Auswahl der wissenschaftlichen Literatur zum Thema „Electron holes“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electron holes" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Electron holes"

1

Schamel, Hans. „Electron holes, ion holes and double layers“. Physics Reports 140, Nr. 3 (Juli 1986): 161–91. http://dx.doi.org/10.1016/0370-1573(86)90043-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Eliasson, B., und P. K. Shukla. „The dynamics of electron and ion holes in a collisionless plasma“. Nonlinear Processes in Geophysics 12, Nr. 2 (11.02.2005): 269–89. http://dx.doi.org/10.5194/npg-12-269-2005.

Der volle Inhalt der Quelle
Annotation:
Abstract. We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with the negative ion hole potential. Since the scale-length of the ion holes are on a relatively small Debye scale, the trapped Langmuir waves are Landau damped. We also find that colliding ion holes accelerate electron streams by the negative ion hole potentials, and that these streams of electrons excite Langmuir waves due to a streaming instability. In our Vlasov simulation of two colliding ion holes, the holes survive the collision and after the collision, the electron distribution becomes flat-topped between the two ion holes due to the ion hole potentials which work as potential barriers for low-energy electrons. Our study of the dynamics between electron holes and the ion background reveals that standing electron holes can be accelerated by the self-created ion cavity owing to the positive electron hole potential. Vlasov simulations show that electron holes are repelled by ion density minima and attracted by ion density maxima. We also present an extension of Schamel's theory to relativistically hot plasmas, where the relativistic mass increase of the accelerated electrons have a dramatic effect on the electron hole, with an increase in the electron hole potential and in the width of the electron hole. A study of the interaction between electromagnetic waves with relativistic electron holes shows that electromagnetic waves can be both linearly and nonlinearly trapped in the electron hole, which widens further due to the relativistic mass increase and ponderomotive force in the oscillating electromagnetic field. The results of our simulations could be helpful to understand the nonlinear dynamics of electron and ion holes in space and laboratory plasmas.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jovanović, D., F. Califano und F. Pegoraro. „Magnetized electron-whistler holes“. Physics Letters A 303, Nr. 1 (Oktober 2002): 52–60. http://dx.doi.org/10.1016/s0375-9601(02)01202-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Luque, A., H. Schamel und R. Fedele. „Quantum corrected electron holes“. Physics Letters A 324, Nr. 2-3 (April 2004): 185–92. http://dx.doi.org/10.1016/j.physleta.2004.02.049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Muschietti, L., I. Roth, R. E. Ergun und C. W. Carlson. „Analysis and simulation of BGK electron holes“. Nonlinear Processes in Geophysics 6, Nr. 3/4 (31.12.1999): 211–19. http://dx.doi.org/10.5194/npg-6-211-1999.

Der volle Inhalt der Quelle
Annotation:
Abstract. Recent observations from satellites crossing regions of magnetic-field-aligned electron streams reveal solitary potential structures that move at speeds much greater than the ion acoustic/thermal velocity. The structures appear as positive potential pulses rapidly drifting along the magnetic field, and are electrostatic in their rest frame. We interpret them as BGK electron holes supported by a drifting population of trapped electrons. Using Laplace transforms, we analyse the behavior of one phase-space electron hole. The resulting potential shapes and electron distribution functions are self-consistent and compatible with the field and particle data associated with the observed pulses. In particular, the spatial width increases with increasing amplitude. The stability of the analytic solution is tested by means of a two-dimensional particle-in-cell simulation code with open boundaries. We consider a strongly magnetized parameter regime in which the bounce frequency of the trapped electrons is much less than their gyrofrequency. Our investigation includes the influence of the ions, which in the frame of the hole appear as an incident beam, and impinge on the BGK potential with considerable energy. The nonlinear structure is remarkably resilient
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Treumann, R. A., W. Baumjohann und R. Pottelette. „Electron-cylotron maser radiation from electron holes: downward current region“. Annales Geophysicae 30, Nr. 1 (13.01.2012): 119–30. http://dx.doi.org/10.5194/angeo-30-119-2012.

Der volle Inhalt der Quelle
Annotation:
Abstract. The electron-cyclotron maser emission theory from electron holes is applied to holes generated in the downward current region of the aurora. It is argued that the main background auroral kilometric radiation source may still be located in the upward current region electron-ring (horseshoe) distribution while the fine structure is caused by electron holes predominantly in the downward current region. There the existence of electron holes is well established and electron densities are high enough for substantial maser growth rates. Trapping of radiation by the holes provides strong amplification. Upward motion of holes favours the escape of radiation both, from the holes and from the downward current region, into the upward current region. Since upward and downward current regions always exist simultaneously, they are acting in tandem in generating auroral kilometric radiation and its fine structure by the same mechanism though in different ways. This mechanism solves the long-standing problem of auroral kilometric radiation fine structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Treumann, R. A., W. Baumjohann und R. Pottelette. „Electron-cylotron maser radiation from electron holes: upward current region“. Annales Geophysicae 29, Nr. 10 (25.10.2011): 1885–904. http://dx.doi.org/10.5194/angeo-29-1885-2011.

Der volle Inhalt der Quelle
Annotation:
Abstract. Electron holes are suggested to be an important source for generation of electron-cyclotron maser radiation. We demonstrate that electron holes generated in a ring-horseshoe distribution in the auroral-kilometric radiation source region have the capacity to emit band-limited radiation. The radiation is calculated in the proper frame of a circular model hole and shown to be strictly perpendicular in this frame. Its bandwidth under auroral conditions is of the order of ~1 kHz, which is a reasonable value. It is also shown that much of the drift of fine structure in the radiation can be interpreted as Doppler shift. Estimates based on data are in good agreement with theory. Growth and absorption rates have been obtained for the emitted radiation. However, the growth rate of a single hole obtained under conservative conditions is small, too small for reproducing the observed fine structure flux. Trapping of radiation inside the hole for the hole's lifetime helps amplifying the radiation additionally but introduces other problems. This entire set of questions is discussed at length and compared to radiation from the global horseshoe distribution. The interior of the hole produces a weak absorption at slightly higher frequency than emission. The absorptivity is roughly two orders of magnitude below the growth rate of the radiation thus being weak even when the emission and absorption bands overlap. Transforming to the stationary observer's frame it is found that the radiation becomes oblique against the magnetic field. For approaching holes the radiated frequencies may even exceed the local electron cyclotron frequency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

HIRSCH, J. E. „WHY HOLES ARE NOT LIKE ELECTRONS III: HOW HOLES IN THE NORMAL STATE TURN INTO ELECTRONS IN THE SUPERCONDUCTING STATE“. International Journal of Modern Physics B 23, Nr. 14 (10.06.2009): 3035–57. http://dx.doi.org/10.1142/s0217979209052765.

Der volle Inhalt der Quelle
Annotation:
In recent work, we discussed the difference between electrons and holes in energy band in solids from a many-particle point of view, originating in the electron–electron interaction,1 and from a single particle point of view, originating in the electron–ion interaction.2 We proposed that superconductivity in solids only occurs when the Fermi level is close to the top of a band (hole carriers), that it originates in "undressing" of carriers from both the electron–electron and the electron–ion interaction, and that as a consequence holes in the normal state behave like electrons in the superconducting state.3 However, the connection between both undressing effects was left unclear, as was left unclear how the transformation from hole behavior to electron behavior occurs. Here, we clarify these questions by showing that the same electron–electron interaction physics that promotes pairing of hole carriers and undressing of carriers from the electron–electron interaction leads to undressing of carriers from the electron–ion interaction and transforms the behavior of carriers from hole-like to electron-like. A complete reorganization of the occupation of single-particle energy levels occurs. Furthermore this phenomenon is connected with the expulsion of negative charge that we predict to occur in superconductors. These unexpected connections support the validity of our theoretical framework, the theory of hole superconductivity, to explain superconductivity in solids.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Steinvall, K., Yu V. Khotyaintsev, D. B. Graham, A. Vaivads, P. ‐A Lindqvist, C. T. Russell und J. L. Burch. „Multispacecraft Analysis of Electron Holes“. Geophysical Research Letters 46, Nr. 1 (11.01.2019): 55–63. http://dx.doi.org/10.1029/2018gl080757.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Piris, Mario, Xabier Lopez und Jesus M. Ugalde. „Electron-pair density relaxation holes“. Journal of Chemical Physics 128, Nr. 21 (07.06.2008): 214105. http://dx.doi.org/10.1063/1.2937456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Electron holes"

1

Ouahioune, Nedjma. „Čerenkov emission of whistler waves by electron holes“. Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446395.

Der volle Inhalt der Quelle
Annotation:
Electron holes are positively charged nonlinear structures in which trapped electrons are supported by a positive electrostatic potential. These structure are regularly observed in space and laboratory plasmas by means of diverging bipolar electric field signatures. Recent observations and simulations have shown that fast moving electron holes can generate electromagnetic whistler waves via Čerenkov emission. The fast moving positive charge correspond to localised currents which can potentially excite waves. The aim of the project is to study both theoretically and numerically the properties leading to the Čerenkov emission of whistler waves by three-dimensional electron holes. In addition, efforts are dedicated to the derivation of a model providing the properties of emitted whistlers. The model is compared with the observational features of electromagnetic whistler waves generated by electron holes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhou, Chuteng. „Computational and theoretical study of electron phase-space holes in kinetic plasma: kinematics, stability and ion coupling“. Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119039.

Der volle Inhalt der Quelle
Annotation:
Thesis: Ph. D. in Applied Plasma Physics, Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2018.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 181-191).
In this thesis, a comprehensive study of Bernstein-Greene-Kruskal (BGK) mode electron holes in a collisionless plasma where strong kinetic effects are important is presented. Kinematic theory based on momentum conservation is derived treating the electron hole as a composite object to study the dynamics of electron holes. A novel 1-D Particle-In-Cell simulation code that can self-consistently track the electron hole motion has been developed for the purpose of this thesis work. Quantitative agreement is achieved between analytic theory and simulation observations. The thesis reports a new kind of instability for electron holes. Slow electron holes traveling slower than a few times the cold ion sound speed in the ion frame are observed to be unstable to the oscillatory velocity instability. A complete theoretical treatment for the instability is presented in this thesis. Numerical simulations yield quantitative agreement with the analytic theory in instability thresholds, frequencies and partially in instability growth rates. It is further shown that an electron hole can form a stable Coupled Hole Soliton (CHS) pair with an ion-acoustic soliton. A stable CHS travels slightly faster than the ion-acoustic velocity in the ion frame and is separated from a typical BGK mode electron hole in the velocity range by a gap, which is set by the oscillatory velocity instability. Transition between the two states is possible in both directions. A CHS exhibits a soliton-like behavior. The thesis sheds light on solving the ambiguity between an electron hole and a soliton. This thesis work also has important implications for interpreting space probes observations.
by Chuteng Zhou.
Ph. D. in Applied Plasma Physics
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Reinsch, Andreas, und Andreas Reinsch. „Search for Colorful Quantum Black Holes Decaying to an Electron-Jet Final State with the ATLAS Experiment“. Thesis, University of Oregon, 2012. http://hdl.handle.net/1794/12370.

Der volle Inhalt der Quelle
Annotation:
A search for quantum black holes with color charge decaying to one electron and one quark has been performed using data collected by the ATLAS Experiment at the Large Hadron Collider corresponding to 2.29 fb−1. No excess over the expected Standard Model interactions has been observed. Limits are set on the production cross section for events with one electron and one jet resulting from new physical phenomena. Models with a combined invariant mass of the electron and jet larger than or equal to 2.5TeV and a cross section above 2.6 fb are excluded at the 95% confidence level. This allows the exclusion of a significant part of the parameter space of quantum black hole models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bause, Marlon Luis. „Plasma density characteristics of magnetic holes near the Kronian magnetosphere boundary surfaces“. Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414766.

Der volle Inhalt der Quelle
Annotation:
Localized structures of the magnetic field strength depression are often observed in the interplanetarymedium, and they are called ‘magnetic holes’ after the original work of Turner et al. 1977. A numberof observations of similar features have been reported, while the mechanisms of their origin have notfully understood yet. The scale size of their structures varies from several to a few thousand of the protongyro radii, and their characteristic orientations of the magnetic field also vary, and therefore differenttypes of the magnetic holes have been suggested. To date, the magnetic holes are classified into Mirrormode and magnetic decreases (Tsurutani et al. 2011). Despite a large number of papers that report theobservational characteristics of the magnetic holes, many identify the feature using only the magneticfield data. This is due to the scale size of the structure at a large speed of the solar wind medium, thespatial resolution of the plasma instruments is often insufficient while the magnetic field instrument canusually obtain the data in high enough time resolution.The Cassini spacecraft orbited Saturn for almost 17 years and obtained a large amount of data in/near theKronian magnetosphere, where the series of the magnetic depletions have been also observed (Smith et al.1980). The Langmuir Probe (LP) onboard Cassini measures the spacecraft potential and, in turn, measuresthe electron density in in-situ in the outer magnetosphere and solar wind region. This measurement hasbeen done using the LP sweep mode which samples the current-voltage curve of the probe every 10 minin the outer magnetosphere. The LP has also been operated in the continuous mode that measures theprobe current at a fixed bias potential every 16 s allowing to calculate the electron density in a smallerscale that is required for the studies magnetic holes. However, there is no general calibration so far inorder to conduct a statistical study in the outer magnetosphere region. The goal of this project is toinvestigate the possibility to use the LP data for the magnetic hole study, calibrate the LP continuousmode to derive the plasma density near the magnetospheric of Saturn, and investigate the scale size of theplasma density structure in the magnetic holes, i. e. plasma β, the field strength and density.The calibration of the continuous data was done by finding a relation between the current at 11 V, whichis a typical bias voltage of continuous mode, and the spacecraft potential obtained by the LP the sweepmode data. Is is expected that the current at 11V is linearly proportional to the floating potential andtherefore can be used to derive the electron density with the potential and density relationship presentedby Morooka et al. 2009. I found that the spacecraft attitude against the sun has a strong effect on therelation, and derived 11V current-floating potential relationship depending on the different spacecraftattitude.Using the LP continuous data calibration above, I investigated the electron density characteristics aroundthe magnetic hold structure, and confirmed that they are generally in anticorrelation relationship. I estim-ated also the plasma β assuming a constant temperature of 100 eV and investigated their characteristicsfor the different types of magnetic holes (linear and rotational holes) both in the magnetosheath and theholes in the solar wind for the year 2011. For the Cassini dataset during 2011, various different shapeand sizes of magnetic hole events have been found. Most (80%) of the MHs appeared within a groupedstructure, while the rest (20%) are found as isolated type holes in the magnetosheath. Among the isolatedMHs, about 30% had "Gaussian shape" and about 40% had a substructure. The scale size for the electrondensity for the isolated holes were on average 50 s in the solar wind, and 75 s (the rotational holes) and120 s (the linear holes) in the magnetosheath. Therefore, I confirmed that the LP can obtain enough datapoints to resolve the magnetic holes structure in the magnetosheath. The Cassini LP data resolution isalso capable to resolve some of the magnetic hole structure in the solar wind.In summary, I confirmed that the Cassini LP continuous data calibrated in this study is capable toinvestigate the different types of magnetic hole structures. Using this calibrated electron data statisticallyfor the large number of Cassini orbit would helpful to further identify the MHs structures in the solar wind and the magnetosheath that can be a key to understand the generation mechanisms of the magneticholes.
Lokaliserade strukturer med låg magnetfältstyrkan ses ofta i interplanetära mediet och de kallas ’mag-netiska hål’ (MH) (Turner et al. 1977). Trots et antal observationer av sådana strukturer har observeratsär deras generationsmekanism ännu förstådd. Storleken av strukturerna varierar från ett fåtal till någratusen protongyroradier och även deras kännetecknande inriktningar i magnetfältet varierar. På grund avdetta har olika typer av MH förslagits. Idag klassificerar man MH som ’mirror mode’ och magnetiskaminskningar (Tsurutani et al. 2011). Många studier har undersökt de magnetiska hålens egenskaper,men tyvärr oftast baserats endast på magnetfältsdata. Detta kan bero på strukturernas storlek vid en storsolvindshastighet, där plasmainstrumenten oftast inte har tillräckligt hög tidsupplösning för mätningar,medan magnetfältsinstrumenten kan oftast tillhandahålla data i hög tidsupplösning.Cassini-rymdfarkosten kretsade runt Saturnus i nästan 17 år och erhöll stora mängder data i och näraSaturnus magnetosfär. Langmuir-sonden (LP) ombord Cassini mäter rymdfarkostens potential ochdärmed mäter den elektrontätheten i rymden. Instrumentet fungerar som en slags väderstation för rym-dplasma och möjliggör mätningen av fundamentala plasmaparametrar såsom elektrontäthet, jontäthet,elektrontemperatur och jonmassa i en tät plasmaområdet av nära Saturnus. I den yttre magnetosfären därden plasmatätheten är låg, kan LP mäta rymdfarkosts potential och plasmatätheten. Mätningen, så kallade’sweep mode’ kan skaffades var 10:e minuter. LP:en mäter också i ’kontinuerlig mode’ som möjligenkan mäta plasmatätheten i mer frekventa men den behöver allmän kalibrering. I detta projekt undersökerjag möjligheten att använda LP kontinuerlig data för att studera MH, skapa kalibraring funktion för’kontinuerlig mode’ för att uppskatta plasmatätheten i Saturnus magnetosfär, och även att undersökastorleken och karaktär av plasmatäthetenstrukturen i MH.Jag undersökte först relationen mellan LP ström vid 11V och rymdfarkostens potential i sweep mode data.De härledda funktionerna användes vidare för att uppskatta densiteten med användning av relationenmellan rymdfarkostens potential och elektrontätheten (Morooka et al. 2009). Jag upptäckte också attden kontinuerlig mode funktionen är olika beroende på LP sensors läge i förhållande till solen ochrymdfarkosten. Hur Cassini är inriktad har en stor effekt på relationen och därför beskriva jag fyra olikarelationer för olika inriktningsregioner. Med den kontinuerlig mode funktionen jag härlett, undersöktejag struktur av magnetiska hålen som har listats av Tomas Karlsson på KTH. År 2011 innehåller MH medmycket olika former och storlekar. Den mest (80%) MH identifierades som grupp och resten (20%) varsom isolerade MH i magnetosheath. Av dessa isolerande hål har ca. 30% en Gauss-form och nästan 40%av MH verkar ha en understruktur. Genom att jämföra magfältdatan med elektrontätheten bekräftadejag den allmänna antikorrelationen mellan magnetfältstyrkan och elektrontätheten i MH-strukturerna.Dessutom hittar jag en ökning av elektron β som beräknas med en temperatur av 100 eV för linjära ochroterade MH i den magnetosheath samt MH i solvinden under 2011. Storleken av de isolerade magnetiskahålen är i genomsnitt 50 s i solvinden, 75 s (roterade magnetiska hål) och 120 s (linjära magnetiska hålen)i magnetosheath:en. Därför kan Cassini LP ha tillräcklig många datapoäng för att upplösa struktur avMH i magnetosheath. I solvinden kan LP upplösa en del av relativt stora MH.Sammanfattningsvis kan LP:s kontinuerlig kalibreringen från detta projekt användas för att analyserade olika strukturerna och storlekar av MH. Med denna kalibrerade plasmatäthet data är det möjligt attidentifiera olika MH karaktär i statistiskt för det stora antalet Cassini data. Det skulle vara en stor hjälpför att förstå genereringsmekanismerna av de magnetiska hålen.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Petrov, Pavel. „Effect of Curvature Squared Corrections to Gravitational Action on Viscosity-to-Entropy Ratio of the Dual Gauge Theory“. Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10549.

Der volle Inhalt der Quelle
Annotation:
In this thesis we study the properties of strongly-coupled large-N conformal field theories (CFT’s) using AdS/CFT correspondence. Chapter 1 serves as an introduction. In Chapter 2 we study the shear viscosity of strongly-coupled large-N conformal field theories. We find that it is affected by \(R^2\) corrections to the AdS action and present an example of 4D theory in which the the conjectured universal lower bound on viscosity-to-entropy ratio \(\eta/s > 1/4 \pi\) is violated by 1/N corrections. This fact proves that there is no universal lower bound of \(1/4 \pi\) on viscosity-to-entropy ratio and may be relevant for the studies of QCD quark-gluon plasma for which this ratio is experimentally found to be close to \(1/4 \pi\). In Chapter 3 we study the formation of the electron star in 4D AdS space. We show that in a gravity theory with charged fermions a layer of charged fermion fluid may form at a finite distance from the charged black hole. We show that these “electron stars” are candidate gravity duals for strongly interacting fermion systems at finite density and finite temperature. Entropy density for such systems scales as \(s \sim T^{2/z}\) at low temperatures as expected from IR criticality of electron stars solutions.
Physics
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

O'Regan, Brian C. „Dye sensitized n-p heterojunctions of titanium dioxide and copper thiocyanate, a new interface for photoinduced charge separation /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zeybek, Orhan. „Surface studies of magnetic thin films“. Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367247.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Khalal, Mehdi Abdelbaki. „Photoionisation multiple des vapeurs métalliques Multi-electron coincidence spectroscopy: Triple Auger decay of Ar 2p and 2s holes 4d -inner-shell ionization of Xe+ ions and subsequent Auger decay“. Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS552.

Der volle Inhalt der Quelle
Annotation:
Ce travail de thèse porte sur l’étude expérimentale des processus de photoionisation multiple de vapeurs alcalines par rayonnement synchrotron. Je me suis intéressé particulièrement à la désexcitation par déclin Auger des atomes ionisés en couche interne. Le dispositif expérimental HERMES mis au point par l’équipe est un spectromètre par temps de vol de type bouteille magnétique qui permet de détecter en coïncidence tous les électrons émis lors du processus d’ionisation (photoélectrons) et de relaxation (électrons Auger). Une partie importante de ma thèse a été consacrée à l’améliorer pour permettre également la détection en coïncidence des ions formés. J’ai reconstitué les différentes voies de désexcitation par simple, double et triple Auger qui suivent l’ionisation en couche 2p du potassium (de configuration électronique [Ar] 4s). Les proportions des ions finaux Kn+ (n=2,3 et 4) sont établies et comparées avec les proportions des ions formés par la désexcitation du trou en couche 2p dans l’argon. Cela permet de mettre en évidence le rôle de l’électron 4s lors du processus de désexcitation (spectateur lors de la première étape puis participateur lors de la seconde étape du déclin). Le déclin Auger qui suit l’ionisation et l’excitation de l’électron en couche 3d dans le rubidium est présenté ensuite. Dans la dernière partie de la thèse je présente la double ionisation 4d-15p-1 dans le Xénon que l’on compare à la photoionisation d’un faisceau d’ion Xe+ (expérience MAIA). Le but étant de montrer que ce processus de double ionisation cœur valence permet de simuler le processus d’ionisation en couche interne 4d des ions atomiques Xe+ et le déclin Auger qui s’en suit
The increasing availability of modern x-ray light sources with high tunability, high brightness and narrow photon-energy bandwidth has allowed a deep understanding of the physics behind light and matter interactions. During my PhD, I investigated experimentally different process of photoexcitation and photoionization of rare gas atoms (Argon and Xenon) and alkali metals (Potassium and Rubidium) by the means of synchrotron radiation. Our experimental setup is a 2m long magnetic bottle time-of-flight spectrometer that collect in coincidence almost all the electrons emitted in the 4π solid angle. We investigate the multiple Auger decay of the potassium 2p core holes which has an electronic configuration similar to Ar with an additional 4s valence electron. We show the spectator role of this electron in the decay mechanism and the enhancement of double and triple Auger rates comparing with the Argon 2p holes decay. We also investigated the multiple Auger decay of the rubidium 3d core holes. Finally, we investigated the core valence double photoionization of Xenon atom 4d-15p-1 which is compared with the direct ionization of Xe+ ions (MAIA experiment). We showed that the core valence double photoionization process will populate the same states that the ones populated by the photoionization of the ions. One should note that this process is very weak compared to the 4d inner shell ionization of Xe atom but thanks to the coincidence technique we are able to clearly separate and disentangle each ionization process. Our experiment confirmed the results of MAIA and allowed us to extract the Auger spectra associated with the decay of these Xe+ ions, when ionized in the 4d shell
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shao, Fangwei Dougherty Dennis A. „DNA-mediated hole and electron transport /“. Diss., Pasadena, Calif. : California Institute of Technology, 2008. http://resolver.caltech.edu/CaltechETD:etd-06282007-105808.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Royo, Valls Miquel. „Theoretical modelling of electrons and holes in semiconductor nanostructures“. Doctoral thesis, Universitat Jaume I, 2010. http://hdl.handle.net/10803/669140.

Der volle Inhalt der Quelle
Annotation:
En esta tesis se utiliza la aproximación de masa efectiva y función envolvente para estudiar teóricamente las propiedades optoelectrónicas de una gran variedad de nanoestructuras semiconductoras, muchas de las cuales son obtenibles en un laboratorio a día de hoy. El primer capítulo de la tesis se centra en el estudio de los efectos derivados de aplicar campos magnéticos externos sobre varias nanoestructuras formadas por anillos cuánticos: dos anillos acoplados lateralmente y verticalmente, y una red periódica bidimensional de anillos. El segundo capítulo constituye la parte más extensa e importante de la tesis y estudia la influencia del entorno dieléctrico sobre las propiedades optoelectrónicas de nanocristales sintetizados mediante técnicas de química coloidal con forma esférica y alargada. Mediante cálculos multipartícula basados en las metodologías DFT y CI, se estudia el efecto del confinamiento dieléctrico sobre nanocristales poblados con un alto número de electrones o con pares electrón hueco. Finalmente, el último capítulo de la tesis se centra en el estudio de los estados multipartícula y las transiciones de fase a lo largo de un proceso en el que un nanocristal esférico es alargado hasta formar una estructura casi unidimensional.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Electron holes"

1

Dobrovolʹskiĭ, V. N. Perenos ėlektronov i dyrok u poverkhnosti poluprovodnikov. Kiev: Nauk. dumka, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gupta, Atam D. The electron-positron theory of the nucleus and the constructive role of black holes and of the neutrino and the antineutrino. [Georgia?]: A.D. Gupta, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wim, Schoenmaker, Hrsg. Quantum transport in submicron devices: A theoretical introduction. Berlin: Springer, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Norbury, John W. Symmetry considerations in the scattering of identical composite bodies. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Betrayal of popular hopes: Report on the general election in Zanzibar, October 30, 2005. Zanzibar, Tanzania: Office of the Secretary General, Party Headquarters, Civic United Front, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Casati, Roberto. Holes and other superficialities. Cambridge, Mass: MIT Press, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Isihara, Akira. Electron liquids. New York: Springer-Verlag, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Isihara, Akira. Electron liquids. 2. Aufl. Berlin: Springer, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Isihara, A. Electron liquids. London: Springer-Verlag, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Isihara, A. Electron liquids. 2. Aufl. New York: Springer, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Electron holes"

1

Ko, Y. K., und C. P. T. Groth. „On the Electron Temperature and Coronal Heating in the Fast Solar Wind Constrained by In-Situ Observations“. In Coronal Holes and Solar Wind Acceleration, 227–31. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9167-6_33.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cancio, Antonio C., C. Y. Fong und J. S. Nelson. „A Quantum Monte Carlo Study of the Exchange-Correlation Hole in Silicon Atom and System-Averaged Correlation Holes of Second Row Atoms“. In Electron Correlations and Materials Properties, 509–18. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4715-0_32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Deschamps-Sonsino, Alexandra. „Everything Electric“. In Smarter Homes, 1–16. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3363-4_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Isihara, Akira. „Electron-Hole Liquids“. In Electron Liquids, 71–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80392-5_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Isihara, Akira. „Electron—Hole Liquids“. In Electron Liquids, 73–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-97303-1_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dugaev, Vitalii K., und Vladimir I. Litvinov. „Nonequilibrium Electrons and Holes“. In Modern Semiconductor Physics and Device Applications, 259–73. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429285929-13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bechstedt, Friedhelm. „Electron-Hole Problem“. In Springer Series in Solid-State Sciences, 439–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44593-8_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Olafsen, Jeffrey. „Electrons and Holes in Semiconductors“. In Sturge’s Statistical and Thermal Physics, 227–43. Second edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781315156958-14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

de Cogan, Donard. „Electrons and Holes in Semiconductors“. In Solid State Devices — A Quantum Physics Approach, 77–92. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4684-0621-4_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

de Cogan, Donard. „Electrons and Holes in Semiconductors“. In Solid State Devices, 77–92. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18658-7_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Electron holes"

1

Siutsou, I. A., A. G. Aksenov und G. V. Vereshchagin. „On thermalization of electron-positron-photon plasma“. In THE SECOND ICRANET CÉSAR LATTES MEETING: Supernovae, Neutron Stars and Black Holes. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4937220.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ruzicka, Brian A., Lalani K. Werake, Hui Zhao, Matt Mover und G. Vignale. „Spin-Polarized Electron Transport in GaAs: Role of Holes“. In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.jwa117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Q. S., M. A. Thompson, W. Schultz und T. R. Lundquist. „Modeling Secondary Electron Emission from High Aspect Ratio Holes“. In ISTFA 2003. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.istfa2003p0343.

Der volle Inhalt der Quelle
Annotation:
Abstract The success of circuit editing depends not only on x-y navigation to precise coordinates on the integrated circuits (IC), but also on precise z navigation. Certainly, secondary electron (SE) emission has proven to be the most accurate monitoring technique to accomplish this z precision. Even so, it has been amazing that SE monitoring works in high aspect ratio holes—reports have been made of high aspect ratio holes near 30:1. To explain why this occurs, therefore, is of interest and, by understanding how it works, we may improve the technique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Latham, R. V. „The role of electron pin-holes in surface flashover“. In IEE Colloquium on Surface Phenomena Affecting Insulator Performance. IEE, 1998. http://dx.doi.org/10.1049/ic:19980217.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

ZASLAVSKII, O. B. „QUASI-BLACK HOLES AND LORENTZ-ABRAHAM ELECTRON IN GENERAL RELATIVITY“. In Proceedings of the Ninth Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814289931_0050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gorbatsievich, Alexander K. „ON ONE-ELECTRON ATOM IN THE NEIGHBORHOOD OF BLACK HOLES“. In Collection of Works Dedicated to 65th Anniversary of the Department of Theoretical Physics of Belarusian State University. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702296_0005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tazawa, Leon, Anderson, Abe, Saito, Yoshii und Scharfetter. „3-D topography simulation of via holes using generalized solid modeling“. In Proceedings of IEEE International Electron Devices Meeting. IEEE, 1992. http://dx.doi.org/10.1109/iedm.1992.307335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kim, Jisoo, und Hyung Wook Park. „Deburring of the Holes on CFRP using the Electron Beam Irradiation“. In WCMNM 2018 World Congress on Micro and Nano Manufacturing. Singapore: Research Publishing Services, 2018. http://dx.doi.org/10.3850/978-981-11-2728-1_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

van Putten, Maurice H. P. M. „Electron-positron outflow from black holes and the formation of winds“. In The first KIAS astrophysics workshop: Explosive phenomena in astrophysical compact objects. AIP, 2001. http://dx.doi.org/10.1063/1.1368259.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sanpei, Akio. „Characteristics and generation mechanism of holes in an extended electron vortex“. In NON-NEUTRAL PLASMA PHYSICS IV: Workshop on Non-Neutral Plasmas. AIP, 2002. http://dx.doi.org/10.1063/1.1454320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Electron holes"

1

Richards, Robin. The Effect of Non-partisan Elections and Decentralisation on Local Government Performance. Institute of Development Studies (IDS), Januar 2021. http://dx.doi.org/10.19088/k4d.2021.014.

Der volle Inhalt der Quelle
Annotation:
This rapid review focusses on whether there is international evidence on the role of non-partisan elections as a form of decentralised local government that improves performance of local government. The review provides examples of this from Sub-Saharan Africa and South Asia. There are two reported examples in Sub-Saharan Africa of non-partisan elections that delink candidates from political parties during election campaigns. The use of non-partisan elections to improve performance and democratic accountability at the level of government is not common, for example, in southern Africa all local elections at the sub-national sphere follow the partisan model. Whilst there were no examples found where countries shifted from partisan to non-partisan elections at the local government level, the literature notes that decentralisation policies have the effect of democratising and transferring power and therefore few central governments implement it fully. In Africa decentralisation is favoured because it is often used as a cover for central control. Many post-colonial leaders in Africa continue to favour centralised government under the guise of decentralisation. These preferences emanated from their experiences under colonisation where power was maintained by colonial administrations through institutions such as traditional leadership. A review of the literature on non-partisan elections at the local government level came across three examples where this occurred. These countries were: Ghana, Uganda and Bangladesh. Although South Africa holds partisan elections at the sub-national sphere, the election of ward committee members and ward councillors, is on a non-partisan basis and therefore, the ward committee system in South Africa is included as an example of a non-partisan election process in the review.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gossard, Arthur C., und Herbert Kroemer. Nanostructures for Enhanced Electron/Hole Conversion. Fort Belvoir, VA: Defense Technical Information Center, März 2009. http://dx.doi.org/10.21236/ada495101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Reiss, Howard. Chemical-Like Behavior of Electrons and Holes in Polymeric Conductors. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada214496.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yates, John T., und Jr. Do Electrons or Holes Activate Molecular O2 on TiO2 Surfaces? Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada391269.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nordquist, Christopher Daniel, Michael Joseph Cich, Gregory Allen Vawter, Mark Steven Derzon und Marino John Martinez. Novel detection methods for radiation-induced electron-hole pairs. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1008121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chen, X. M., und J. J. Quinn. Spatially Separated Electron-Hole Layers in Strong Magnetic Fields. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada264818.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lyo, Sungkwun Kenneth, Roberto G. Dunn, Michael Patrick Lilly, D. R. Tibbetts-Russell, Larry L. Stephenson, John Andrew Seamons, John Louis Reno, Edward Salvador Bielejec, Wes Edmund Baca und Jerry Alvon Simmons. LDRD final report on engineered superconductivity in electron-hole bilayers. Office of Scientific and Technical Information (OSTI), Januar 2005. http://dx.doi.org/10.2172/921602.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Davis, James C. Atomic scale studies of doped-hole distributions, self-organized electronic nano-domains, and electron-boson coupling in high Tc-cuprates. Office of Scientific and Technical Information (OSTI), Mai 2014. http://dx.doi.org/10.2172/1131043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Newton, M. D., und R. J. Cave. Molecular control of electron and hole transfer processes: Theory and applications. Office of Scientific and Technical Information (OSTI), Februar 1996. http://dx.doi.org/10.2172/188546.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bocian, David F. Fundamental studies of energy-and hole/electron- transfer in hydroporphyrin architectures. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1150022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie