Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electron-component“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electron-component" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electron-component"
Dubas, L. G. „Single-component relativistic electron flux“. Technical Physics Letters 32, Nr. 6 (Juni 2006): 527–28. http://dx.doi.org/10.1134/s106378500606023x.
Der volle Inhalt der QuelleSyrovoi, V. A. „Theory of single-component electron beams“. Radiophysics and Quantum Electronics 33, Nr. 6 (Juni 1990): 546–53. http://dx.doi.org/10.1007/bf01037861.
Der volle Inhalt der QuelleGrimme, Stefan, Lars Goerigk und Reinhold F. Fink. „Spin-component-scaled electron correlation methods“. Wiley Interdisciplinary Reviews: Computational Molecular Science 2, Nr. 6 (22.06.2012): 886–906. http://dx.doi.org/10.1002/wcms.1110.
Der volle Inhalt der QuelleBharuthram, R., S. S. Misthry und M. Y. Yu. „Electron acoustic surface waves in a two‐electron component plasma“. Physics of Fluids B: Plasma Physics 5, Nr. 12 (Dezember 1993): 4502–4. http://dx.doi.org/10.1063/1.860567.
Der volle Inhalt der QuelleMcKENZIE, J. F. „Electron acoustic–Langmuir solitons in a two-component electron plasma“. Journal of Plasma Physics 69, Nr. 3 (April 2003): 199–210. http://dx.doi.org/10.1017/s002237780300206x.
Der volle Inhalt der QuelleMace, R. L., S. Baboolal, R. Bharuthram und M. A. Hellberg. „Arbitrary-amplitude electron-acoustic solitons in a two-electron-component plasma“. Journal of Plasma Physics 45, Nr. 3 (Juni 1991): 323–38. http://dx.doi.org/10.1017/s0022377800015749.
Der volle Inhalt der QuelleKhrapak, S. A., und G. Morfill. „Waves in two component electron-dust plasma“. Physics of Plasmas 8, Nr. 6 (Juni 2001): 2629–34. http://dx.doi.org/10.1063/1.1370061.
Der volle Inhalt der QuelleJiang, N., und J. Silcox. „Electron Irradiation Damage in Multi-Component Glasses“. Microscopy and Microanalysis 6, S2 (August 2000): 390–91. http://dx.doi.org/10.1017/s1431927600034449.
Der volle Inhalt der QuelleDanehkar, Ashkbiz, Nareshpal Singh Saini, Manfred A. Hellberg und Ioannis Kourakis. „Electron-acoustic solitary waves in the presence of a suprathermal electron component“. Physics of Plasmas 18, Nr. 7 (Juli 2011): 072902. http://dx.doi.org/10.1063/1.3606365.
Der volle Inhalt der QuelleMbuli, L. N., S. K. Maharaj, R. Bharuthram, S. V. Singh und G. S. Lakhina. „Arbitrary amplitude fast electron-acoustic solitons in three-electron component space plasmas“. Physics of Plasmas 23, Nr. 6 (Juni 2016): 062302. http://dx.doi.org/10.1063/1.4952637.
Der volle Inhalt der QuelleDissertationen zum Thema "Electron-component"
Malins, Andrew E. R. „The development of a three-component electron spin polarimeter“. Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/33190.
Der volle Inhalt der QuelleLin, Tzong-Yuan. „Electron transfer between the reductase and ferredoxin component of toluene dioxygenase“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2012. http://dx.doi.org/10.18452/16584.
Der volle Inhalt der QuelleThe toluene dioxygenase from Pseudomonas putida F1 is a three-component Rieske non-heme iron dioxygenase comprising of a reductase, ferredoxin and an oxygenase component. It catalyzes the initial step in the aerobic degradation of toluene to cis-toluene dihydrodiol. A smooth interaction between all three components needs to be ensured to efficiently transfer the electrons derived from NADH oxidation to the terminal oxygenase component where molecular oxygen is activated and used for the hydroxylation of toluene. The results of the kinetic studies of the reductive half reaction of reductase reveal that NADH reduces the reductase, resulting in the formation of a stable charge transfer complex between NAD+ and FADH-. Oxidation of the charge transfer complex by an electron acceptor proceeds via the neutral semiquinone to the quinone state of FAD. It is shown that the charge transfer complex suppresses the reaction of the reductase with dioxygen. An explanation for this change in reactivity can be deduced from the structure of the charge transfer complex. Its slower reaction with dioxygen results from NAD+ lying coplanar with the FAD shielding its reactive N5-C4a locus and the forced planarity of the isoalloxazine ring. The formation of the reductase-ferredoxin complex allows efficient electron transfer from reductase to ferredoxin because a) the oppositely charged interacting surfaces of both proteins facilitate the pre-orientation of the ferredoxin on the reductase, b) a hydrophobic region surrounding the two redox centers in the complex acts as an exit/entrance port for electrons and c) the short edge-to-edge distance between both cofactors of 11.7 Å guarantees a fast electron transfer. The results demonstrate that the electron transfer between reductase and ferredoxin is governed by the formation of a stable charge transfer and of a reductase-ferredoxin complex with which the problem of an unwanted side reaction with dioxygen is obviated.
Dronov, Roman. „Multi-component protein films by layer-by-layer : assembly and electron transfer“. Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1728/.
Der volle Inhalt der QuelleElektronentransferphänomene in Proteinen stellen den häufigsten Typ biochemischer Reaktionen dar. Sie spielen eine zentrale Rolle bei der Energieumwandlung in der Zelle und sind entscheidende Komponenten in der Atmung und Photosynthese. Diese komplexen Kaskaden biochemischer Reaktionen setzen sich aus einer Reihe von Proteinen und Proteinkomplexen zusammen, die den Energietransfer an verschiedene Formen chemischer Energie koppeln. Die große Effektivität und Selektivität des Signaltransfers in diesen natürlichen Redoxketten war Vorbild für die Entwicklung künstlicher Architekturen, die die wesentlichen Eigenschaften ihrer natürlichen Analoga nachahmen. Die Implementierung des direkten Elektronentransfers (DET) von Proteinen mit Elektroden war ein Durchbruch im Bereich der Bioelektronik. Sie lieferte einen einfachen und effizienten Weg für das Koppeln biologischer Erkennungsereignisse an einen Signalumwandler. Durch den DET können Redoxmediatoren vermieden und damit potentielle Grenzflächen und Nebenreaktionen reduziert werden. Ebenso wird damit die Kompatibilität für in vivo Bedingungen erhöht. Jedoch zeigen nur einige Hämproteine wie das Redoxprotein Cytochrom c (Cyt c) und blaue Kupferproteine einen effizienten DET auf verschiedenen Elektrodentypen. Bisherige Untersuchungen mit Cyt c konzentrierten sich hauptsächlich auf den heterogenen Elektronentransfer von Monoschichten dieses Proteins auf Gold. Ein wichtiger Fortschritt war die Herstellung von Cyt c Multischichten durch die elektrostatische Layer-by-Layer-Technik. Die einfache Herstellung, die Stabilität sowie die kontrollierbaren Permeationseigenschaften von Polyelektrolyt-Multischichten machte sie besonders attraktiv für elektroanalytische Anwendungen. So gelang es auch zum ersten Mal vollständig elektroaktive Multischichten aus Cyt c und Polyanilinsulfonsäure zu präparieren. Dieser Ansatz wurde hier erweitert, um eine analytische Signalkette auf der Basis von Multischichten aus Cyt c und Xanthinoxidase zu entwerfen. Das System bedarf keinen externen Mediator, es hängt jedoch von der in situ Generierung eines vermittelnden Radikals ab und erlaubt daher einen Signaltransfer von Hypoxanthin über ein substratumwandelndes Enzym und Cyt c zur Elektrode. Eine andere Art von Signalketten basiert auf der Assemblierung von Proteinen in Komplexen auf Elektroden in solcher Art und Weise, daß ein direkter Protein-Protein-Elektronentransfer möglich wird. Dieser Ansatz benötigt keinen Redoxmediator in Analogie zu Beispielen aus dem biologischen Signaltransfer. Zu diesem Zweck werden Cyt c und das Enzym Bilirubinoxidase mit einem selbst-assemblierenden Polyelektrolyten auf einer Goldelektrode koimmobilisiert. Obwohl diese zwei Proteine keine natürlichen Reaktionspartner sind, unterstützt die Protein-Architektur einen Elektronentransfer von der Elektrode über mehrere Proteinschichten zu molekularem Sauerstoff und ergibt einen signifikanten katalytischen Reduktionsstrom. Schließlich wird eine neue Strategie beschrieben für eine Selbstassemblierung von Proteinen ohne zusätzlichen Polyelektrolyten - am Beispiel der Kombination von Cyt c mit Sulfitoxidase. Es stellte sich heraus, daß die elektrostatische Wechselwirkung zwischen diesen zwei Proteinen mit ziemlich weit voneinander entfernt liegenden pI-Werten während des Assemblierungsprozesses durch einen Puffer mit geringer Ionenstärke ausreicht um die beiden Biomoleküle nach dem Layer-by-Layer-Prinzip auf einer Elektrode abzuscheiden. Es wird erwartet, daß das entwickelte Konzept von Multiprotein-Assemblaten auf Elektroden weitere Fortschritte bei dem Entwurf von Multischichten und sogar noch komplexeren biomimetischen Signalkaskaden anregen wird und dabei der Vorteil der direkten Kommunikation zwischen Proteinen genutzt wird.
Caravaca, Rodríguez Javier. „Measurement of the electron-neutrino component of the T2K beam and search for electron-neutrino disappearance at the T2K Near Detector“. Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/283399.
Der volle Inhalt der QuelleThe T2K experiment is a long baseline neutrino experiment that has observed for first time the appearance of electron-neutrinos in a muon-neutrino beam. Thanks to this analysis, the last unknown neutrino mixing angle q13 is measured with a good precision. The main background to this measurement is the contamination of electron-neutrinos produced in the neutrino beam together with the dominant muon-neutrino component. This is an irreducible component that needs to be measured and controlled. The prediction of this component at SuperKamiokande is based on the constrain of the neutrino flux and cross sections by a muon-neutrino selection at the T2K near detector ND280. To confirm this prediction, we measure the electron-neutrino event rates at ND280 before the oscillations occur, establishing that the electron-neutrino component is correctly reproduced by the simulation at the 10% level. In addition, studying the electron-neutrino component is interesting to investigate the abnormal behaviour of some neutrino experiments. The reactor neutrino experiments as well as the results from calibration with radioactive sources in solar neutrino experiment with gallium have observed a deficit of electron-neutrino at very short distances from the neutrino source. This depletion is not compatible with standard neutrino oscillation, but it can be explained by invoking a fourth neutrino with a mass of the order of 1eV². This neutrino does not feel any force of the Standard Model and hence is called sterile neutrino. Assuming that it mixes with the electron-neutrinos, it would be responsible of the short base-line electron-neutrino disappearance due to neutrino oscillation. The T2K near detector is located at a position short enough to study the light sterile neutrino oscillations. The neutrino model with an additional sterile neutrino apart from the three active species is tested and some constraints to the oscillation parameters are set and compared with the literature.
Nilsson, Erik, und Daniel Johansson. „Testing and evaluation of component made using electron beam melting and Alloy 718 powder“. Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35566.
Der volle Inhalt der QuelleLightcam
Whitehead, Leigh. „A measurement of the electron neutrino component of the T2K beam using the near detector“. Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/51675/.
Der volle Inhalt der QuelleMalkin, Ondík Irina. „Development, validation, and application of new relativistic methods for all-electron unrestricted two-component calculations of EPR parameters“. [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980973600.
Der volle Inhalt der QuelleGiganti, Claudio. „Particule Identification in the T2K TPCs and study of the electron neutrino component in the T2K neutrino beam“. Paris 11, 2010. http://www.theses.fr/2010PA112334.
Der volle Inhalt der QuelleThis thesis is devoted to the measurement of the electron neutrino appearance with the T2K experiment. T2K is a long baseline neutrino oscillation experiment that is taking data in Japan. The neutrino beam is produced by an accelerator in JPARC and neutrinos are observed in a Near Detector, ND280, before the oscillation and in the far detector, SuperKamiokande, after the oscillation. The aim of this thesis is the measurement of the intrinsic electron neutrino component of the beam with the Near Detector. The main detector used in this measurement is the ND280 TPC. The first part of the thesis describes the method developed for the particle identification in the TPCs: the PID method is based on the measurement of the truncated mean of the charge deposited by the particles crossing the gas. The PID capabilities of the TPCs have been tested analyzing the beam test data: these data have been taken at TRIUMF where we had a beam composed by electrons, muons and pions with momenta up to 400 MeV/c: the analysis of these data confirmed that the resolution on the deposited energy in the TPCs was of the order of 7%. When the first data of the T2K experiment were available, a first measurement of the electron neutrino component in the near detector has been done. To perform the analysis, a sample of neutrino interactions in ND280 was selected: this sample was mainly composed by muon neutrino interactions as the electron neutrino is expected to be 1 % of the total number of neutrinos in the beam. The selection of both, electron and muon neutrinos, allowed a first measurement of the electron neutrino component in the T2K beam
Lin, Tzong-Yuan [Verfasser], Holger [Akademischer Betreuer] Dobbek, Wolfgang [Akademischer Betreuer] Lockau und Silke [Akademischer Betreuer] Leimkühler. „Electron transfer between the reductase and ferredoxin component of toluene dioxygenase / Tzong-Yuan Lin. Gutachter: Holger Dobbek ; Wolfgang Lockau ; Silke Leimkühler“. Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2012. http://d-nb.info/1026475228/34.
Der volle Inhalt der QuelleWommer, Michael [Verfasser], und J. [Akademischer Betreuer] Blümer. „Cross Calibration of the Measurements of the Electron Component of Extensive Air Showers of KASCADE-Grande and HEAT / Michael Wommer. Betreuer: J. Blümer“. Karlsruhe : KIT-Bibliothek, 2012. http://d-nb.info/1019790067/34.
Der volle Inhalt der QuelleBücher zum Thema "Electron-component"
Kapustin, Vladimir, Aleksandr Sigov, Illarion Li und Vladimir Mel'nikov. Point defects in oxides and emission properties. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1846464.
Der volle Inhalt der QuelleMalins, Andrew Edward Russell. The development of a three component electron spin polarimeter. 2000.
Den vollen Inhalt der Quelle findenHoring, Norman J. Morgenstern. Interacting Electron–Hole–Phonon System. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0011.
Der volle Inhalt der QuelleLattman, Eaton E., Thomas D. Grant und Edward H. Snell. SAXS Instrumentation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199670871.003.0009.
Der volle Inhalt der QuelleSaitoh, E., und K. Ando. Experimental observation of the spin Hall effect using spin dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0015.
Der volle Inhalt der QuelleDyall, Kenneth G., und Knut Faegri. Introduction to Relativistic Quantum Chemistry. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195140866.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Electron-component"
Soldatov, A. N. „MVL Parameter Management Through Electron Plasma Component“. In Pulsed Metal Vapour Lasers, 175–82. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1669-2_17.
Der volle Inhalt der QuelleZwickl, R. D., D. N. Baker, S. J. Barne, W. C. Feldman, S. A. Fuselier, W. F. Huebner, D. J. Mccomas und D. T. Young. „Three Component Plasma Electron Distribution in the Intermediate Ionized Coma of Comet Giacobini-Zinner“. In Special Publications, 401–4. Washington, D.C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/sp027p0181.
Der volle Inhalt der QuelleJoshi, C., A. Caldwell, P. Muggli, S. D. Holmes und V. D. Shiltsev. „Outlook for the Future“. In Particle Physics Reference Library, 797–825. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_12.
Der volle Inhalt der QuelleTakabe, Hideaki. „Non-local Transport of Electrons in Plasmas“. In Springer Series in Plasma Science and Technology, 285–323. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45473-8_6.
Der volle Inhalt der QuelleIsihara, Akira. „One-Component Plasmas at High Temperatures“. In Electron Liquids, 41–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80392-5_3.
Der volle Inhalt der QuelleIsihara, Akira. „One-Component Plasmas at High Temperatures“. In Electron Liquids, 43–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-97303-1_3.
Der volle Inhalt der QuelleHornshøj, P., und M. Pfützner. „Study of the 1S Component of the Internal Bremsstrahlung Accompanying the (1u)-Forbidden Electron-Capture Decay of 41Ca“. In Weak and Electromagnetic Interactions in Nuclei, 49–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71689-8_10.
Der volle Inhalt der QuelleOgawa, Teruo. „Nad(P)H Dehydrogenase: A Component of PS-I Cyclic Electron flow Driving Inorganic Carbon Transport in Cyanobacteria“. In Research in Photosynthesis, 763–70. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-009-0383-8_162.
Der volle Inhalt der QuelleGregor, Malcolm H. Mac. „Spatial Quantization and the Two-Component Rotation Group“. In The Enigmatic Electron, 99–106. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8072-4_13.
Der volle Inhalt der QuelleNuzillard, Danielle, und Noël Bonnet. „BSS for Series of Electron Energy Loss Spectra“. In Independent Component Analysis and Blind Signal Separation, 1150–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30110-3_145.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electron-component"
Litvinenko, Vladimir N., John M. J. Madey und Nikolai A. Vinokurov. „Component technologies for a recirculating linac free-electron laser“. In OE/LASE '94, herausgegeben von Jack V. Walker und Edward E. Montgomery IV. SPIE, 1994. http://dx.doi.org/10.1117/12.174187.
Der volle Inhalt der QuelleMoiseenko, V. E., A. A. Ivanov, A. V. Anikeev und P. A. Bagryansky. „Antenna for electron component heating in the gas-dynamic trap“. In The twelfth topical conference on radio frequency power in plasmas. AIP, 1997. http://dx.doi.org/10.1063/1.53370.
Der volle Inhalt der QuelleWang, Jian, und Wendong Huang. „Research on TWT Frame Electron Gun Core Component Fabrication Technology“. In 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC). IEEE, 2020. http://dx.doi.org/10.1109/csrswtc50769.2020.9372570.
Der volle Inhalt der QuelleVassali, M. R. „Principal component analysis for neural electron/jet discrimination in highly segmented calorimeters“. In ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH: VII International Workshop; ACAT 2000. AIP, 2001. http://dx.doi.org/10.1063/1.1405270.
Der volle Inhalt der QuelleLongman, Fodio. „Comparative Analysis of Component Analysis Techniques for Secondary Electron Hyperspectral Imaging (SEHI)“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1062.
Der volle Inhalt der QuelleScherillo, F., S. Franchitti, R. Borrelli, C. Pirozzi, A. Squillace, A. Langella und L. Carrino. „Microstructural and micromechanical study of a Ti6Al4V component made by electron beam melting“. In ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming. Author(s), 2016. http://dx.doi.org/10.1063/1.4963615.
Der volle Inhalt der QuelleNovembre, Anthony E., Woon W. Tai, Janet M. Kometani, James E. Hanson, Omkaram Nalamasu, Gary N. Taylor, Elsa Reichmanis und Larry F. Thompson. „Single-component chemically amplified resist materials for electron-beam and x-ray lithography“. In Advances in Resist Technology and Processing VIII, herausgegeben von Hiroshi Ito. SPIE, 1991. http://dx.doi.org/10.1117/12.46361.
Der volle Inhalt der QuelleZinth, W., S. Schmidt, T. Arlt, H. Huber, T. Nägele, M. Meyer und H. Scheer. „Direct Observation of the Accessory Bacteriochlorophyll in the Primary Electron Transfer in Bacterial Reaction Centers“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.tub.7.
Der volle Inhalt der QuelleSpears, Kenneth G., und Xiaoning Wen. „Vibrational Dynamics in Electron Transfer“. In Modern Spectroscopy of Solids, Liquids, and Gases. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msslg.1995.stha2.
Der volle Inhalt der QuelleSgalaberna, Davide. „Measurement of the electron neutrino component of the T2K beam in the ND280 Tracker“. In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.180.0010.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Electron-component"
Tang, J. Theory for electron-transfer reactions in a three-component system: The ``degenerate`` regime. Office of Scientific and Technical Information (OSTI), Februar 1994. http://dx.doi.org/10.2172/10118429.
Der volle Inhalt der QuelleDryepondt, Sebastien N., Bruce A. Pint und Daniel Ryan. Comparison of electron beam and laser beam powder bed fusion additive manufacturing process for high temperature turbine component materials. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1248786.
Der volle Inhalt der QuelleSlattery, Kevin. Unsettled Topics on Surface Finishing of Metallic Powder Bed Fusion Parts in the Mobility Industry. SAE International, Januar 2021. http://dx.doi.org/10.4271/epr2021001.
Der volle Inhalt der QuelleDryepondt, Sebastien, Michael Kirka und Daniel Ryan. Comparison of Electron Beam and Laser Beam Powder Bed Fusion Additive Manufacturing Process for High Temperature Turbine Component Materials, Phase II. Office of Scientific and Technical Information (OSTI), Juni 2019. http://dx.doi.org/10.2172/1658007.
Der volle Inhalt der QuelleElbaum, Michael, und Peter J. Christie. Type IV Secretion System of Agrobacterium tumefaciens: Components and Structures. United States Department of Agriculture, März 2013. http://dx.doi.org/10.32747/2013.7699848.bard.
Der volle Inhalt der QuelleGafny, Ron, A. L. N. Rao und Edna Tanne. Etiology of the Rugose Wood Disease of Grapevine and Molecular Study of the Associated Trichoviruses. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575269.bard.
Der volle Inhalt der QuelleSplitter, Gary A., Menachem Banai und Jerome S. Harms. Brucella second messenger coordinates stages of infection. United States Department of Agriculture, Januar 2011. http://dx.doi.org/10.32747/2011.7699864.bard.
Der volle Inhalt der Quelle