Auswahl der wissenschaftlichen Literatur zum Thema „Electron microscopy“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electron microscopy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Electron microscopy"

1

Schatten, G., J. Pawley und H. Ris. „Integrated microscopy resource for biomedical research at the university of wisconsin at madison“. Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 594–97. http://dx.doi.org/10.1017/s0424820100127451.

Der volle Inhalt der Quelle
Annotation:
The High Voltage Electron Microscopy Laboratory [HVEM] at the University of Wisconsin-Madison, a National Institutes of Health Biomedical Research Technology Resource, has recently been renamed the Integrated Microscopy Resource for Biomedical Research [IMR]. This change is designed to highlight both our increasing abilities to provide sophisticated microscopes for biomedical investigators, and the expansion of our mission beyond furnishing access to a million-volt transmission electron microscope. This abstract will describe the current status of the IMR, some preliminary results, our upcoming plans, and the current procedures for applying for microscope time.The IMR has five principal facilities: 1.High Voltage Electron Microscopy2.Computer-Based Motion Analysis3.Low Voltage High-Resolution Scanning Electron Microscopy4.Tandem Scanning Reflected Light Microscopy5.Computer-Enhanced Video MicroscopyThe IMR houses an AEI-EM7 one million-volt transmission electron microscope.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Möller, Lars, Gudrun Holland und Michael Laue. „Diagnostic Electron Microscopy of Viruses With Low-voltage Electron Microscopes“. Journal of Histochemistry & Cytochemistry 68, Nr. 6 (21.05.2020): 389–402. http://dx.doi.org/10.1369/0022155420929438.

Der volle Inhalt der Quelle
Annotation:
Diagnostic electron microscopy is a useful technique for the identification of viruses associated with human, animal, or plant diseases. The size of virus structures requires a high optical resolution (i.e., about 1 nm), which, for a long time, was only provided by transmission electron microscopes operated at 60 kV and above. During the last decade, low-voltage electron microscopy has been improved and potentially provides an alternative to the use of high-voltage electron microscopy for diagnostic electron microscopy of viruses. Therefore, we have compared the imaging capabilities of three low-voltage electron microscopes, a scanning electron microscope equipped with a scanning transmission detector and two low-voltage transmission electron microscopes, operated at 25 kV, with the imaging capabilities of a high-voltage transmission electron microscope using different viruses in samples prepared by negative staining and ultrathin sectioning. All of the microscopes provided sufficient optical resolution for a recognition of the viruses tested. In ultrathin sections, ultrastructural details of virus genesis could be revealed. Speed of imaging was fast enough to allow rapid screening of diagnostic samples at a reasonable throughput. In summary, the results suggest that low-voltage microscopes are a suitable alternative to high-voltage transmission electron microscopes for diagnostic electron microscopy of viruses.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ross, Frances M. „Materials Science in the Electron Microscope“. MRS Bulletin 19, Nr. 6 (Juni 1994): 17–21. http://dx.doi.org/10.1557/s0883769400036691.

Der volle Inhalt der Quelle
Annotation:
This issue of the MRS Bulletin aims to highlight the innovative and exciting materials science research now being done using in situ electron microscopy. Techniques which combine real-time image acquisition with high spatial resolution have contributed to our understanding of a remarkably diverse range of physical phenomena. The articles in this issue present recent advances in materials science which have been made using the techniques of transmission electron microscopy (TEM), including holography, scanning electron microscopy (SEM), low-energy electron microscopy (LEEM), and high-voltage electron microscopy (HVEM).The idea of carrying out dynamic experiments involving real-time observation of microscopic phenomena has always had an attraction for materials scientists. Ever since the first static images were obtained in the electron microscope, materials scientists have been interested in observing processes in real time: we feel that we obtain a true understanding of a microscopic phenomenon if we can actually watch it taking place. The idea behind “materials science in the electron microscope” is therefore to use the electron microscope—with its unique ability to image subtle changes in a material at or near the atomic level—as a laboratory in which a remarkable variety of experiments can be carried out. In this issue you will read about dynamic experiments in areas such as phase transformations, thin-film growth, and electromigration, which make use of innovative designs for the specimen, the specimen holder, or the microscope itself. These articles speak for themselves in demonstrating the power of real-time analysis in the quantitative exploration of reaction mechanisms.The first transmission electron microscopes operated at low accelerating voltages, up to about 100 kV. This placed a severe limitation on the thickness of foils that could be examined: Heavy elements, for example, had to be made into foils thinner than 0.1 μm. It was felt that any phenomenon whose “mean free path” was comparable to the foil thickness would be significantly affected by the foil surfaces, and therefore would be unsuitable for study in situ. However, technology quickly generated ever higher accelerating voltages, culminating in the giant 3 MeV electron microscopes. At these voltages, electrons can penetrate materials as thick as 6–9 μm for light elements such as Si and Al, and 1 μm for very heavy ones such as Au and U.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tromp, Ruud M. „Low-Energy Electron Microscopy“. MRS Bulletin 19, Nr. 6 (Juni 1994): 44–46. http://dx.doi.org/10.1557/s0883769400036757.

Der volle Inhalt der Quelle
Annotation:
For surface science, the 1980s were the decade in which the microscopes arrived. The scanning tunneling microscope (STM) was invented in 1982. Ultrahigh vacuum transmission electron microscopy (UHVTEM) played a key role in resolving the structure of the elusive Si(111)-7 × 7 surface. Scanning electron microscopy (SEM) as well as reflection electron microscopy (REM) were applied to the study of growth and islanding. And low-energy electron microscopy (LEEM), invented some 20 years earlier, made its appearance with the work of Telieps and Bauer.LEEM and TEM have many things in common. Unlike STM and SEM, they are direct imaging techniques, using magnifying lenses. Both use an aperture to select a particular diffracted beam, which determines the nature of the contrast. If the direct beam is selected (no parallel momentum transfer), a bright field image is formed, and contrast arises primarily from differences in the scattering factor. A dark field image is formed with any other beam in the diffraction pattern, allowing contrast due to differences in symmetry. In LEEM, phase contrast is the third important mechanism by which surface and interface features such as atomic steps and dislocations may be imaged. One major difference between TEM and LEEM is the electron energy: 100 keV and above in TEM, 100 eV and below in LEEM. In LEEM, the imaging electrons are reflected from the sample surface, unlike TEM where the electrons zip right through the sample, encountering top surface, bulk, and bottom surface. STM and TEM are capable of ~2 Å resolution, while LEEM and SEM can observe surface features (including atomic steps) with -100 Å resolution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Martone, Maryann E. „Bridging the Resolution Gap: Correlated 3D Light and Electron Microscopic Analysis of Large Biological Structures“. Microscopy and Microanalysis 5, S2 (August 1999): 526–27. http://dx.doi.org/10.1017/s1431927600015956.

Der volle Inhalt der Quelle
Annotation:
One class of biological structures that has always presented special difficulties to scientists interested in quantitative analysis is comprised of extended structures that possess fine structural features. Examples of these structures include neuronal spiny dendrites and organelles such as the Golgi apparatus and endoplasmic reticulum. Such structures may extend 10's or even 100's of microns, a size range best visualized with the light microscope, yet possess fine structural detail on the order of nanometers that require the electron microscope to resolve. Quantitative information, such as surface area, volume and the micro-distribution of cellular constituents, is often required for the development of accurate structural models of cells and organelle systems and for assessing and characterizing changes due to experimental manipulation. Performing estimates of such quantities from light microscopic data can result in gross inaccuracies because the contribution to total morphometries of delicate features such as membrane undulations and excrescences can be quite significant. For example, in a recent study by Shoop et al, electron microscopic analysis of cultured chick ciliary ganglion neurons showed that spiny projections from the plasmalemma that were not well resolved in the light microscope effectively doubled the surface area of these neurons.While the resolution provided by the electron microscope has yet to be matched or replaced by light microscopic methods, one drawback of electron microscopic analysis has always been the relatively small sample size and limited 3D information that can be obtained from samples prepared for conventional transmission electron microscopy. Reconstruction from serial electron micrographs has provided one way to circumvent this latter problem, but remains one of the most technically demanding skills in electron microscopy. Another approach to 3D electron microscopic imaging is high voltage electron microscopy (HVEM). The greater accelerating voltages of HVEM's allows for the use of much thicker specimens than conventional transmission electron microscopes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Youngblom, J. H., J. Wilkinson und J. J. Youngblom. „Telepresence Confocal Microscopy“. Microscopy Today 8, Nr. 10 (Dezember 2000): 20–21. http://dx.doi.org/10.1017/s1551929500054146.

Der volle Inhalt der Quelle
Annotation:
The advent of the Internet has allowed the development of remote access capabilities to a growing variety of microscopy systems. The Materials MicroCharacterization Collaboratory, for example, has developed an impressive facility that provides remote access to a number of highly sophisticated microscopy and microanalysis instruments, While certain types of microscopes, such as scanning electron microscopes, transmission electron microscopes, scanning probe microscopes, and others have already been established for telepresence microscopy, no one has yet reported on the development of similar capabilities for the confocal laser scanning microscope.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

O'Keefe, Michael A., John H. Turner, John A. Musante, Crispin J. D. Hetherington, A. G. Cullis, Bridget Carragher, Ron Jenkins et al. „Laboratory Design for High-Performance Electron Microscopy“. Microscopy Today 12, Nr. 3 (Mai 2004): 8–17. http://dx.doi.org/10.1017/s1551929500052093.

Der volle Inhalt der Quelle
Annotation:
Since publication of the classic text on the electron microscope laboratory by Anderson, the proliferation of microscopes with field emission guns, imaging filters and hardware spherical aberration correctors (giving higher spatial and energy resolution) has resulted in the need to construct special laboratories. As resolutions iinprovel transmission electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs) become more sensitive to ambient conditions. State-of-the-art electron microscopes require state-of-the-art environments, and this means careful design and implementation of microscope sites, from the microscope room to the building that surrounds it. Laboratories have been constructed to house high-sensitive instruments with resolutions ranging down to sub-Angstrom levels; we present the various design philosophies used for some of these laboratories and our experiences with them. Four facilities are described: the National Center for Electron Microscopy OAM Laboratory at LBNL; the FEGTEM Facility at the University of Sheffield; the Center for Integrative Molecular Biosciences at TSRI; and the Advanced Microscopy Laboratory at ORNL.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

McMorran, Benjamin J., Peter Ercius, Tyler R. Harvey, Martin Linck, Colin Ophus und Jordan Pierce. „Electron Microscopy with Structured Electrons“. Microscopy and Microanalysis 23, S1 (Juli 2017): 448–49. http://dx.doi.org/10.1017/s1431927617002926.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kordesch, Martin E. „Introduction to emission electron microscopy for the in situ study of surfaces“. Proceedings, annual meeting, Electron Microscopy Society of America 51 (01.08.1993): 506–7. http://dx.doi.org/10.1017/s0424820100148368.

Der volle Inhalt der Quelle
Annotation:
The Photoelectron Emission Microscope (PEEM) and Low Energy Electron Microscope (LEEM) are parallel-imaging electron microscopes with highly surface-sensitive image contrast mechanisms. In PEEM, the electron yield at the illumination wavelength determines image contrast, in LEEM, the intensity of low energy (< 100 eV) electrons back-diffracted from the surface, as well as interference effects, are responsible for image contrast. Mirror Electron Microscopy is also possible with the LEEM apparatus. In MEM, no electron penetration into the solid occurs, and an image of surface electronic potentials is obtained.While the emission microscope techniques named above are not high resolution methods, the unique contrast mechanisms, the ability to use thick single crystal samples, their compatibility with uhv surface science methods and new material-growth methods, coupled with real-time imaging capability, make them very useful.These microscopes do not depend on scanning probes, and some are compatible with pressures up to 10-3 Torr and specimen temperatures above 1300K.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

J. H., Youngblom, Wilkinson J. und Youngblom J.J. „Telepresence Confocal Microscopy“. Microscopy and Microanalysis 6, S2 (August 2000): 1164–65. http://dx.doi.org/10.1017/s1431927600038319.

Der volle Inhalt der Quelle
Annotation:
The advent of the Internet has allowed the development of remote access capabilities to a growing variety of microscopy systems. The Materials MicroCharacterization Collaboratory, for example, has developed an impressive facility that provides remote access to a number of highly sophisticated microscopy and microanalysis instruments. While certain types of microscopes, such as scanning electron microscopes, transmission electron microscopes, scanning probe microscopes, and others have already been established for telepresence microscopy, no one has yet reported on the development of similar capabilities for the confocal laser scanning microscope.At California State University-Stanislaus, home of the CSUPERB (California State University Program for Education and Research in Biotechnology) Confocal Microscope Core Facility, we have established a remote access confocal laser scanning microscope facility that allows users with virtually any type of computer platform to connect to our system. Our Leica TCS NT confocal system, with an interchangeable upright (DMRXE) and inverted microscope (DMIRBE) set up,
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Electron microscopy"

1

Jin, Liang. „Direct electron detection in transmission electron microscopy“. Diss., [La Jolla, Calif.] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3344737.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed April 3, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 148-151).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Davies, D. G. „Scanning electron acoustic microscopy“. Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Duncan, James Lyon. „Electron microscopy of photosystems“. Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412477.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Harland, C. J. „Detector and electronic developments for scanning electron microscopy“. Thesis, University of Sussex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370435.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Morgan, Scott Warwick. „Gaseous secondary electron detection and cascade amplification in the environmental scanning electron microscope /“. Electronic version, 2005. http://adt.lib.uts.edu.au/public/adt-NTSM20060511.115302/index.html.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bruley, John. „Analytical electron microscopy of diamond“. Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237560.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Briggs, John A. G. „Cryo-electron microscopy of retroviruses“. Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408819.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sader, Kasim Stefan. „Aspects of biological electron microscopy“. Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434150.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Song, Se Ahn. „Electron microscopy of lanthanide diphthalocyanines“. Thesis, University of Essex, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328597.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cullen, Sarah Louise. „Electron microscopy of carbon nanotubes“. Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387605.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Electron microscopy"

1

Thomas, Mulvey, und Sheppard C. J. R, Hrsg. Advances inoptical and electron microscopy. London: Academic, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Goodhew, Peter J. Electron microscopy and analysis. 2. Aufl. London: Taylor & Francis, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Slayter, Elizabeth M. Light and electron microscopy. Cambridge [England]: Cambridge University Press, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

R, Beanland, und Humphreys F. J, Hrsg. Electron microscopy and analysis. 3. Aufl. London: Taylor & Francis, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kʻo-hsin, Kuo, und Zhai Z. H, Hrsg. Electron microscopy. Singapore: World Scientific, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Thomas, Mulvey, und Sheppard C. J. R, Hrsg. Advances in optical and electron microscopy. London: Academic Press, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kuo, John, Hrsg. Electron Microscopy. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-776-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kuo, John, Hrsg. Electron Microscopy. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-294-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Thomas, Mulvey, und Sheppard C. J. R, Hrsg. Advances in optical and electron microscopy. London: Academic Press, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Inc, ebrary, Hrsg. High-resolution electron microscopy. New York: Oxford University Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Electron microscopy"

1

Nölting, Bengt. „Electron microscopy“. In Methods in Modern Biophysics, 107–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05367-6_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Saka, S. „Electron Microscopy“. In Methods in Lignin Chemistry, 133–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74065-7_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Janssens, Koen. „Electron Microscopy“. In Modern Methods for Analysing Archaeological and Historical Glass, 129–54. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118314234.ch6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Michler, G. H. „Electron microscopy“. In Polymer Science and Technology Series, 186–97. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4421-6_26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kuo, John. „Electron Microscopy“. In Springer Protocols Handbooks, 975–1008. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-375-6_54.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bertazzo, Sergio. „Electron Microscopy“. In Microscopy of the Heart, 119–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95304-5_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Volkmann, Niels, und Dorit Hanein. „Electron Microscopy“. In Structural Bioinformatics, 115–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471721204.ch6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Doane, Frances W. „Electron Microscopy“. In Laboratory Diagnosis of Infectious Diseases Principles and Practice, 121–31. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3900-0_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hermansson, Anne-Marie, und Maud Langton. „Electron Microscopy“. In Physical Techniques for the Study of Food Biopolymers, 277–341. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2101-3_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nölting, Bengt. „Electron microscopy“. In Methods in Modern Biophysics, 107–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03022-2_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Electron microscopy"

1

Kuo, Kehsin, und Junen Yao. „Electron Microscopy“. In International Symposium on Electron Microscopy. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539340.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Villarraga-Gómez, Herminso, Kyle Crosby, Masako Terada und Mansoureh Norouzi Rad. „Assessing Electronics with Advanced 3D X-ray Microscopy Techniques and Electron Microscopy“. In ISTFA 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.istfa2023p0554.

Der volle Inhalt der Quelle
Annotation:
Abstract This paper presents advanced workflows that combine 3D Xray microscopy (XRM), nanoscale tomography, and electron microscopy to generate a detailed visualization of the interior of electronic devices and assemblies to enable the study of internal components for failure analysis (FA). Newly developed techniques such as the integration of deep-learning (DL) based algorithms for 3D image reconstruction are also discussed in this article. In addition, a DL-based tool (called DeepScout) is introduced that uses high-resolution 3D XRM datasets as training data for lower-resolution, larger field-of-view datasets and scales larger-volume data using a neural network model. Ultimately, these workflows can be run independently or complementary to other multiscale correlative microscopy evaluations, e.g., electron microscopy, and will provide valuable insights into the inner workings of electronic packages and integrated circuits at multiple length scales, from macroscopic features on electronic devices (i.e., hundreds of mm) to microscopic details in electronic components (in the tens of nm). Understanding advanced electronic systems through X-ray imaging and electron microscopy, and possibly complemented with some additional correlative microscopy investigations, can speed development time, increase cost efficiency, and simplify FA and quality inspection of printed circuit boards (PCBs) and electronic devices assembled with new emerging technologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Musumeci, Pietro. „Single-shot time-resolved electron microscopy using MeV electrons“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.678.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Banhart, Florian. „Nanosecond analytical electron microscopy with single electron pulses“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nicholls, Daniel. „Distributing the Electron Dose to Minimise Electron Beam Damage in Scanning Transmission Electron Microscopy“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kuo, K. H., und Z. H. Zhai. „Electron Microscopy I“. In 5th Asia-Pacific Electron Microscopy Conference. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814537544.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kuo, K. H., und Z. H. Zhai. „Electron Microscopy II“. In 5th Asia-Pacific Electron Microscopy Conference. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814537537.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nabben, David, Joel Kuttruff, Levin Stolz, Andrey Ryabov und Peter Baum. „Attosecond Electron Microscopy“. In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fth1c.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Krajnak, Matus. „Transforming transmission electron microscopy with MerlinEM electron counting detector“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Talebi, Nahid. „Electron-driven photon sources for spectral interferometry with electron microscopes“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Electron microscopy"

1

Bentley, J. (Future of electron microscopy). Office of Scientific and Technical Information (OSTI), Oktober 1989. http://dx.doi.org/10.2172/5651701.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Weber, Peter M. Time-Resolved Scanning Electron Microscopy. Fort Belvoir, VA: Defense Technical Information Center, Juni 2006. http://dx.doi.org/10.21236/ada455461.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Binev, Peter, Wolfgang Dahmen, Ronald DeVore, Philipp Lamby, Daniel Savu und Robert Sharpley. Compressed Sensing and Electron Microscopy. Fort Belvoir, VA: Defense Technical Information Center, Januar 2010. http://dx.doi.org/10.21236/ada560915.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Allard, L., und T. Nolan. (Concepts for future developments in electron microscopy). [Concept for Future Development in Electron Microscopy]. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6959950.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Durr, Hermann. Ultrafast Science Opportunities with Electron Microscopy. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1249382.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lyman, C. Analytical electron microscopy of catalyst preparations. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6990056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Harris, Christopher. Open Reproducible Electron Microscopy Data Analysis. Office of Scientific and Technical Information (OSTI), März 2022. http://dx.doi.org/10.2172/1847929.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sickafus, Kurt. History of Scanning Electron Microscopy (SEM). Office of Scientific and Technical Information (OSTI), Juni 2024. http://dx.doi.org/10.2172/2372668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mitchell, T. E., H. H. Kung, K. E. Sickafus, G. T. III Gray, R. D. Field und J. F. Smith. High-resolution electron microscopy of advanced materials. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/548622.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Taylor, J. R. Improved methods for high resolution electron microscopy. Office of Scientific and Technical Information (OSTI), April 1987. http://dx.doi.org/10.2172/5644034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie