degrees of freedom. Free electrons coupled to photonics promise novel hybrid quantum technologies, although single-particle correlations and entanglement have yet to be shown. In this work, we demonstrate the preparation of electron-photon pair states using the phase-matched interaction of free electrons with the evanescent vacuum field of a photonic chip–based optical microresonator. Spontaneous inelastic scattering produces intracavity photons coincident with energy-shifted electrons, which we employ for noise-suppressed optical mode imaging. This parametric pair-state preparation will underpin the future development of free-electron quantum optics, providing a route to quantum-enhanced imaging, electron-photon entanglement, and heralded single-electron and Fock-state photon sources.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Edwards, Peter P. „Trapped electron pairs“. Nature 331, Nr. 6157 (Februar 1988): 564–65. http://dx.doi.org/10.1038/331564a0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kutzelnigg, Werner, und Stefan Vogtner. „Extremal electron pairs“. International Journal of Quantum Chemistry 60, Nr. 1 (05.10.1996): 235–48. http://dx.doi.org/10.1002/(sici)1097-461x(1996)60:1<235::aid-qua25>3.0.co;2-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Franz, M. „PHYSICS: Crystalline Electron Pairs“. Science 305, Nr. 5689 (03.09.2004): 1410–11. http://dx.doi.org/10.1126/science.1099569.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Peterson, Ivars. „Electron Pairs and Waves“. Science News 149, Nr. 10 (09.03.1996): 156. http://dx.doi.org/10.2307/3979661.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Andreev, A. F. „Electron pairs for HTSC“. Journal of Experimental and Theoretical Physics Letters 79, Nr. 2 (Januar 2004): 88–90. http://dx.doi.org/10.1134/1.1690358.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Singh, R. J., und Shakeel Khan. „Model of electron pairs in electron-doped cuprates“. International Journal of Modern Physics B 30, Nr. 24 (26.09.2016): 1650170. http://dx.doi.org/10.1142/s0217979216501708.

Der volle Inhalt der Quelle
Annotation:
In the order parameter of hole-doped cuprate superconductors in the pseudogap phase, two holes enter the order parameter from opposite sides and pass through various [Formula: see text] cells jumping from one [Formula: see text] to the other under the influence of magnetic field offered by the [Formula: see text] ions in that [Formula: see text] cell and thus forming hole pairs. In the pseudogap phase of electron-doped cuprates, two electrons enter the order parameter at [Formula: see text] sites from opposite ends and pass from one [Formula: see text] site to the diagonally opposite [Formula: see text] site. Following this type of path, they are subjected to high magnetic fields from various [Formula: see text] ions in that cell. They do not travel from one [Formula: see text] site to the other along straight path but by helical path. As they pass through the diagonal, they face high to low to very high magnetic field. Therefore, frequency of helical motion and pitch goes on changing with the magnetic field. Just before reaching the [Formula: see text] ions at the exit points of all the cells, the pitch of the helical motion is enormously decreased and thus charge density at these sites is increased. So the velocity of electrons along the diagonal path is decreased. Consequently, transition temperature of electron-doped cuprates becomes less than that of hole-doped cuprates. Symmetry of the order parameter of the electron-doped cuprates has been found to be of [Formula: see text] type. It has been inferred that internal magnetic field inside the order parameter reconstructs the Fermi surface, which is requisite for superconductivity to take place. Electron pairs formed in the pseudogap phase are the precursors of superconducting order parameter when cooled below [Formula: see text].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

BYTAUTAS, LAIMUTIS, und KLAUS RUEDENBERG. „Electron pairs, localized orbitals and electron correlation“. Molecular Physics 100, Nr. 6 (20.03.2002): 757–81. http://dx.doi.org/10.1080/00268970110095165.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Peterson, I. „Electron Pairs in Superconducting Rings“. Science News 145, Nr. 14 (02.04.1994): 213. http://dx.doi.org/10.2307/3977816.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Davydov, Alexandr S., und Ivan I. Ukrainskii. „Electron states and electron transport in quasi-one-dimensional molecular systems“. Canadian Journal of Chemistry 63, Nr. 7 (01.07.1985): 1899–903. http://dx.doi.org/10.1139/v85-314.

Der volle Inhalt der Quelle
Annotation:
It is shown that the concept of electron pairs may be introduced in conducting quasi-one-dimensional systems with electron delocalization such as (CH)x and the stacks of molecule-donors and acceptors of electrons TMTSF, TTT, TCNQ, etc. The introduction of pairing proves to be useful and electronic structure and electronic processes can be easily visualized. The two causative factors in the appearance of pairs in a many-electron system with repulsion are pointed out. The first one is the electron Fermi-statistics that does not allow a spatial region to be occupied by more than two electrons. The second one is the interaction of electrons with a soft lattice. The first of these factors is important at large and intermediate electron densities ρ ≥ 1, the second one dominates at [Formula: see text]. The kink-type excitation parameters in (CH)x are considered with a non-linear potential obtained in an electron-pair approach for the many-electron wave function of (CH)x.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Electron pairs"

1

Carpenter, Joanna Katharine Hicks. „Magnetic field effects on electron transfer reactions in photosynthetic bacteria“. Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390466.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Giebels, Franz-Josef [Verfasser], und Roland [Akademischer Betreuer] Feder. „Emission of electron-electron and electron-positron pairs from solid surfaces due to electron or positron impact / Franz-Josef Giebels. Betreuer: Roland Feder“. Duisburg, 2015. http://d-nb.info/1075456193/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hencken, Kai. „Electromagnetic production of electron positron pairs in relativistic heavy ion collisions“. [S.l.] : [s.n.], 1994. http://edoc.unibas.ch/diss/DissB_3179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Marchant, Melanie Erin. „Bose-Einstein condensation of exotic electron pairs in the Extended Hubbard Model“. Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266974.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fursman, Catherine E. „Electron spin echo envelope modulation spectroscopy of radical pairs in photosynthetic bacteria“. Thesis, University of Oxford, 2000. http://ora.ox.ac.uk/objects/uuid:1ccaf0e5-3a45-4f13-a184-a4f1cf772c9b.

Der volle Inhalt der Quelle
Annotation:
Electron spin echo envelope modulation (ESEEM) spectroscopy is widely used to study the radical pairs created during the primary steps of photosynthesis. In this thesis the analysis of ESEEM spectra is improved, and some new applications and variations of this experiment suggested. Experimental spectra from species such as P+Q-A, the secondary radical pair formed in the reaction centre of the bacterium Rhodobacter sphaeroides, give information about the exchange and dipolar couplings between the radicals. The model used to analyse the data affects the results; this thesis suggests two improvements. First, the effect of anisotropic hyperfine couplings in the radicals is considered by the addition of a single spin-1/2 nucleus to the model. This approach suggests that previous models neglecting the effect of nuclei may have been slightly in error. Secondly, several model fittings are performed in the time domain. This approach avoids the Fourier transformation to the frequency domain so that experimental dead-time does not corrupt the data. An excellent fit to experimental data is found with a model containing one spin-1/2 nucleus on each radical. The hyperfine coupling parameters resulting from the fit are consistent with independent experimental results. Use is made of the method of Cramér-Rao lower bounds to assess the precision to which experimental parameters are determined from a time domain curve fitting. It is shown that the lower bounds may also be used to determine the optimum sampling strategy for the experiment. An example is given of the novel use of ESEEM to determine the distance between the radicals in the strongly coupled, uncorrelated radical pair Q-AQ-B ESEEM has not yet been used for this purpose, and the simulated spectra produced here indicate that the experiment could be used to evaluate the dipolar coupling and hence the inter-radical distance. This thesis considers the possibility of performing ESEEM at higher frequencies than are usually considered. Calculations show that the increased resolution of the g-tensors allow an experiment performed at the W-band frequency of 95 GHz to make a correlation between the relative orientations of the radicals and the dipolar axis, information which has previously been unavailable from a single experiment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wechakama, Maneenate. „Multi-messenger constraints and pressure from dark matter annihilation into electron-positron pairs“. Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6740/.

Der volle Inhalt der Quelle
Annotation:
Despite striking evidence for the existence of dark matter from astrophysical observations, dark matter has still escaped any direct or indirect detection until today. Therefore a proof for its existence and the revelation of its nature belongs to one of the most intriguing challenges of nowadays cosmology and particle physics. The present work tries to investigate the nature of dark matter through indirect signatures from dark matter annihilation into electron-positron pairs in two different ways, pressure from dark matter annihilation and multi-messenger constraints on the dark matter annihilation cross-section. We focus on dark matter annihilation into electron-positron pairs and adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E_0 ~ m_dm*c^2. The propagation of these particles is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung, and ionization. The first part of this work, focusing on pressure from dark matter annihilation, demonstrates that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. The injection rate of this calculation is constrained by INTEGRAL, Fermi, and H.E.S.S. data. The pressure of the relativistic electron-positron gas is computed from the energy spectrum predicted by the diffusion-loss equation. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that the pressure gradients are strong enough to balance gravity in the central parts if E_0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on kiloparsec scales for most values of E_0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of the halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs). In the second part, upper limits on the dark matter annihilation cross-section into electron-positron pairs are obtained by combining observed data at different wavelengths (from Haslam, WMAP, and Fermi all-sky intensity maps) with recent measurements of the electron and positron spectra in the solar neighbourhood by PAMELA, Fermi, and H.E.S.S.. We consider synchrotron emission in the radio and microwave bands, as well as inverse Compton scattering and final-state radiation at gamma-ray energies. For most values of the model parameters, the tightest constraints are imposed by the local positron spectrum and synchrotron emission from the central regions of the Galaxy. According to our results, the annihilation cross-section should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV. In addition, we also derive a stringent upper limit on the inner logarithmic slope α of the density profile of the Milky Way dark matter halo (α < 1 if m_dm < 5 GeV, α < 1.3 if m_dm < 100 GeV and α < 1.5 if m_dm < 2 TeV) assuming a dark matter annihilation cross-section into electron-positron pairs (σv) = 3*10^−26 cm^3 s^−1, as predicted for thermal relics from the big bang.
Trotz vieler Hinweise auf die Existenz von dunkler Materie durch astrophysikalische Beobachtungen hat sich die dunkle Materie bis heute einem direkten oder indirekten Nachweis entzogen. Daher gehrt der Nachweis ihrer Existenz und die Enthüllung ihrer Natur zu einem der faszinierensten Herausforderungen der heutigen Kosmologie und Teilchenphysik. Diese Arbeit versucht die Natur von dunkler Materie durch indirekte Signaturen von der Paarzerstrahlung dunkler Materie in Elektron-Positronpaare auf zwei verschiedene Weisen zu untersuchen, nämlich anhand des Drucks durch die Paarzerstrahlung dunkler Materie und durch Grenzen des Wirkungsquerschnitts für die Paarzerstrahlung dunkler Materie aus verschiedenen Beobachtungsbereichen. Wir konzentrieren uns dabei auf die Zerstrahlung dunkler Materie in Elektron-Positron-Paare und betrachten einen modellunabhängigen Fall, bei dem alle Elektronen und Positronen mit der gleichen Anfangsenergie E_0 ~ m_dm*c^2 injiziert werden. Die Fortbewegung dieser Teilchen wird dabei bestimmt durch die Lösung der Diffusions-Verlust-Gleichung unter Berücksichtigung von inverser Compton-Streuung, Synchrotronstrahlung, Coulomb-Streuung, Bremsstrahlung und Ionisation. Der erste Teil dieser Arbeit zeigt, dass die Zerstrahlung dunkler Materie in Elektron-Positron-Paare die gemessene Rotationskurve signifikant beeinflussen kann. Die Produktionsrate ist dabei durch Daten von INTEGRAL, Fermi und H.E.S.S. begrenzt. Der Druck des relativistischen Elektron-Positron Gases wird aus dem Energiespektrum errechnet, welches durch die Diffusions-Verlust-Gleichung bestimmt ist. Für Werte der Gasdichte und des magnetischen Feldes, welche für unsere Galaxie repräsentativ sind, lässt sich abschätzen, dass für E_0 < 1 GeV die Druckgradienten stark genug sind, um Gravitationskräfte auszugleichen. Die genauen Werte hängen von den verwendeten astrophysikalischen Parametern ab, und sie ändern sich stark mit dem Anstieg des dunklen Materie-Profils. Für sehr große Anstiege, wie sie für adiabatische Kontraktion erwartet werden, werden die Rotationskurven von Spiralgalaxien auf Skalen von einegen Kiloparsek für die meisten Werte von E_0 beeinflusst. Durch Vergleich der erwarteten Rotationskurven mit Beobachtungen von Zwerggalaxien und Galaxien geringer Oberflächentemperatur zeigen wir, dass der Druck von Zerstrahlung dunkler Materie die Übereinstimmung von Theorie und Beobachtung in einigen Fällen verbessern kann. Aber daraus resultieren auch starke Grenzen für die Modellparameter - vor allem für den inneren Anstieg des Halo-Dichteprofils, sowie die Masse und den Wirkungsquerschnitt der dunklen Materie-Teilchen. Im zweiten Teil werden obere Grenzen für die Wirkungsquerschnitte der Zerstrahlung der dunkler Materie in Elektron-Positron-Paare erhalten, indem die beobachteten Daten bei unterschiedlichen Wellenlängen (von Haslam, WMAP und Fermi) mit aktuellen Messungen von Elektron-Positron Spektren in der solaren Nachbarschaft durch PAMELA, Fermi und H.E.S.S. kombiniert werden. Wir betrachten Synchrotronemission bei Radiound Mikrowellenfrequenzen, sowie inverse Compton-Streuung und Final-State-Strahlung bei Energien im Bereich der Gamma-Strahlung. Für die meisten Werte der Modellparameter werden die stärksten Schranken durch das lokale Positron-Spektrum und die Synchrotronemission im Zentrum unser Galaxie bestimmt. Nach diesen Ergebnissen sollte der Wirkungsquerschnitt für die Paarzerstrahlung nicht größer als der kanonische Wert für thermische Relikte sein, wenn die Masse der dunklen Materie-Kandidaten kleiner als einige GeV ist. Zusätzlich leiten wir eine obere Grenze für den inneren logarithmische Anstieg α des Dichteprofiles des dunklen Materie Halos unserer Galaxie ab.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Glendinning, I. „A study of inclusive lepton pairs in multihadronic events from electron positron annihilation at PETRA“. Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377472.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Reis, Thomas. „Search for new massive resonances decaying to dielectrons or electron-muon pairs with the CMS detector“. Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209131.

Der volle Inhalt der Quelle
Annotation:
Le sujet de cette thèse porte sur la recherche de nouvelles résonances massives se désintégrant en une paire d’électrons ou une paire électron-muon avec le détecteur CMS, installé auprès du Grand Collisionneur du Hadrons (LHC) au CERN. Les données analysées correspondent à l’ensemble des collisions proton-proton enregistrées par le détecteur en 2012 à une énergie dans le centre de masse de 8 TeV. Après une brève introduction au modèle standard des particules élémentaires et à quelques unes des théories allant au-delà, le LHC et le détecteur CMS sont présentés. La reconstruction des différentes particules créées lors des collisions, en particulier des électrons et muons de haute énergie, est ensuite discutée. Deux analyses séparées sont menées.

La première consiste en la recherche d’une nouvelle résonance étroite, plus massive que le boson Z, dans le spectre de masse invariante des paires d’électrons, dont la principale contribution, dans le modèle standard, provient du processus de Drell–Yan. De telles résonances sont notamment prédites par des modèles dits de grande unification ou à dimensions spatiales supplémentaires. Le bruit de fond provenant des processus du modèle standard étant réduit dans la région étudiée, quelques événements localisés peuvent suffire pour mener à une découverte, et la sélection des électrons est optimisée afin de ne perdre aussi peu d’événements que possible. Les différentes contributions des bruits de fond sont partiellement estimées à partir de simulations. Une méthode basée sur le spectre de masse invariante des paires électron-muon mesuré dans les données est développée pour valider la contribution du second bruit de fond en terme d’importance. Aucun excès n’est observé par rapport aux prédictions du modèle standard et des limites supérieures à 95% de niveau de confiance sont placées sur le rapport entre la section efficace de production multipliée par le rapport de branchement d’une nouvelle résonance et celle au pic du boson Z. Ces limites sont ensuite converties en limites inférieures sur la masse de différentes particules hypothétiques de spin 1 ou de spin 2.

La seconde analyse consiste en une recherche de résonances massives et étroites dans le spectre de masse invariante des paires électron-muon. De telles résonances briseraient la conservation du nombre leptonique tel que prédit par le modèle standard. Cette possibilité existe cependant dans certains modèles de nouvelle physique. C’est notamment le cas pour un modèle à dimensions supplémentaires où apparaissent des nouveaux bosons neutres lourds. La sélection des événements demande un électron de haute énergie comme dans l’analyse précédente, et un muon de grande impulsion transverse. La stratégie de recherche est similaire au cas des paires d’électrons :le fait de rechercher un signal étroit rend l’analyse statistique très peu sensible aux erreurs systématiques affectant la normalisation absolue du spectre de masse électron-muon. Comme aucune déviation significative n’est observée par rapport aux prévisions du modèle standard, des limites supérieures sur la section efficace multipliée par le rapport de branchement sont établies pour le modèle à dimensions spatiales supplémentaires. Étant données les faibles valeurs théoriques de la section efficace de production des résonances violant la conservation de la saveur dans ce modèle, la quantité de données analysées ne permet pas d’en déduire une limite inférieure sur leur masse. Cette analyse représente néanmoins la première recherche directe avec l’expérience CMS, de bosons massifs, se désintégrant avec violation du nombre leptonique, en une paire électron-muon.


Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Asano, Yasuhiro, Yuki Sawa, Yukio Tanaka und Alexander A. Golubov. „Odd-frequency pairs and Josephson current through a strong ferromagnet“. American Physical Society, 2007. http://hdl.handle.net/2237/11285.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

[Verfasser], Maneenate Wechakama, und Matthias [Akademischer Betreuer] Steinmetz. „Multi-messenger constraints and pressure from dark matter annihilation into electron-positron pairs / Maneenate Wechakama. Betreuer: Matthias Steinmetz“. Potsdam : Universitätsbibliothek der Universität Potsdam, 2013. http://d-nb.info/1041521669/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Electron pairs"

1

Kaiyou, Chen, Columbia Astrophysics Laboratory (Columbia University) und United States. National Aeronautics and Space Administration., Hrsg. "Pair production and gamma-ray emission in the outer magnetospheres of rapidly spinning young pulsars": Final technical report for NAG 5-3797, report period--1 December 1996 - 30 November 1997. [Washington, DC: National Aeronautics and Space Administration, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Michael, Kellen, und United States. National Aeronautics and Space Administration., Hrsg. Disk-corona model of active galactic nuclei with nonthermal pairs. [Washington, DC: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Michael, Kellen, und United States. National Aeronautics and Space Administration., Hrsg. Disk-corona model of active galactic nuclei with nonthermal pairs. [Washington, DC: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Michael, Kellen, und United States. National Aeronautics and Space Administration., Hrsg. Disk-corona model of active galactic nuclei with nonthermal pairs. [Washington, DC: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Michael, Kellen, und United States. National Aeronautics and Space Administration., Hrsg. Disk-corona model of active galactic nuclei with nonthermal pairs. [Washington, DC: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

H, Derrickson J., und United States. National Aeronautics and Space Administration., Hrsg. Direct production of electron-positron pairs by 200-GeV/nucleon oxygen and sulfur ions in nuclear emulsion. [Washington, D.C: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

H, Derrickson J., und George C. Marshall Space Flight Center. Space Sciences Laboratory., Hrsg. New calculations and measurements of the Coulomb cross-section for the production of direct electron pairs by high energy nuclei. Huntsville, Ala: Space Science Laboratory, NASA Marshall Space Flight Center, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

H, Derrickson J., und George C. Marshall Space Flight Center. Space Sciences Laboratory., Hrsg. New calculations and measurements of the Coulomb cross-section for the production of direct electron pairs by high energy nuclei. Huntsville, Ala: Space Science Laboratory, NASA Marshall Space Flight Center, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

H, Derrickson J., und George C. Marshall Space Flight Center., Hrsg. Measurements and calculations of the Coulomb cross section for the production of direct electron pairs by energetic heavy nuclei in nuclear track emulsion. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

La bataille de Paris : municipales 2008. Paris: Archipel, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Electron pairs"

1

Bencini, Alessandro, und Dante Gatteschi. „Spectra of Pairs“. In Electron Paramagnetic Resonance of Exchange Coupled Systems, 48–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74599-7_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kohout, M. „Electron Pairs in Position Space“. In The Chemical Bond II, 119–68. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/430_2015_186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kusunose, M., und S. Mineshige. „Electron-Positron Pairs in Accretion Disks“. In Theory of Accretion Disks — 2, 403–9. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0858-4_40.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Billing, Roland, Detlef Rehorek und Horst Hennig. „Photoinduced electron transfer in ion pairs“. In Topics in Current Chemistry, 151–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-52568-8_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nagaraja, S., L. R. C. Fonseca und J. P. Leburton. „Electron–Electron Interactions Between Orbital Pairs in Quantum Dots“. In Physical Models for Quantum Dots, 163–72. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bencini, Alessandro, und Dante Gatteschi. „Selected Examples of Spectra of Pairs“. In Electron Paramagnetic Resonance of Exchange Coupled Systems, 167–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74599-7_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sixl, Hans. „Electron Spin Resonance Spectroscopy of Triplet Electron Pairs in Diacetylene Crystals“. In ACS Symposium Series, 12–24. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0337.ch002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Klopper, Wim, Werner Kutzelnigg, Hendrik Müller, Jozef Noga und Stefan Vogtner. „Extremal Electron Pairs — Application to Electron Correlation, Especially the R12 Method“. In Topics in Current Chemistry, 21–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48972-x_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Giraldo, J., P. Apell und R. Monreal. „Electron-Hole Pairs Bulk Production in Simple Metals“. In Lectures on Surface Science, 173–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71723-9_30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Samarin, Sergey, Oleg Artamonov und Jim Williams. „Emission of Correlated Electron Pairs from Surfaces Induced by Photons, Positrons and Ions“. In Spin-Polarized Two-Electron Spectroscopy of Surfaces, 203–23. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00657-0_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Electron pairs"

1

Rau, A. R. P. „States of pairs of electrons“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.tun2.

Der volle Inhalt der Quelle
Annotation:
When two electrons are excited from the ground state of an atom, qualitatively new characteristics appear. This is particularly so with increasing excitation toward the ionization limit for the two-electron continuum. The increasing liberation of the electrons from the dominant central field in the atom causes greater relative importance of their mutual interaction. The independent particle picture becomes inadequate, especially for excitations in which the electrons remain comparable in their excitation. Such states are distinguished from those having disparate excitation in that, for the latter, independent particle labels for the radial motion (inner and outer electron) remain appropriate, but for the former a language that treats the two on par throughout is required. The two classes have been dubbed valley and ridge states. When viewed in joint coordinates of the pair of electrons, the potential surface of the system displays valleys in which one of the radial coordinates is small and a saddle region in which the two electrons remain comparable. Ridge states reside in the saddle, a long series having been observed for the first time in the He- system. Their description requires the use throughout of new quantum numbers characterizing the pair as a single entity. These matters and their experimental implications are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Soejima, Kouichi. „Chiral electron pairs in photodouble ionization of helium“. In CORRELATIONS,POLARIZATION,AND IONIZATION IN ATOMIC SYSTEMS:Proceedings of the International Symposium on(e,2e),Double Photoionization and Related Topics and the Eleventh International Symposium on Polarization and Correlation in Electronic and Atomic .... AIP, 2002. http://dx.doi.org/10.1063/1.1449334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Arend, Germaine, Armin Feist, Guanhao Huang, Yujia Yang, Jan-Wilke Henke, Arslan Sajid Raja, F. Jasmin Kappert et al. „Photon Fock State Generation in Photonic Microresonators“. In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/quantum.2023.qm4a.6.

Der volle Inhalt der Quelle
Annotation:
We generate correlated pairs of free electrons and cavity photons by sending an electron beam across a photonic microresonator and filtering temporal coincidences. We further characterize the pairs analogue to a heralded single photon source.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rebentrost, F., O. Hoffmann, J. Grosser, Marco Antonio Gigosos und Manuel Ángel González. „Nonadiabatic Electron Dynamics by Direct Excitation of Collision Pairs“. In SPECTRAL LINE SHAPES: Volume 15–19th International Conference on Spectral Line Shapes. AIP, 2008. http://dx.doi.org/10.1063/1.3026436.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pelchat-Voyer, S., und M. Piché. „Proposal for Generating Pairs of Synchronized Ultrafast Electron Bunches“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/up.2020.tu4b.24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tokizaki, T., S. Iwai, T. Shibata, A. Nakamura, K. Tanimura und N. Itoh. „Ultrafast Formation Processes of Self-trapped Excitons in Alkali-iodide Crystals under Band-to-band Excitation“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.mc30.

Der volle Inhalt der Quelle
Annotation:
The electronic excitation strongly interacting with the lattice in solids leads to efficient formation of lattice defects of Frenkel pairs. In alkali halide crystals, electron-hole pairs are localized at a lattice site to form a self-trapped exciton(STE) and the adiabatic instability of the STE induces further displacement of the lattice to the defect pairs[1].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Taran Driver. „Probing Attosecond Electron Dynamics with an X-Ray Free-Electron Laser“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.w1a.6.

Der volle Inhalt der Quelle
Annotation:
We present measurements made with attosecond soft x-ray pulses and pulse pairs from an x-ray free-electron laser. This source offers the possibility to create and probe coherent electron dynamics with elemental specificity on its natural attosecond timescale.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nishioka, Yuki, Kentaro Doi und Satoyuki Kawano. „Development of an Electron Scattering Model to Detect Differences in DNA Base Molecules“. In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-36031.

Der volle Inhalt der Quelle
Annotation:
In recent, novel technologies which apply bio-macromolecules to bio-nanodevices attract much attention. Particularly, DNAs have several desirable characteristics: complementary base pairs, self assembly, and electric conductivity. It is expected that high-speed DNA sequencers can be developed by using these specific characteristics of DNAs. In the present study, we develop a theoretical model to analyze the difference of DNA base molecules, in which electron scattering is simulated based on classical electrodynamics and scattering angles are evaluated. Consequently, it is found that scattering angles of the scattered electrons are clearly different from each other.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Qu, Kenan, und Nathaniel J. Fisch. „QED plasma induced laser frequency upconversion and reflection“. In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/nlo.2023.m4a.9.

Der volle Inhalt der Quelle
Annotation:
QED cascades can create electron-positron pairs at sufficiently high density to exhibit collective plasma effects. Signatures of collective pair plasma effects can appear through plasma-induced frequency upshifts and coherent laser reflection.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rothberg, L., T. M. Jedju, S. Etemad, G. L. Baker und P. D. Townsend. „Femtosecond dynamics of charged solitons in trans-polyacetylene“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.thr12.

Der volle Inhalt der Quelle
Annotation:
Recently, directly photogenerated charged solitons as predicted by Su and Schrieffer have been observed.1 Here we report studies of their formation and decay dynamics using transient absorption with 0.35-ps pulses. Above band gap (2.1 eV) radiation creates intrachain electron–hole pairs which degenerate into charged soliton pairs. These are probed using synchronized pulses tunable from 2.5 to 5.5 μm which are generated by mixing amplified femtosecond pulses with white light continuum generated in water.2 The charged soliton pairs are shown to recombine geminately in ~0.5 ps with power-law decay dynamics characteristic of 1-D diffusion. At high pump fluences, saturation of the charged soliton absorption can be attributed to a volume filling mechanism. Varying the probe wavelength allows us to observe femtosecond spectral relaxation of the charged solitons and to interpret this in terms of conformational relaxation. Work on oriented Durham trans-polyacetylene has enabled us to probe the dynamics following interchain electron-hole pair creation as well.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Electron pairs"

1

Wen, X., K. G. Spears, G. P. Wiederrecht und M. R. Wasielewski. Electron transfer of carbonylmetalate radical pairs: femtosecond visible spectroscopy of optically excited ion pairs. Office of Scientific and Technical Information (OSTI), Februar 1997. http://dx.doi.org/10.2172/488804.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nordquist, Christopher Daniel, Michael Joseph Cich, Gregory Allen Vawter, Mark Steven Derzon und Marino John Martinez. Novel detection methods for radiation-induced electron-hole pairs. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1008121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Halkiadakis, Eva. Measurements of Neutral Kaon Decays to Two Electron Positron Pairs. Office of Scientific and Technical Information (OSTI), Januar 2001. http://dx.doi.org/10.2172/1421394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

McTaggart, Robert II. The Angular Distribution of Electron Positron Pairs from Exclusive Charmonium Decays in Antiproton Proton Annihilations. Office of Scientific and Technical Information (OSTI), Januar 1998. http://dx.doi.org/10.2172/1436763.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Veramendi, Gregory Francisco. A measurement of forward-backward charge asymmetry of electron-positron pairs in proton-antiproton collision at 1.8 TeV. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/875574.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Thompson, Kathleen A. Energy Spectrum of Electron-Positron Pairs Produced via the Trident Process, with Application to Linear Colliders in the Deep Quantum Regime. Office of Scientific and Technical Information (OSTI), Oktober 1998. http://dx.doi.org/10.2172/9899.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hane, Jennifer Kazuko. The picosecond dynamics of electron-hole pairs in graded and homogeneous CdSxSe1-x semiconductors. Office of Scientific and Technical Information (OSTI), Mai 1995. http://dx.doi.org/10.2172/88836.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Acosta, D. Electroweak physics: measurement of the forward-backward charge asymmetry of electron-positron pairs in p anti-p collisions at s**(1/2) = 1.96 tev. Office of Scientific and Technical Information (OSTI), Februar 2005. http://dx.doi.org/10.2172/842934.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Thompson, Kathleen A. Electron-Positron Pair Production in the Deep Quantum Regime. Office of Scientific and Technical Information (OSTI), Oktober 1998. http://dx.doi.org/10.2172/9907.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hohlmann, Marcus. Observation of Top Quark Pairs in the Dilepton Decay Channel using Electrons, Muons and Taus. Office of Scientific and Technical Information (OSTI), Januar 1997. http://dx.doi.org/10.2172/1421718.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie