Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Electron donor-acceptor complexes.

Zeitschriftenartikel zum Thema „Electron donor-acceptor complexes“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Electron donor-acceptor complexes" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Rubtsov, I. V., und K. Yoshihara. „Vibrational Coherence in Electron Donor−Acceptor Complexes“. Journal of Physical Chemistry A 103, Nr. 49 (Dezember 1999): 10202–12. http://dx.doi.org/10.1021/jp991998r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Postigo, Al. „Electron Donor-Acceptor Complexes in Perfluoroalkylation Reactions“. European Journal of Organic Chemistry 2018, Nr. 46 (25.09.2018): 6391–404. http://dx.doi.org/10.1002/ejoc.201801079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hurst, DT, UB Thakrar, CHJ Wells und J. Wyer. „An N.M.R. Study of Electron Donor-Electron Acceptor Interaction Between Aromatic Hydrocarbons and Diazines“. Australian Journal of Chemistry 42, Nr. 8 (1989): 1313. http://dx.doi.org/10.1071/ch9891313.

Der volle Inhalt der Quelle
Annotation:
Equilibrium constants have been measured by n.m.r , spectroscopy for the electron donor- electron acceptor interaction between a number of aromatic hydrocarbons and diazines . The values obtained have shown that the interaction is weak, and that the aromatic hydrocarbon acts as the electron donor and the diazine as the electron acceptor in the systems studied. Chemical-shift data have provided evidence for the relative positioning of the donor and acceptor components within the various complexes. The effect of temperature on the equilibrium constant for complex formation between (1H6)benzene and pyrazine has shown that the enthalpy of formation is close to zero.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhong, Cheng, Jinwei Zhou und Charles L. Braun. „Electron-transfer absorption of sterically bulky donor–acceptor pairs: electron donor–acceptor complexes or random pairs?“ Journal of Photochemistry and Photobiology A: Chemistry 161, Nr. 1 (November 2003): 1–9. http://dx.doi.org/10.1016/s1010-6030(03)00233-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dobrowolski, Jan Cz, und Michał H. Jamróz. „Infrared evidence for CO2 electron donor—acceptor complexes“. Journal of Molecular Structure 275 (Dezember 1992): 211–19. http://dx.doi.org/10.1016/0022-2860(92)80196-o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schreiber, Michael, Barbara Kirchner und Christofer Fuchs. „Dynamics of electron transfer in donor-acceptor complexes“. Journal of Luminescence 66-67 (Dezember 1995): 506–10. http://dx.doi.org/10.1016/0022-2313(95)00199-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yang, Zhonglie, Yutong Liu, Kun Cao, Xiaobin Zhang, Hezhong Jiang und Jiahong Li. „Synthetic reactions driven by electron-donor–acceptor (EDA) complexes“. Beilstein Journal of Organic Chemistry 17 (06.04.2021): 771–99. http://dx.doi.org/10.3762/bjoc.17.67.

Der volle Inhalt der Quelle
Annotation:
The reversible, weak ground-state aggregate formed by dipole–dipole interactions between an electron donor and an electron acceptor is referred to as an electron-donor–acceptor (EDA) complex. Generally, upon light irradiation, the EDA complex turns into the excited state, causing an electron transfer to give radicals and to initiate subsequent reactions. Besides light as an external energy source, reactions involving the participation of EDA complexes are mild, obviating transition metal catalysts or photosensitizers in the majority of cases and are in line with the theme of green chemistry. This review discusses the synthetic reactions concerned with EDA complexes as well as the mechanisms that have been shown over the past five years.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Singh, Joaquín O., Jorge D. Anunziata und Juana J. Silber. „n–π Electron donor–acceptor complexes. II. Aliphatic amines with dinitrobenzenes“. Canadian Journal of Chemistry 63, Nr. 4 (01.04.1985): 903–7. http://dx.doi.org/10.1139/v85-150.

Der volle Inhalt der Quelle
Annotation:
The interaction of several aliphatic amines as n-donors and dinitrobenzenes (DNB) as π-acceptors has been studied in n-hexane. The formation of electron donor – acceptor (EDA) complexes is proposed to explain the spectroscopic behaviour of the mixtures. The stability constants (Ks) for these complexes have been calculated by an iterative procedure. For a given acceptor, the donor strength of RNH2 > R2NH > R3N was found. This order is explained by considering the role that steric effect may play in the EDA complex formation. On the other hand, the fact that for a given donor Ks follows the order 1,2-DNB > 1,3-DNB > 1,4-DNB, and that 1,2-DNB reacts with primary amines, led to the proposal of orientational complexes. These EDA complexes may be considered intermediates in aromatic nucleophilic substitution reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Konarev, D. V., G. Zerza, M. Scharber, N. S. Sariciftci und R. N. Lyubovskaya. „Photoinduced electron transfer in solid C60 donor/acceptor complexes“. Synthetic Metals 121, Nr. 1-3 (März 2001): 1127–28. http://dx.doi.org/10.1016/s0379-6779(00)00972-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sheka, Elena F. „Intermolecular interaction in C60-based electron donor-acceptor complexes“. International Journal of Quantum Chemistry 100, Nr. 4 (2004): 388–406. http://dx.doi.org/10.1002/qua.20063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Opitz, Andreas, Giuliano Duva, Marius Gebhardt, Hongwon Kim, Eduard Meister, Tino Meisel, Paul Beyer et al. „Thin films of electron donor–acceptor complexes: characterisation of mixed-crystalline phases and implications for electrical doping“. Materials Advances 3, Nr. 2 (2022): 1017–34. http://dx.doi.org/10.1039/d1ma00578b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Zhu, Chen, Serik Zhumagazy, Huifeng Yue und Magnus Rueping. „Metal-free C–Se cross-coupling enabled by photoinduced inter-molecular charge transfer“. Chemical Communications 58, Nr. 1 (2022): 96–99. http://dx.doi.org/10.1039/d1cc06152f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Tian, Tian, Tingjuan Qian, Tingting Jiang, Yakui Deng, Xiaopei Li, Wei Yuan, Yulan Chen, Yi-Xuan Wang und Wenping Hu. „A donor–acceptor type macrocycle: toward photolyzable self-assembly“. Chemical Communications 56, Nr. 28 (2020): 3939–42. http://dx.doi.org/10.1039/d0cc01350a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Zon, M. A., H. Fernandez, L. Sereno und J. J. Silber. „The kinetics of formation of electron donor–acceptor complexes. A temperature-jump study“. Canadian Journal of Chemistry 68, Nr. 2 (01.02.1990): 278–81. http://dx.doi.org/10.1139/v90-038.

Der volle Inhalt der Quelle
Annotation:
The kinetics of the Electron Donor–Acceptor (EDA) complex between N,N,N′,N′-tetramethyl-p-phenylenediamine and m-dinitrobenzene in acetonitrile has been studied by the temperature-jump technique. The magnitude of the rate constants of association and dissociation, although relatively large, is well below the diffusion control values. The calculated rates closely coincide with those obtained by chronoamperometry. An entropy control is suggested for this reaction. The results obtained in this work are useful to demonstrate that the concept about EDA complexes being formed by diffusion-controlled reactions should not be generalized. Keywords: electron donor–acceptor complexes, m-dinitrobenzene, N,N,N′,N′-tetramethyl-p-phenylenediamine, T-jump, kinetics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Li, Zebiao, Shan Wang, Yumei Huo, Bing Wang, Jun Yan und Quanping Guo. „Visible light-driven fluoroalkylthiocyanation of alkenes via electron donor–acceptor complexes“. Organic Chemistry Frontiers 8, Nr. 12 (2021): 3076–81. http://dx.doi.org/10.1039/d1qo00126d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Mohammed, Haider Shanshool, und Nuha Hussain Al-Saadawy. „Synthesis, Characterization, and Theoretical Study of Novel Charge-Transfer Complexes Derived from 3,4-Selenadiazobenzophenone“. Indonesian Journal of Chemistry 22, Nr. 6 (04.12.2022): 1663. http://dx.doi.org/10.22146/ijc.76537.

Der volle Inhalt der Quelle
Annotation:
In the current study, a direct method was used to synthesize a new series of charge-transfer complex compounds. Reaction of different quinones with 3,4-selenadiazo benzophenone in a 1:1 mole ratio by acetonitrile gave a unique charge-transfer complex compound in a good yield. All compounds were characterized by UV-Vis, FTIR, 1H-NMR, and 13C-NMR. The analysis findings agreed with the produced compound’s proposed chemical structures. The molecular structure of the produced charge-transfer complex compounds has been investigated using density functional theory. The basis set of 3–21G geometrical designs throughout the geometry optimization, HOMO surfaces, LUMO surfaces, and energy gap has been created. The acceptor and donor have also been studied by comparing the HOMO energies of the charge-transfer complexes. The lower case, electron affinity, ionization potential, electronegativity, and electrophilicity where the total energies of donor-acceptor system and geometric structures demonstrate this structure’s stability. Additionally, the donor-acceptor system has higher reactivity than other systems and larger average polarizability when compared to the donor and acceptor. The findings of this study enable us to choose the kind of bridge that will interact with the donor and acceptor to determine the physical characteristics of the donor-bridge-acceptor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Suga, Takuya. „Organic Transformations Utilizing Photo-Induced Electron Transfer of Electron-Donor-Acceptor Complexes“. Journal of Synthetic Organic Chemistry, Japan 77, Nr. 4 (01.04.2019): 367–68. http://dx.doi.org/10.5059/yukigoseikyokaishi.77.367.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zheng, Lvyin, Liuhuan Cai, Kailiang Tao, Zhen Xie, Yin‐Long Lai und Wei Guo. „Progress in Photoinduced Radical Reactions using Electron Donor‐Acceptor Complexes“. Asian Journal of Organic Chemistry 10, Nr. 4 (10.03.2021): 711–48. http://dx.doi.org/10.1002/ajoc.202100009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Eremina, Olga E., Mariia V. Samodelova, Mariia V. Ferree, Tatyana N. Shekhovtsova und Irina A. Veselova. „Capturing polycyclic aromatic sulfur heterocycles in electron donor–acceptor complexes“. Mendeleev Communications 31, Nr. 3 (Mai 2021): 326–29. http://dx.doi.org/10.1016/j.mencom.2021.04.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Eremina, Olga E., Mariia V. Samodelova, Mariia V. Ferree, Tatyana N. Shekhovtsova und Irina A. Veselova. „Capturing polycyclic aromatic sulfur heterocycles in electron donor–acceptor complexes“. Mendeleev Communications 31, Nr. 3 (Mai 2021): 326–29. http://dx.doi.org/10.1016/j.mencom.2021.05.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Takahashi, Yasutake, Hitoshi Ohaku, Naoki Nishioka, Hiroshi Ikeda, Tsutomu Miyashi, David A. Gormin und Edwin F. Hilinski. „Charge–transfer excitation of electron donor–acceptor complexes of arylcyclopropanes“. Journal of the Chemical Society, Perkin Transactions 2, Nr. 2 (1997): 303–8. http://dx.doi.org/10.1039/a604565k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Seshadri, Ram, Francis D’Souza, Varadachari Krishnan und C. N. R. Rao. „Electron Donor-Acceptor Complexes of the Fullerenes C60and C70with Amines“. Chemistry Letters 22, Nr. 2 (Februar 1993): 217–20. http://dx.doi.org/10.1246/cl.1993.217.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Liu, Jia-Li, Ze-Fan Zhu und Feng Liu. „Cyanofluorination of vinyl ethers enabled by electron donor–acceptor complexes“. Organic Chemistry Frontiers 6, Nr. 2 (2019): 241–44. http://dx.doi.org/10.1039/c8qo01143e.

Der volle Inhalt der Quelle
Annotation:
The reaction is operationally simple and conducted under ambient conditions, allowing the access to highly functionalized α-alkoxy-β-fluoronitriles bearing quaternary carbons that are difficult to access by existing methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Notoya, Reiko. „Electron Donor-Acceptor Aspect of Superconductivity in Metal-C60 Complexes“. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 285, Nr. 1 (01.07.1996): 193–98. http://dx.doi.org/10.1080/10587259608030800.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Merriam, M. J., R. Rodriguez und Jeanne L. McHale. „Charge-transfer transitions of 2:1 electron donor-acceptor complexes“. Journal of Physical Chemistry 91, Nr. 5 (Februar 1987): 1058–63. http://dx.doi.org/10.1021/j100289a011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Roeggen, I., und T. Dahl. „Analysis of electron donor-acceptor complexes: H3N.cntdot.F2, H3N.cntdot.Cl2, and H3N.cntdot.ClF“. Journal of the American Chemical Society 114, Nr. 2 (Januar 1992): 511–16. http://dx.doi.org/10.1021/ja00028a017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Endicott, John F., Xiaoqing Song, Murielle A. Watzky und Tione Buranda. „Photoinduced electron transfer in linked transition metal donor—acceptor complexes“. Journal of Photochemistry and Photobiology A: Chemistry 82, Nr. 1-3 (August 1994): 181–90. http://dx.doi.org/10.1016/1010-6030(94)02002-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Røeggen, Inge. „An analysis of electron donor-acceptor complexes: BH3CO and BH3NH3“. Chemical Physics 162, Nr. 2-3 (Mai 1992): 271–84. http://dx.doi.org/10.1016/0301-0104(92)85005-f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zhu, Da-Liang, Shan Jiang, David James Young, Qi Wu, Hai-Yan Li und Hong-Xi Li. „Visible-light-driven C(sp2)–H arylation of phenols with arylbromides enabled by electron donor–acceptor excitation“. Chemical Communications 58, Nr. 22 (2022): 3637–40. http://dx.doi.org/10.1039/d1cc07127k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Russegger, Andreas, Lisa Eiber, Andreas Steinegger und Sergey M. Borisov. „Zinc Donor–Acceptor Schiff Base Complexes as Thermally Activated Delayed Fluorescence Emitters“. Chemosensors 10, Nr. 3 (26.02.2022): 91. http://dx.doi.org/10.3390/chemosensors10030091.

Der volle Inhalt der Quelle
Annotation:
Four new zinc(II) Schiff base complexes with carbazole electron donor units and either a 2,3-pyrazinedicarbonitrile or a phthalonitrile acceptor unit were synthesized. The donor units are equipped with two bulky 2-ethylhexyl alkyl chains to increase the solubility of the complexes in organic solvents. Furthermore, the effect of an additional phenyl linker between donor and acceptor unit on the photophysical properties was investigated. Apart from prompt fluorescence, the Schiff base complexes show thermally activated delayed fluorescence (TADF) with quantum yields up to 47%. The dyes bearing a phthalonitrile acceptor emit in the green–yellow part of the electromagnetic spectrum and those with the stronger 2,3-pyrazinedicarbonitrile acceptor—in the orange–red part of the spectrum. The emission quantum yields decrease upon substitution of phthalonitrile with 2,3-pyrazinedicarbonitrile and upon introduction of the phenyl spacer. The TADF decay times vary between 130 µs and 3.5 ms at ambient temperature. The weaker phthalonitrile acceptor and the additional phenyl linker favor longer TADF decay times. All the complexes show highly temperature-dependent TADF decay time (temperature coefficients above −3%/K at ambient conditions) which makes them potentially suitable for application as molecular thermometers. Immobilized into cell-penetrating RL-100 nanoparticles, the best representative shows temperature coefficients of −5.4%/K at 25 °C that makes the material interesting for further application in intracellular imaging.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Ciarrocchi, Carlo, Guido Colucci, Massimo Boiocchi, Donatella Sacchi, Maduka L. Weththimuni, Alessio Orbelli Biroli und Maurizio Licchelli. „Interligand Charge-Transfer Processes in Zinc Complexes“. Chemistry 4, Nr. 3 (21.07.2022): 717–34. http://dx.doi.org/10.3390/chemistry4030051.

Der volle Inhalt der Quelle
Annotation:
Electron donor–acceptor (EDA) complexes are characterized by charge-transfer (CT) processes between electron-rich and electron-poor counterparts, typically resulting in a new absorption band at a higher wavelength. In this paper, we report a series of novel 2,6-di(imino)pyridine ligands with different electron-rich aromatic substituents and their 1:2 (metal/ligand) complexes with zinc(II) in which the formation of a CT species is promoted by the metal ion coordination. The absorption properties of these complexes were studied, showing the presence of a CT absorption band only in the case of aromatic substituents with donor groups. The nature of EDA interaction was confirmed by crystallographic studies, which disclose the electron-poor and electron-rich moieties involved in the CT process. These moieties mutually belong to both the ligands and are forced into a favorable spatial arrangement by the coordinative preferences of the metal ion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Shi, Ya-Rui, und Yu-Fang Liu. „Theoretical study on the charge transport and metallic conducting properties in organic complexes“. Physical Chemistry Chemical Physics 21, Nr. 24 (2019): 13304–18. http://dx.doi.org/10.1039/c9cp02170a.

Der volle Inhalt der Quelle
Annotation:
The charge transfer process between substrate molecular and dopant always appears in doped organic semiconductors, so that molecular doping is a common method to improve the electrical properties by combining appropriate complexes of electron acceptor and donor molecules.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Feskov, Sergey. „Numerical Simulation of Coherent Optical Transitions in Electron-Donor-Acceptor Complexes“. Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 1. Mathematica. Physica, Nr. 3 (September 2016): 84–91. http://dx.doi.org/10.15688/jvolsu1.2016.3.8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Dahl, T., und I. Røeggen. „An Analysis of Electron Donor−Acceptor Complexes: H2O·F2, H2O·Cl2, and H2O·ClF“. Journal of the American Chemical Society 118, Nr. 17 (Januar 1996): 4152–58. http://dx.doi.org/10.1021/ja9537890.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Crisenza, Giacomo E. M., Daniele Mazzarella und Paolo Melchiorre. „Synthetic Methods Driven by the Photoactivity of Electron Donor–Acceptor Complexes“. Journal of the American Chemical Society 142, Nr. 12 (05.03.2020): 5461–76. http://dx.doi.org/10.1021/jacs.0c01416.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Ziessel, Raymond, Alberto Juris und Margherita Venturi. „Intramolecular Photoinduced Electron Transfer in Multicomponent Rhenium(I) Donor−Acceptor Complexes“. Inorganic Chemistry 37, Nr. 20 (Oktober 1998): 5061–69. http://dx.doi.org/10.1021/ic980570o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Danten, Y., T. Tassaing und M. Besnard. „Vibrational Spectra of CO2-Electron Donor−Acceptor Complexes from ab Initio“. Journal of Physical Chemistry A 106, Nr. 48 (Dezember 2002): 11831–40. http://dx.doi.org/10.1021/jp021598v.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Hsu, Chien-Wei, und Henrik Sundén. „α-Aminoalkyl Radical Addition to Maleimides via Electron Donor–Acceptor Complexes“. Organic Letters 20, Nr. 7 (21.03.2018): 2051–54. http://dx.doi.org/10.1021/acs.orglett.8b00597.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Müller-Wegener, U. „Electron donor acceptor complexes between organic nitrogen heterocycles and humic acid“. Science of The Total Environment 62 (Januar 1987): 297–304. http://dx.doi.org/10.1016/0048-9697(87)90513-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Jin, Shengye, Robert C. Snoeberger, Abey Issac, David Stockwell, Victor S. Batista und Tianquan Lian. „Single-Molecule Interfacial Electron Transfer in Donor-Bridge-Nanoparticle Acceptor Complexes†“. Journal of Physical Chemistry B 114, Nr. 45 (18.11.2010): 14309–19. http://dx.doi.org/10.1021/jp911662g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

May, V., und E. G. Petrov. „Few-electron transfer reactions in donor–acceptor complexes and molecular wires“. physica status solidi (b) 241, Nr. 9 (Juli 2004): 2168–78. http://dx.doi.org/10.1002/pssb.200404791.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Ferguson, Stephen B., und Fran�ois Diederich. „Electron Donor-Acceptor Interactions in Host-Guest Complexes in Organic Solutions“. Angewandte Chemie International Edition in English 25, Nr. 12 (Dezember 1986): 1127–29. http://dx.doi.org/10.1002/anie.198611271.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Sun, Jingjing, Yanyan He, Xiao-De An, Xu Zhang, Lei Yu und Shouyun Yu. „Visible-light-induced iminyl radical formation via electron-donor–acceptor complexes: a photocatalyst-free approach to phenanthridines and quinolines“. Organic Chemistry Frontiers 5, Nr. 6 (2018): 977–81. http://dx.doi.org/10.1039/c7qo00992e.

Der volle Inhalt der Quelle
Annotation:
A visible light-induced synthesis of nitrogen-containing arenes from O-2,4-dinitrophenyl oximes has been reported. This photochemical strategy is photocatalyst-free and enabled by electron-donor–acceptor (EDA) complexes of O-2,4-dinitrophenyl oximes and Et3N.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Stasyuk, Anton J., Olga A. Stasyuk, Miquel Solà und Alexander A. Voityuk. „Hypsochromic solvent shift of the charge separation band in ionic donor–acceptor Li+@C60⊂[10]CPP“. Chemical Communications 55, Nr. 75 (2019): 11195–98. http://dx.doi.org/10.1039/c9cc05787k.

Der volle Inhalt der Quelle
Annotation:
Photoinduced electron transfer in CPP-based donor–acceptor complexes C60⊂[10]CPP and Li+@C60⊂[10]CPP was studied using DFT/TDDFT. Unusual blue shift of charge separated states for Li+@C60⊂[10]CPP complexes in the polar medium is predicted.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Wang, Wei, Wei Wu und Peifeng Su. „Radical Pairing Interactions and Donor–Acceptor Interactions in Cyclobis(Paraquat-P-Phenylene) Inclusion Complexes“. Molecules 28, Nr. 5 (22.02.2023): 2057. http://dx.doi.org/10.3390/molecules28052057.

Der volle Inhalt der Quelle
Annotation:
Understanding molecular interactions in mechanically interlocked molecules (MIMs) is challenging because they can be either donor–acceptor interactions or radical pairing interactions, depending on the charge states and multiplicities in the different components of the MIMs. In this work, for the first time, the interactions between cyclobis(paraquat-p-phenylene) (abbreviated as CBPQTn+ (n = 0–4)) and a series of recognition units (RUs) were investigated using the energy decomposition analysis approach (EDA). These RUs include bipyridinium radical cation (BIPY•+), naphthalene-1,8:4,5-bis(dicarboximide) radical anion (NDI•−), their oxidized states (BIPY2+ and NDI), neutral electron-rich tetrathiafulvalene (TTF) and neutral bis-dithiazolyl radical (BTA•). The results of generalized Kohn–Sham energy decomposition analysis (GKS-EDA) reveal that for the CBPQTn+···RU interactions, correlation/dispersion terms always have large contributions, while electrostatic and desolvation terms are sensitive to the variation in charge states in CBPQTn+ and RU. For all the CBPQTn+···RU interactions, desolvation terms always tend to overcome the repulsive electrostatic interactions between the CBPQT cation and RU cation. Electrostatic interaction is important when RU has the negative charge. Moreover, the different physical origins of donor–acceptor interactions and radical pairing interactions are compared and discussed. Compared to donor–acceptor interactions, in radical pairing interactions, the polarization term is always small, while the correlation/dispersion term is important. With regard to donor–acceptor interactions, in some cases, polarization terms could be quite large due to the electron transfer between the CBPQT ring and RU, which responds to the large geometrical relaxation of the whole systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Chiu, Chih-Chung, Chih-Chang Hung und Po-Yuan Cheng. „Ultrafast Charge Recombination Dynamics in Ternary Electron Donor–Acceptor Complexes: (Benzene)2-Tetracyanoethylene Complexes“. Journal of Physical Chemistry B 120, Nr. 48 (23.11.2016): 12390–403. http://dx.doi.org/10.1021/acs.jpcb.6b10593.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Pryalkin, Boris S., und Yulia S. Bodagova. „Molecular Complexes of p-Chloranil with Aniline, Phenol and their Derivatives“. Key Engineering Materials 670 (Oktober 2015): 89–94. http://dx.doi.org/10.4028/www.scientific.net/kem.670.89.

Der volle Inhalt der Quelle
Annotation:
Classification of simple supramolecular structures (for example molecular complexes), which has been introduced and described by Mulliken [1], is based on types of molecular orbitals of the components. In the paper [2], disadvantages of such classification are shown, which motivate us to return to the re-examination properties of molecular complexes. By this reason, there is a need to research the molecular complexes of one electron acceptor with a wide range of electron donor molecules. This paper have continued work (Part I [3]) on the chloranil complexes by studying the spectral properties complexes of N- and O-unsubstituting anilines and phenols. The present work aimed at analyzing linear relation the energies of charge-transfer bands of molecular complexes are related to ionization potentials of the donor components. All complexes conform to linear relations like involving both adiabatic and vertical ionization potentials of donor components. Mulliken [1] has been proposed to apply the vertical ionization potentials of donor components only. The development of photoelectron spectroscopy has led to the measurement of adiabatic and vertical ionization energies for thousands of molecules, which allow theirs to the present analysis of spectral properties molecular complexes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Nalewajski, Roman F. „Information-Theoretic Descriptors of Molecular States and Electronic Communications between Reactants“. Entropy 22, Nr. 7 (07.07.2020): 749. http://dx.doi.org/10.3390/e22070749.

Der volle Inhalt der Quelle
Annotation:
The classical (modulus/probability) and nonclassical (phase/current) components of molecular states are reexamined and their information contributions are summarized. The state and information continuity relations are discussed and a nonclassical character of the resultant gradient information source is emphasized. The states of noninteracting and interacting subsystems in the model donor-acceptor reactive system are compared and configurations of the mutually-closed and -open equidensity orbitals are tackled. The density matrices for subsystems in reactive complexes are used to describe the entangled molecular fragments and electron communications in donor-acceptor systems which determine the entropic multiplicity and composition of chemical bonds between reactants.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Grover, Nitika, Pinki Rathi und Muniappan Sankar. „Spectral investigations of meso-tetraalkylporphyrin-fullerene host–guest complexes“. Journal of Porphyrins and Phthalocyanines 19, Nr. 09 (September 2015): 997–1006. http://dx.doi.org/10.1142/s1088424615500716.

Der volle Inhalt der Quelle
Annotation:
Meso-tetraalkylporphyrins and their Zn(II) complexes were synthesized and characterized by various spectroscopic techniques. Single crystal X-ray structure of meso-tetrapropylporphyrin (3) revealed the orientation of alkyl chains and planar conformation of porphyrin macrocycle. Spectroscopic, photophysical and electrochemical redox properties of self-assembled donor–acceptor dyads formed by meso-tetraalkylporphyrins and fullerene C 60 were investigated. These studies revealed 1:1 supramolecular dyad formation between the electron donor porphyrins and the electron acceptor, fullerene entities. The determined association constants (K) follow the order: H2TMeP (1) > H2TEtP (2) > H2TPrP (3) > H2THexP > H2TPP . The effect of alkyl chain length on porphyrin-fullerene complexation was investigated. The redox behavior of self-assembled dyads was investigated in PhCN containing 0.1 M TBAPF6 as supporting electrolyte. The oxidation potentials of dyads are positively shifted (20–100 mV) as compared to corresponding meso-tetraalkylporphyrins indicating the supramolecular interactions between the constituents in the ground state. The geometric and electronic structure of 1: C 60 was probed by DFT calculations which suggested the possibility of charge transfer from meso-tetraalkylporphyrin to fullerene C 60.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ishihara, Hideta, Shouko Nakashima, Koji Yamada, Tsutomu Okuda und Alarich Weiss. „NQR Study of AlBr3 Complexes with Donor-Acceptor O-Al Bond“. Zeitschrift für Naturforschung A 45, Nr. 3-4 (01.04.1990): 237–42. http://dx.doi.org/10.1515/zna-1990-3-408.

Der volle Inhalt der Quelle
Annotation:
Abstract81Br and 27Al NQR were observed in AlBr 3 complexes with 4-XC6H4 NO,(X = H, CI, Br, I, CH3 , and C2H5), C6H5COBr, (C6H5)2CO, and (C2H5)2O. In the 4-XC6H4 NO2 complexes, the 27Al quadrupole coupling constants (QCC's) were well correlated with the Hammett er p 's of the para-substituents, i.e., electron-withdrawing groups caused reduction of the charge density of O-Al bonds which resulted in large 27Al QCC's and vice versa. The temperature dependences of the 81Br NQR frequencies and quadrupolar spin-lattice relaxation times showed that the 4-C2H5C6H4NO2 and C6H5 COBr complexes undergo phase transitions at 154 K and around 200 K, respectively, and show hindered rotation of the AlBr3 groups at higher temperatures, and that the (C2H5) 2O complex reorients above ca. 120 K.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie