Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electron holes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electron holes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electron holes"
Schamel, Hans. „Electron holes, ion holes and double layers“. Physics Reports 140, Nr. 3 (Juli 1986): 161–91. http://dx.doi.org/10.1016/0370-1573(86)90043-8.
Der volle Inhalt der QuelleEliasson, B., und P. K. Shukla. „The dynamics of electron and ion holes in a collisionless plasma“. Nonlinear Processes in Geophysics 12, Nr. 2 (11.02.2005): 269–89. http://dx.doi.org/10.5194/npg-12-269-2005.
Der volle Inhalt der QuelleJovanović, D., F. Califano und F. Pegoraro. „Magnetized electron-whistler holes“. Physics Letters A 303, Nr. 1 (Oktober 2002): 52–60. http://dx.doi.org/10.1016/s0375-9601(02)01202-1.
Der volle Inhalt der QuelleLuque, A., H. Schamel und R. Fedele. „Quantum corrected electron holes“. Physics Letters A 324, Nr. 2-3 (April 2004): 185–92. http://dx.doi.org/10.1016/j.physleta.2004.02.049.
Der volle Inhalt der QuelleMuschietti, L., I. Roth, R. E. Ergun und C. W. Carlson. „Analysis and simulation of BGK electron holes“. Nonlinear Processes in Geophysics 6, Nr. 3/4 (31.12.1999): 211–19. http://dx.doi.org/10.5194/npg-6-211-1999.
Der volle Inhalt der QuelleTreumann, R. A., W. Baumjohann und R. Pottelette. „Electron-cylotron maser radiation from electron holes: downward current region“. Annales Geophysicae 30, Nr. 1 (13.01.2012): 119–30. http://dx.doi.org/10.5194/angeo-30-119-2012.
Der volle Inhalt der QuelleTreumann, R. A., W. Baumjohann und R. Pottelette. „Electron-cylotron maser radiation from electron holes: upward current region“. Annales Geophysicae 29, Nr. 10 (25.10.2011): 1885–904. http://dx.doi.org/10.5194/angeo-29-1885-2011.
Der volle Inhalt der QuelleHIRSCH, J. E. „WHY HOLES ARE NOT LIKE ELECTRONS III: HOW HOLES IN THE NORMAL STATE TURN INTO ELECTRONS IN THE SUPERCONDUCTING STATE“. International Journal of Modern Physics B 23, Nr. 14 (10.06.2009): 3035–57. http://dx.doi.org/10.1142/s0217979209052765.
Der volle Inhalt der QuelleSteinvall, K., Yu V. Khotyaintsev, D. B. Graham, A. Vaivads, P. ‐A Lindqvist, C. T. Russell und J. L. Burch. „Multispacecraft Analysis of Electron Holes“. Geophysical Research Letters 46, Nr. 1 (11.01.2019): 55–63. http://dx.doi.org/10.1029/2018gl080757.
Der volle Inhalt der QuellePiris, Mario, Xabier Lopez und Jesus M. Ugalde. „Electron-pair density relaxation holes“. Journal of Chemical Physics 128, Nr. 21 (07.06.2008): 214105. http://dx.doi.org/10.1063/1.2937456.
Der volle Inhalt der QuelleDissertationen zum Thema "Electron holes"
Ouahioune, Nedjma. „Čerenkov emission of whistler waves by electron holes“. Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446395.
Der volle Inhalt der QuelleZhou, Chuteng. „Computational and theoretical study of electron phase-space holes in kinetic plasma: kinematics, stability and ion coupling“. Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119039.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 181-191).
In this thesis, a comprehensive study of Bernstein-Greene-Kruskal (BGK) mode electron holes in a collisionless plasma where strong kinetic effects are important is presented. Kinematic theory based on momentum conservation is derived treating the electron hole as a composite object to study the dynamics of electron holes. A novel 1-D Particle-In-Cell simulation code that can self-consistently track the electron hole motion has been developed for the purpose of this thesis work. Quantitative agreement is achieved between analytic theory and simulation observations. The thesis reports a new kind of instability for electron holes. Slow electron holes traveling slower than a few times the cold ion sound speed in the ion frame are observed to be unstable to the oscillatory velocity instability. A complete theoretical treatment for the instability is presented in this thesis. Numerical simulations yield quantitative agreement with the analytic theory in instability thresholds, frequencies and partially in instability growth rates. It is further shown that an electron hole can form a stable Coupled Hole Soliton (CHS) pair with an ion-acoustic soliton. A stable CHS travels slightly faster than the ion-acoustic velocity in the ion frame and is separated from a typical BGK mode electron hole in the velocity range by a gap, which is set by the oscillatory velocity instability. Transition between the two states is possible in both directions. A CHS exhibits a soliton-like behavior. The thesis sheds light on solving the ambiguity between an electron hole and a soliton. This thesis work also has important implications for interpreting space probes observations.
by Chuteng Zhou.
Ph. D. in Applied Plasma Physics
Reinsch, Andreas, und Andreas Reinsch. „Search for Colorful Quantum Black Holes Decaying to an Electron-Jet Final State with the ATLAS Experiment“. Thesis, University of Oregon, 2012. http://hdl.handle.net/1794/12370.
Der volle Inhalt der QuelleBause, Marlon Luis. „Plasma density characteristics of magnetic holes near the Kronian magnetosphere boundary surfaces“. Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414766.
Der volle Inhalt der QuelleLokaliserade strukturer med låg magnetfältstyrkan ses ofta i interplanetära mediet och de kallas ’mag-netiska hål’ (MH) (Turner et al. 1977). Trots et antal observationer av sådana strukturer har observeratsär deras generationsmekanism ännu förstådd. Storleken av strukturerna varierar från ett fåtal till någratusen protongyroradier och även deras kännetecknande inriktningar i magnetfältet varierar. På grund avdetta har olika typer av MH förslagits. Idag klassificerar man MH som ’mirror mode’ och magnetiskaminskningar (Tsurutani et al. 2011). Många studier har undersökt de magnetiska hålens egenskaper,men tyvärr oftast baserats endast på magnetfältsdata. Detta kan bero på strukturernas storlek vid en storsolvindshastighet, där plasmainstrumenten oftast inte har tillräckligt hög tidsupplösning för mätningar,medan magnetfältsinstrumenten kan oftast tillhandahålla data i hög tidsupplösning.Cassini-rymdfarkosten kretsade runt Saturnus i nästan 17 år och erhöll stora mängder data i och näraSaturnus magnetosfär. Langmuir-sonden (LP) ombord Cassini mäter rymdfarkostens potential ochdärmed mäter den elektrontätheten i rymden. Instrumentet fungerar som en slags väderstation för rym-dplasma och möjliggör mätningen av fundamentala plasmaparametrar såsom elektrontäthet, jontäthet,elektrontemperatur och jonmassa i en tät plasmaområdet av nära Saturnus. I den yttre magnetosfären därden plasmatätheten är låg, kan LP mäta rymdfarkosts potential och plasmatätheten. Mätningen, så kallade’sweep mode’ kan skaffades var 10:e minuter. LP:en mäter också i ’kontinuerlig mode’ som möjligenkan mäta plasmatätheten i mer frekventa men den behöver allmän kalibrering. I detta projekt undersökerjag möjligheten att använda LP kontinuerlig data för att studera MH, skapa kalibraring funktion för’kontinuerlig mode’ för att uppskatta plasmatätheten i Saturnus magnetosfär, och även att undersökastorleken och karaktär av plasmatäthetenstrukturen i MH.Jag undersökte först relationen mellan LP ström vid 11V och rymdfarkostens potential i sweep mode data.De härledda funktionerna användes vidare för att uppskatta densiteten med användning av relationenmellan rymdfarkostens potential och elektrontätheten (Morooka et al. 2009). Jag upptäckte också attden kontinuerlig mode funktionen är olika beroende på LP sensors läge i förhållande till solen ochrymdfarkosten. Hur Cassini är inriktad har en stor effekt på relationen och därför beskriva jag fyra olikarelationer för olika inriktningsregioner. Med den kontinuerlig mode funktionen jag härlett, undersöktejag struktur av magnetiska hålen som har listats av Tomas Karlsson på KTH. År 2011 innehåller MH medmycket olika former och storlekar. Den mest (80%) MH identifierades som grupp och resten (20%) varsom isolerade MH i magnetosheath. Av dessa isolerande hål har ca. 30% en Gauss-form och nästan 40%av MH verkar ha en understruktur. Genom att jämföra magfältdatan med elektrontätheten bekräftadejag den allmänna antikorrelationen mellan magnetfältstyrkan och elektrontätheten i MH-strukturerna.Dessutom hittar jag en ökning av elektron β som beräknas med en temperatur av 100 eV för linjära ochroterade MH i den magnetosheath samt MH i solvinden under 2011. Storleken av de isolerade magnetiskahålen är i genomsnitt 50 s i solvinden, 75 s (roterade magnetiska hål) och 120 s (linjära magnetiska hålen)i magnetosheath:en. Därför kan Cassini LP ha tillräcklig många datapoäng för att upplösa struktur avMH i magnetosheath. I solvinden kan LP upplösa en del av relativt stora MH.Sammanfattningsvis kan LP:s kontinuerlig kalibreringen från detta projekt användas för att analyserade olika strukturerna och storlekar av MH. Med denna kalibrerade plasmatäthet data är det möjligt attidentifiera olika MH karaktär i statistiskt för det stora antalet Cassini data. Det skulle vara en stor hjälpför att förstå genereringsmekanismerna av de magnetiska hålen.
Petrov, Pavel. „Effect of Curvature Squared Corrections to Gravitational Action on Viscosity-to-Entropy Ratio of the Dual Gauge Theory“. Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10549.
Der volle Inhalt der QuellePhysics
O'Regan, Brian C. „Dye sensitized n-p heterojunctions of titanium dioxide and copper thiocyanate, a new interface for photoinduced charge separation /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8601.
Der volle Inhalt der QuelleZeybek, Orhan. „Surface studies of magnetic thin films“. Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367247.
Der volle Inhalt der QuelleKhalal, Mehdi Abdelbaki. „Photoionisation multiple des vapeurs métalliques Multi-electron coincidence spectroscopy: Triple Auger decay of Ar 2p and 2s holes 4d -inner-shell ionization of Xe+ ions and subsequent Auger decay“. Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS552.
Der volle Inhalt der QuelleThe increasing availability of modern x-ray light sources with high tunability, high brightness and narrow photon-energy bandwidth has allowed a deep understanding of the physics behind light and matter interactions. During my PhD, I investigated experimentally different process of photoexcitation and photoionization of rare gas atoms (Argon and Xenon) and alkali metals (Potassium and Rubidium) by the means of synchrotron radiation. Our experimental setup is a 2m long magnetic bottle time-of-flight spectrometer that collect in coincidence almost all the electrons emitted in the 4π solid angle. We investigate the multiple Auger decay of the potassium 2p core holes which has an electronic configuration similar to Ar with an additional 4s valence electron. We show the spectator role of this electron in the decay mechanism and the enhancement of double and triple Auger rates comparing with the Argon 2p holes decay. We also investigated the multiple Auger decay of the rubidium 3d core holes. Finally, we investigated the core valence double photoionization of Xenon atom 4d-15p-1 which is compared with the direct ionization of Xe+ ions (MAIA experiment). We showed that the core valence double photoionization process will populate the same states that the ones populated by the photoionization of the ions. One should note that this process is very weak compared to the 4d inner shell ionization of Xe atom but thanks to the coincidence technique we are able to clearly separate and disentangle each ionization process. Our experiment confirmed the results of MAIA and allowed us to extract the Auger spectra associated with the decay of these Xe+ ions, when ionized in the 4d shell
Shao, Fangwei Dougherty Dennis A. „DNA-mediated hole and electron transport /“. Diss., Pasadena, Calif. : California Institute of Technology, 2008. http://resolver.caltech.edu/CaltechETD:etd-06282007-105808.
Der volle Inhalt der QuelleRoyo, Valls Miquel. „Theoretical modelling of electrons and holes in semiconductor nanostructures“. Doctoral thesis, Universitat Jaume I, 2010. http://hdl.handle.net/10803/669140.
Der volle Inhalt der QuelleBücher zum Thema "Electron holes"
Dobrovolʹskiĭ, V. N. Perenos ėlektronov i dyrok u poverkhnosti poluprovodnikov. Kiev: Nauk. dumka, 1985.
Den vollen Inhalt der Quelle findenGupta, Atam D. The electron-positron theory of the nucleus and the constructive role of black holes and of the neutrino and the antineutrino. [Georgia?]: A.D. Gupta, 1994.
Den vollen Inhalt der Quelle findenWim, Schoenmaker, Hrsg. Quantum transport in submicron devices: A theoretical introduction. Berlin: Springer, 2002.
Den vollen Inhalt der Quelle findenNorbury, John W. Symmetry considerations in the scattering of identical composite bodies. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Den vollen Inhalt der Quelle findenBetrayal of popular hopes: Report on the general election in Zanzibar, October 30, 2005. Zanzibar, Tanzania: Office of the Secretary General, Party Headquarters, Civic United Front, 2005.
Den vollen Inhalt der Quelle findenCasati, Roberto. Holes and other superficialities. Cambridge, Mass: MIT Press, 1994.
Den vollen Inhalt der Quelle findenIsihara, Akira. Electron liquids. New York: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenIsihara, Akira. Electron liquids. 2. Aufl. Berlin: Springer, 1998.
Den vollen Inhalt der Quelle findenIsihara, A. Electron liquids. London: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenIsihara, A. Electron liquids. 2. Aufl. New York: Springer, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Electron holes"
Ko, Y. K., und C. P. T. Groth. „On the Electron Temperature and Coronal Heating in the Fast Solar Wind Constrained by In-Situ Observations“. In Coronal Holes and Solar Wind Acceleration, 227–31. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9167-6_33.
Der volle Inhalt der QuelleCancio, Antonio C., C. Y. Fong und J. S. Nelson. „A Quantum Monte Carlo Study of the Exchange-Correlation Hole in Silicon Atom and System-Averaged Correlation Holes of Second Row Atoms“. In Electron Correlations and Materials Properties, 509–18. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4715-0_32.
Der volle Inhalt der QuelleDeschamps-Sonsino, Alexandra. „Everything Electric“. In Smarter Homes, 1–16. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3363-4_1.
Der volle Inhalt der QuelleIsihara, Akira. „Electron-Hole Liquids“. In Electron Liquids, 71–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80392-5_5.
Der volle Inhalt der QuelleIsihara, Akira. „Electron—Hole Liquids“. In Electron Liquids, 73–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-97303-1_5.
Der volle Inhalt der QuelleDugaev, Vitalii K., und Vladimir I. Litvinov. „Nonequilibrium Electrons and Holes“. In Modern Semiconductor Physics and Device Applications, 259–73. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429285929-13.
Der volle Inhalt der QuelleBechstedt, Friedhelm. „Electron-Hole Problem“. In Springer Series in Solid-State Sciences, 439–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44593-8_19.
Der volle Inhalt der QuelleOlafsen, Jeffrey. „Electrons and Holes in Semiconductors“. In Sturge’s Statistical and Thermal Physics, 227–43. Second edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781315156958-14.
Der volle Inhalt der Quellede Cogan, Donard. „Electrons and Holes in Semiconductors“. In Solid State Devices — A Quantum Physics Approach, 77–92. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4684-0621-4_5.
Der volle Inhalt der Quellede Cogan, Donard. „Electrons and Holes in Semiconductors“. In Solid State Devices, 77–92. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18658-7_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electron holes"
Siutsou, I. A., A. G. Aksenov und G. V. Vereshchagin. „On thermalization of electron-positron-photon plasma“. In THE SECOND ICRANET CÉSAR LATTES MEETING: Supernovae, Neutron Stars and Black Holes. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4937220.
Der volle Inhalt der QuelleRuzicka, Brian A., Lalani K. Werake, Hui Zhao, Matt Mover und G. Vignale. „Spin-Polarized Electron Transport in GaAs: Role of Holes“. In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.jwa117.
Der volle Inhalt der QuelleWang, Q. S., M. A. Thompson, W. Schultz und T. R. Lundquist. „Modeling Secondary Electron Emission from High Aspect Ratio Holes“. In ISTFA 2003. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.istfa2003p0343.
Der volle Inhalt der QuelleLatham, R. V. „The role of electron pin-holes in surface flashover“. In IEE Colloquium on Surface Phenomena Affecting Insulator Performance. IEE, 1998. http://dx.doi.org/10.1049/ic:19980217.
Der volle Inhalt der QuelleZASLAVSKII, O. B. „QUASI-BLACK HOLES AND LORENTZ-ABRAHAM ELECTRON IN GENERAL RELATIVITY“. In Proceedings of the Ninth Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814289931_0050.
Der volle Inhalt der QuelleGorbatsievich, Alexander K. „ON ONE-ELECTRON ATOM IN THE NEIGHBORHOOD OF BLACK HOLES“. In Collection of Works Dedicated to 65th Anniversary of the Department of Theoretical Physics of Belarusian State University. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702296_0005.
Der volle Inhalt der QuelleTazawa, Leon, Anderson, Abe, Saito, Yoshii und Scharfetter. „3-D topography simulation of via holes using generalized solid modeling“. In Proceedings of IEEE International Electron Devices Meeting. IEEE, 1992. http://dx.doi.org/10.1109/iedm.1992.307335.
Der volle Inhalt der QuelleKim, Jisoo, und Hyung Wook Park. „Deburring of the Holes on CFRP using the Electron Beam Irradiation“. In WCMNM 2018 World Congress on Micro and Nano Manufacturing. Singapore: Research Publishing Services, 2018. http://dx.doi.org/10.3850/978-981-11-2728-1_19.
Der volle Inhalt der Quellevan Putten, Maurice H. P. M. „Electron-positron outflow from black holes and the formation of winds“. In The first KIAS astrophysics workshop: Explosive phenomena in astrophysical compact objects. AIP, 2001. http://dx.doi.org/10.1063/1.1368259.
Der volle Inhalt der QuelleSanpei, Akio. „Characteristics and generation mechanism of holes in an extended electron vortex“. In NON-NEUTRAL PLASMA PHYSICS IV: Workshop on Non-Neutral Plasmas. AIP, 2002. http://dx.doi.org/10.1063/1.1454320.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Electron holes"
Richards, Robin. The Effect of Non-partisan Elections and Decentralisation on Local Government Performance. Institute of Development Studies (IDS), Januar 2021. http://dx.doi.org/10.19088/k4d.2021.014.
Der volle Inhalt der QuelleGossard, Arthur C., und Herbert Kroemer. Nanostructures for Enhanced Electron/Hole Conversion. Fort Belvoir, VA: Defense Technical Information Center, März 2009. http://dx.doi.org/10.21236/ada495101.
Der volle Inhalt der QuelleReiss, Howard. Chemical-Like Behavior of Electrons and Holes in Polymeric Conductors. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada214496.
Der volle Inhalt der QuelleYates, John T., und Jr. Do Electrons or Holes Activate Molecular O2 on TiO2 Surfaces? Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada391269.
Der volle Inhalt der QuelleNordquist, Christopher Daniel, Michael Joseph Cich, Gregory Allen Vawter, Mark Steven Derzon und Marino John Martinez. Novel detection methods for radiation-induced electron-hole pairs. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1008121.
Der volle Inhalt der QuelleChen, X. M., und J. J. Quinn. Spatially Separated Electron-Hole Layers in Strong Magnetic Fields. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada264818.
Der volle Inhalt der QuelleLyo, Sungkwun Kenneth, Roberto G. Dunn, Michael Patrick Lilly, D. R. Tibbetts-Russell, Larry L. Stephenson, John Andrew Seamons, John Louis Reno, Edward Salvador Bielejec, Wes Edmund Baca und Jerry Alvon Simmons. LDRD final report on engineered superconductivity in electron-hole bilayers. Office of Scientific and Technical Information (OSTI), Januar 2005. http://dx.doi.org/10.2172/921602.
Der volle Inhalt der QuelleDavis, James C. Atomic scale studies of doped-hole distributions, self-organized electronic nano-domains, and electron-boson coupling in high Tc-cuprates. Office of Scientific and Technical Information (OSTI), Mai 2014. http://dx.doi.org/10.2172/1131043.
Der volle Inhalt der QuelleNewton, M. D., und R. J. Cave. Molecular control of electron and hole transfer processes: Theory and applications. Office of Scientific and Technical Information (OSTI), Februar 1996. http://dx.doi.org/10.2172/188546.
Der volle Inhalt der QuelleBocian, David F. Fundamental studies of energy-and hole/electron- transfer in hydroporphyrin architectures. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1150022.
Der volle Inhalt der Quelle