Auswahl der wissenschaftlichen Literatur zum Thema „Electromagnetic measurements“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electromagnetic measurements" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Electromagnetic measurements":

1

Yell, R. „Electromagnetic measurements“. IEE Proceedings A Science, Measurement and Technology 139, Nr. 5 (1992): 213. http://dx.doi.org/10.1049/ip-a-3.1992.0034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jensen, H. D. „Editorial: Electromagnetic measurements“. IEE Proceedings - Science, Measurement and Technology 145, Nr. 4 (1998): 153. http://dx.doi.org/10.1049/ip-smt:19982116.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Henderson, L. C. A. „Editorial: Electromagnetic measurements“. IEE Proceedings - Science, Measurement and Technology 147, Nr. 4 (01.07.2000): 173. http://dx.doi.org/10.1049/ip-smt:20000642.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Henderson, Lesley CA. „Editorial: Electromagnetic measurements“. IEE Proceedings - Science, Measurement and Technology 149, Nr. 6 (01.11.2002): 297–98. http://dx.doi.org/10.1049/ip-smt:20020766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cheney, M., und G. Kristensson. „Optimal Electromagnetic Measurements“. Journal of Electromagnetic Waves and Applications 15, Nr. 10 (Januar 2001): 1323–36. http://dx.doi.org/10.1163/156939301x01228.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gradoni, Gabriele, Johannes Russer, Mohd Hafiz Baharuddin, Michael Haider, Peter Russer, Christopher Smartt, Stephen C. Creagh, Gregor Tanner und David W. P. Thomas. „Stochastic electromagnetic field propagation— measurement and modelling“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, Nr. 2134 (29.10.2018): 20170455. http://dx.doi.org/10.1098/rsta.2017.0455.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This paper reviews recent progress in the measurement and modelling of stochastic electromagnetic fields, focusing on propagation approaches based on Wigner functions and the method of moments technique. The respective propagation methods are exemplified by application to measurements of electromagnetic emissions from a stirred, cavity-backed aperture. We discuss early elements of statistical electromagnetics in Heaviside's papers, driven mainly by an analogy of electromagnetic wave propagation with heat transfer. These ideas include concepts of momentum and directionality in the realm of propagation through confined media with irregular boundaries. We then review and extend concepts using Wigner functions to propagate the statistical properties of electromagnetic fields. We discuss in particular how to include polarization in this formalism leading to a Wigner tensor formulation and a relation to an averaged Poynting vector. This article is part of the theme issue ‘Celebrating 125 years of Oliver Heaviside's ‘Electromagnetic Theory’’.
7

Krupka, Jerzy. „Microwave Measurements of Electromagnetic Properties of Materials“. Materials 14, Nr. 17 (06.09.2021): 5097. http://dx.doi.org/10.3390/ma14175097.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A review of measurement methods of the basic electromagnetic parameters of materials at microwave frequencies is presented. Materials under study include dielectrics, semiconductors, conductors, superconductors, and ferrites. Measurement methods of the complex permittivity, the complex permeability tensor, and the complex conductivity and related parameters, such as resistivity, the sheet resistance, and the ferromagnetic linewidth are considered. For dielectrics and ferrites, the knowledge of their complex permittivity and the complex permeability at microwave frequencies is of practical interest. Microwave measurements allow contactless measurements of their resistivity, conductivity, and sheet resistance. These days contactless conductivity measurements have become more and more important, due to the progress in materials technology and the development of new materials intended for the electronic industry such as graphene, GaN, and SiC. Some of these materials, such as GaN and SiC are not measurable with the four-point probe technique, even if they are conducting. Measurement fixtures that are described in this paper include sections of transmission lines, resonance cavities, and dielectric resonators.
8

Perov, Sergey Yu, und Olga V. Belaya. „Instrumental assessment of mobile communication base station electromagnetic field exposure“. Russian Journal of Occupational Health and Industrial Ecology 60, Nr. 11 (03.12.2020): 853–56. http://dx.doi.org/10.31089/1026-9428-2020-60-11-853-856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Introduction. Monitoring and ensuring safe operating conditions of modern base stations for occupational and general public exposure is relevant with the use of methods for measuring electromagnetic fields, which allow to assess the contribution of different sources to the overall level of the electromagnetic background, taking into account the dynamic features of base stations and the spectral electromagnetic characteristics. The aim of study is the levels of electromagnetic fields assessment from modern base stations using broadband and selective measurement methods, as well as the possibility of predicting the worst exposure conditions. Materials and methods. The levels of electromagnetic fields from base stations according to the LTE2600 standard were evaluated at the maximum transmission traffic (laboratory mearements) and at real variable traffic (field measurements). For broadband measurements, the power density (PD) was estimated, for selective measurements, the PD level in the LTE frequency channel (frequency-selective measurements) and the PD level of the reference signal (code-selective measurements) were evaluated. The theoretical maximum PD level was calculated from the maximum value of the reference signal. Results. When simulating the maximum intensity of data traffic, the PD level in the LTE channel was 94.51-101.39% of the calculated maximum value. According to field measurements, the values of electromagnetic field levels obtained from frequency-selective measurements in the LTE frequency channel were less than the corresponding values estimated from the results of broadband measurements, and were no more than 25% of the theoretical maximum. Conclusions. The use of selective approach and measurement methods made it possible to estimate the maximum possible contribution of a single source to the overall level of the electromagnetic background and to predict the worst conditions for human exposure.
9

Shakil, A. „Editorial: Electromagnetic measurements and techniques“. IEE Proceedings - Science, Measurement and Technology 151, Nr. 5 (01.09.2004): 354–55. http://dx.doi.org/10.1049/ip-smt:20041055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Shimoda, K. „Atoms in precision electromagnetic measurements“. IEEE Transactions on Instrumentation and Measurement 38, Nr. 2 (April 1989): 150–55. http://dx.doi.org/10.1109/19.192262.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Electromagnetic measurements":

1

Naftali, Verena Kashikuka. „Implementation of a reverberation chamber for electro-magnetic compatibility measurements“. Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2566.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2017.
This research project focuses on the implementation of a Reverberation Chamber (RC) by the transformation of an existing electromagnetically shielded room. The reverberation chamber is a kind of shielded room designed to create a statistically random internal electromagnetic environment. The reverberating environment makes it possible to obtain high field strengths from a relatively low input power. The electric fields in the chamber have to be stirred to achieve a statistically uniform field. The first part of this thesis presents an overview of reverberation chamber principles and preliminary calculations are done: the lowest usable frequency is estimated to be close to 300 MHz from empirical criteria. Modelling of the statistical environment is then presented, where electromagnetic quantities are characterised by probability density functions (Gaussian, Rayleigh and exponential); correlation issues are also presented. Measurements are performed in the frequency range of 800 MHz – 4 GHz, dictated by the antennas available for this research study. An investigation of cable losses is conducted, followed by a discussion on measurement accuracy. Mechanical stirrers are designed and manufactured. Electromechanical components are selected based on the literature study. Measurements are obtained through an automated setup using MATLAB®. To verify that the RC, with its in-house designed mechanical stirrers, is well-operated, the stirring ratio is experimentally determined. After this first test, an exhaustive investigation of probability density functions is conducted, taking into account correlation issues. Measurements show that the quality factor of the chamber is close to 2000 at 3 GHz, and that 60 independent stirrer positions at 4 GHz can be used for statistical analyses. Finally, the uniformity test is performed with an improved accuracy using frequency stirring. In conclusion, the CPUT RC passes the validation procedure according to the IEC 61000-4-21 standard by generating the required field uniformity within the accepted uncertainty level.
2

Johnstone, Sherri. „Electromagnetic measurements of steel phase transformations“. Thesis, Durham University, 2002. http://etheses.dur.ac.uk/3982/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis describes the development of electromagnetic sensors to measure the phase transformation in steel as it cools from the hot austenite phase to colder ferritic based phases. The work initially involved investigating a variety of sensing configurations including ac excited coils, C-core arrangements and the adaptation of commercial eddy current proximity sensors. Finally, two prototype designs were built and tested on a hot strip mill. The first of these, the T-meter was based on a C-shaped permanent magnet with a Gaussmeter measuring the magnetic field at the pole ends. Laboratory tests indicated that it could reliably detect the onset of transformation. However, the sensor was sensitive to both the steel properties and the position of the steel. To overcome this, an eddy current sensor was incorporated into the final measurement head. The instrument gave results which were consistent with material property variations, provided the lift off variations were below 3Hz. The results indicated that for a grade 1916 carbon- manganese steel, the signal variation was reduced from 37% to 2%, and the resulting output was related to the steel property variations. The second of these prototypes was based on a dc electromagnetic E-core, with Hall probes in each of the three poles. 'Cold' calibration tests were used to decouple the steel and the lift-off. The results indicated that there was an error of 3-4% ferrite/mm at high ferrite fractions. At lower fractions the error was higher due to the instrument’s insensitivity to lift-off. The resulting output again showed a relationship with varying steel strip properties. ft was also shown that a finite element model could be calibrated to experimental results for a simple C-core geometry such that the output was sensitive to 0.2% of the range. This is required to simulate the sensor to resolve to 10% ferrite.
3

Freeman, Larry. „PREDICTION AND MEASUREMENT OF RADIATED EMISSIONS BASED ON EMPIRICAL TIME DOMAIN CONDUCTED MEASUREMENTS“. Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis develops a novel method to predict radiated emissions measurements. The techniques used are based on standard Electromagnetic Compatibility (EMC) qualification test methods. The empirical data used to formulate the final results was restricted to pertinent data protocol waveforms however the entire method may be applied to any waveforms for which empirical radiated emissions have been measured. The method provides a concise means for predicting worst case radiated emissions profiles based on empirical measured data.
M.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
4

Azpúrua, Marco A. „Full time-domain electromagnetic interference measurements and applications“. Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/587194.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis presents a technology that has been called the Full Time-Domain Electromagnetic Interference measurement systems and its applications. Full TDEMI measurement systems are an implementation of an FFT-based receiver that enables the usage of oscilloscopes for EMI measurements. They follow the virtual instrumentation approach for transforming oscilloscopes into a compliant CISPR 16-1-1 receiver. Full TDEMI measurement systems have been assessed for characterizing their performance using waveform oriented calibration procedures that bridge the gap between direct measurements in the time domain and the processed frequency domain magnitudes. As a result, the conformity of Full TDEMI receivers is attested with respect to the requirements defined in the standards. Full TDEMI systems have advantages over the conventional swept receivers for performing challenging measurements typical of EMI assessments. Time-domain captures enable full spectrum measurements that allow analyzing transient phenomena. The number of channels available in most oscilloscopes enable synchronous measurements that allow recording the EMI using a combination of transducers. Some of the applications of the multichannel EMI measurements are the single stage evaluation of the conducted EMI of all the EUT mains lines, the instantaneous measurement of the common-mode and the differential mode voltage noise, the concurrent conducted and radiated EMI measurements, and the parallelization of multi-antenna radiated emissions testing. Such alternative test methods, have improved the EMC testing process in a variety of industries by reducing the time and the efforts required for performing a complete EMI evaluation due to the following reasons. First, Full TDEMI measurements deliver faster results because the interferences' spectrum is simultaneously estimated for all the weighting detectors. Second, the number of measurement iterations is reduced because of the multichannel possibilities and also because of an agile identification of the worst case emissions. Thirdly, Full TDEMI measurement system are a cost-effective alternative to the real-time spectrum analysers. Full TDEMI measurement systems have extended the state-of-the-art with the expected maximum detector and the empirical interference decomposition. The expected maximum detector is a statistical measure of the most probable level of the peak emissions that is based on a time-frequency modelling of the measured EMI using the extreme value theory. Using the variability information of the EMI level at each frequency bin, the expected maximum detector estimates the equivalent max hold value of a random EMI. The expected maximum detector also provides a model for quantifying the uncertainty of peak detector measurement of stochastic EMI. The Empirical Interference Decomposition is a modified implementation of the Hilbert-Huang transform with time-gating capabilities that allow a heuristic determination of characteristic oscillatory patterns without neither domain transformation nor a predefined set of basis function. The EID has been used successfully for ambient noise cancellation purposes during outdoor EMI measurements, obtaining more than 20 dB of attenuation of the usual broadcasting signals. The fundamentals of the ANC by means of EID is the identification, in the time and in the frequency domain, of intrinsic modes of emissions that area attributable to the EUT while subtracting the residual modes from the measurement results. Applications of the Full TDEMI measurement systems have been published in recognized conferences and journal. From the reasons mentioned before, the Full TDEMI measurement technology has advantages for EMI testing, analyzing and troubleshooting. It provides a complementary approach to the typical measurements entirely focused in the frequency domain and it exhibits a level of maturity that could allow it to be standardized in forthcoming years.
Esta Tesis comprende un compendio de contribuciones hechas por el autor al campo de la tecnología de medición de radiofrecuencia para la compatibilidad electromagnética. En particular, esta Tesis presenta una tecnología de sistemas medición de interferencias electromagnéticas completamente basado en dominio del tiempo (Full TDEMI) y algunas de sus aplicaciones más relevantes. Los sistemas de medición Full TDEMI son una implementación de un receptor de medida basado en FFT que permite el uso de osciloscopios para mediciones de interferencias electromagnéticas. Los sistemas de medición Full TDEMI siguen el enfoque de instrumentación virtual para transformar los osciloscopios de propósito general en un receptor de medida completamente funcional y conforme con la norma CISPR 16-1-1. Por un lado, esto es factible debido a las técnicas específicas de procesamiento de señales aplicadas sobre las adquisiciones en el dominio del tiempo utilizando una capa de software dedicada. Por otro lado, los sistemas de medida Full TDEMI se han evaluado exhaustivamente para caracterizar su rendimiento utilizando procedimientos novedosos de calibración orientados a formas de onda que acortan la brecha entre las magnitudes medidas en el dominio del tiempo y las aquellas procesadas en el dominio de frecuencia. Como resultado, se certifica la conformidad de los sistemas completos de medición TDEMI con respecto a los requisitos definidos en los estándares internacionales paramediciones EMI. Además, se ha demostrado que los sistemas de medición Full TDEMI ofrecen ventajas en comparación con los receptores de barrido convencionales para realizar varias medidas desafiantes típicas de las evaluaciones de emisiones electromagnéticas. Por ejemplo, las capturas de dominio de tiempo posibilitan mediciones de espectro completo que permiten un análisis adecuado de fenómenos transitorios. Del mismo modo, la cantidad de canales disponibles en la mayoría de los osciloscopios hace viables múltiples mediciones síncronas que para registrar las perturbaciones interferentes mediante una combinación de transductores. Algunas de las aplicaciones de la medición EMI multicanal son la evaluación de etapa única de la EMI conducida de todas las líneas de alimentación de los equipos bajo prueba (EUT), la medición instantánea del voltaje del ruido en modo común y en modo diferencial, las mediciones concurrentes de la EMI conducida y radiada y la paralelización de los ensayos de emisiones radiadas con múltiples antenas. Tales métodos de prueba alternativos, han mejorado significativamente el proceso de prueba de EMC en una variedad de industrias al reducir la cantidad de tiempo y los esfuerzos necesarios para realizar una evaluación completa del sistema principalmente debido a las siguientes razones. En primer lugar, las mediciones de EMI en el dominio del tiempo arrojan resultados más rápidos porque el espectro de interferencias se estima simultáneamente para todos los detectores de ponderación estándar necesarios para determinar el cumplimiento de los límites máximos de emisiones definidos en las respectivas normas de producto. En segundo lugar, el número de iteraciones de medición se reduce debido a las posibilidades multicanal y también debido a una identificación ágil del peor caso de las emisiones de un EUT que tiene diferentes modos de funcionamiento. En tercer lugar, el sistema Full TDEMI es una alternativa económica y versátil a los analizadores de espectro en tiempo real más avanzados en lo concerniente a mediciones EMI en el rango de pocos gigahertzios. Desde el punto de vista teórico, los sistemas de medición Full TDEMI han extendido el estado del arte, como en el caso de un par de contribuciones denominadas el detector de máximo esperado y la descomposición empírica de interferencias. El detector de máximo esperado es una medida estadística del nivel más probable de las emisiones pico que se basa en un modelado tiempo-frecuencia de las interferencias medidas utilizando la teoría del valor extremo. Usando la información de variabilidad del nivel de interferencia en cada componente de frecuencia, el detector de máximo esperado se puede usar para estimar el valor de retención máximo (max-hold) equivalente de una interferencia aleatoria. El detector demáximo esperado también proporciona un modelo que cuantifica la incertidumbre de lamedición del detector de picos ante interferencias estocásticas. La descomposición de interferencia empírica (EID) es una implementación modificada de la transformada de Hilbert-Huang con capacidades de sincronización de tiempo que permiten una determinación heurística de patrones oscilatorios característicos sin requerir transformación de dominio ni un conjunto predefinido de funciones base. La descomposición de la interferencia empírica se ha utilizado con éxito para la cancelación del ruido ambiental durante prueba de concepto de mediciones de EMI de al aire libre, obteniendo más de 20 dB de atenuación de las señales habituales de radiodifusión. El fundamento de la cancelación del ruido ambiental mediante EID es la identificación, en el tiempo y en el dominio de la frecuencia, de los modos de emisión intrínsecos que son atribuibles al EUT al restar los modos residuales (ruido ambiental) de los resultados de medición. Las contribuciones mencionadas se distribuyen en cuatro artículos de revista. Los resultados de medición complementarios y las aplicaciones de los sistemas de medición Full TDEMI también se han publicado en conferencias notables en el área. Por los motivos antes mencionados, la tecnología Full TDEMI tiene ventajas significativas para los ensayos, el análisis y la resolución de problemas de EMI. Asimismo, proporciona un enfoque complementario a las mediciones típicas completamente enfocadas en el dominio de la frecuencia y exhibe un nivel de madurez que podría permitir su estandarización en los próximos años.
5

Mansoor, Hadi. „Microfabricated electromagnetic actuators for confocal measurements and imaging“. Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44146.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Various optical microscopy techniques have been developed for micrometer level imaging of biological tissue samples. Among those techniques, confocal imaging provides superior image contrast and high resolution with a modest system cost. Confocal microscopy allows vertical optical sectioning (imaging a section perpendicular to the surface of tissue) or horizontal optical sectioning (imaging a section parallel to the surface of tissue) and provides high-resolution tissue morphology that is analogous to conventional histopathology images. This has brought up a tremendous potential for guiding surgical biopsies and in vivo non-invasive diagnosis of diseases such as cancer. The challenge in moving microscopic imaging modalities into clinical applications is miniaturization into a form of hand-held devices or catheters for endoscopic applications. In this thesis, micro-fabrication techniques such as Microelectromechanical Systems (MEMS) fabrication process and laser micromachining have been employed to develop magnetic actuators. The actuators are then used to move lenses and optical fibers in order to scan a laser beam across a sample. Lens and fiber actuators are integrated in catheter and hand-held devices for confocal thickness measurement and optical sectioning imaging of biological samples. Thickness measurement is performed by scanning the focal point of a microlens across the thickness of thin films or layered biological tissues and collecting the intensity signal of the single scattering light reflected back from the samples as a function of lens position. A catheter was developed and thickness measurements of polymer layers and biological tissues were demonstrated. The device has optical resolution of 32 µm with expanded uncertainty of measurement of 11.86 µm. Lens and fiber optic actuators have been coupled to form two-dimensional imaging devices. Direct and real-time vertical and horizontal cross-sectional imaging of biological samples has been demonstrated. Vertical imaging is performed by transverse (X-axis) and axial (Z-axis) scanning of a focused laser beam using an optical fiber and a microlens actuator respectively. Horizontal imaging is done by a 2-axis fiber optic scanner. All the developed actuators are driven by electromagnetic forces and require low driving voltages. Confocal imaging of biological samples, with lateral resolution of 1.55 µm, has been demonstrated.
6

McAughey, Kevin L. „High precision measurements for NDE using electromagnetic sensors“. Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/72801/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kim, Jerry. „Through-the-wall imaging from electromagnetic scattered field measurements“. Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion.exe/07Mar%5FKim%5FJerry.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (M.S. in Physics)--Naval Postgraduate School, March 2007.
Thesis Advisor(s): Brett Borden, Gamani Karunasiri. "March 2007." Includes bibliographical references (p. 97-99). Also available in print.
8

Karlsson, Roger. „Theory and Applications of Tri-Axial Electromagnetic Field Measurements“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5916.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bukowski, Edward F., T. Gordon Brown, Tim Brosseau und Fred J. Brandon. „In-Bore Acceleration Measurements of an Electromagnetic Gun Launcher“. International Foundation for Telemetering, 2008. http://hdl.handle.net/10150/606161.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California
The US Army Research Laboratory has been involved in the design and implementation of electromagnetic gun technology for the past several years. One of the primary factors of this research is an accurate assessment of in-bore structural loads on the launch projectiles. This assessment is essential for the design of mass-efficient launch packages for electromagnetic guns. If not properly accounted for, projectile failure can result. In order to better understand the magnitude of the in-bore loads, a data-recorder was integrated with an armature and on-board payload that included tri-directional accelerometers and magnetic field sensors. Several packages were launched from an electromagnetic railgun located at Aberdeen Proving Ground, MD. Substantial effort was placed on soft-catching the rounds in order to facilitate data recovery. Analysis of the recovered data provided acceleration and magnetic field data acquired during the launch event.
10

Dorai, Sriram. „Electromagnetic modelling of UTP cables for non-contact measurements“. Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.706081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Electromagnetic measurements":

1

Burnside, C. D. Electromagnetic distance measurement. 3. Aufl. Oxford: BSP Professional Books, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Susko, Michael. Wind measurements by electromagnetic probes. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wessel-Berg, Tore. Electromagnetic and Quantum Measurements. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

1959-, Cravey Robin Lee, und Langley Research Center, Hrsg. Dielectric property measurements in the Electromagnetic Properties Measurement Laboratory. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Haus, Hermann A. Electromagnetic Noise and Quantum Optical Measurements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04190-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Haus, Hermann A. Electromagnetic Noise and Quantum Optical Measurements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bienkowski, Pawel. Electromagnetic measurements in the near field. 2. Aufl. Raleigh, NC: SciTech Pub., 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

1935-, Miller E. K., Hrsg. Time-domain measurements in electromagnetics. New York: Van Nostrand Reinhold, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gajewski, Juliusz B. Electrostatic induction in two-phase gas-solid flow measurements: 50 years of a measurement method. Wroclaw: Oficyna Wydawnicza Politechniki Wroclawskiej, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kodali, V. Prasad. Engineering electromagnetic compatibility: Principles, measurements, and technologies. New York: IEEE Press, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Electromagnetic measurements":

1

Hirao, Masahiko, und Hirotsugu Ogi. „Acoustoelastic Stress Measurements“. In Electromagnetic Acoustic Transducers, 233–69. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56036-4_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Favennec, Pierre-noël. „Electromagnetic Environment“. In Measurements using Optic and RF Waves, 1–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118586228.ch1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wessel-Berg, Tore. „Neoclassical Electromagnetics“. In Electromagnetic and Quantum Measurements, 39–74. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wessel-Berg, Tore. „The Causal Enigma“. In Electromagnetic and Quantum Measurements, 1–9. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wessel-Berg, Tore. „Questioning Stern-Gerlach“. In Electromagnetic and Quantum Measurements, 265–75. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wessel-Berg, Tore. „Photon Tunneling—Superluminal Velocity?“ In Electromagnetic and Quantum Measurements, 277–87. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wessel-Berg, Tore. „Delayed Choice Interferometric Experiments“. In Electromagnetic and Quantum Measurements, 289–314. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wessel-Berg, Tore. „The Famous EPR Paradox“. In Electromagnetic and Quantum Measurements, 315–36. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wessel-Berg, Tore. „Quantum Bases-Neoclassical View“. In Electromagnetic and Quantum Measurements, 337–61. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wessel-Berg, Tore. „Photons in Bitemporal Microcosm“. In Electromagnetic and Quantum Measurements, 11–38. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Electromagnetic measurements":

1

„Electromagnetic measurements. Microwave measurement“. In 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2017. http://dx.doi.org/10.1109/rsemw.2017.8103683.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Stecher. „Measurement uncertainty in EMI emission measurements“. In Proceedings of International Symposium on Electromagnetic Compatibility. IEEE, 1997. http://dx.doi.org/10.1109/elmagc.1997.617139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Manzur, Tariq, Xuejun Lu, Yifei Li, Michael J. Benker und Lucio De Pra. „Nanophotonics in electromagnetic measurements“. In Quantum Sensing and Nano Electronics and Photonics XVIII, herausgegeben von Manijeh Razeghi. SPIE, 2022. http://dx.doi.org/10.1117/12.2601722.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

„Session TC3: Electromagnetic Measurements 1“. In 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings. IEEE, 2005. http://dx.doi.org/10.1109/imtc.2005.1604098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

„Session TC4: Electromagnetic Measurements 2“. In 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings. IEEE, 2005. http://dx.doi.org/10.1109/imtc.2005.1604128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gao, Xiaofeng, Shihong Yue, Ziqiang Cui, Mingliang Ding, Qi Li und Huaxiang Wang. „Optimal Measurements of Electromagnetic Flowmeter“. In 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2019. http://dx.doi.org/10.1109/i2mtc.2019.8827151.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

M. Malik, Qamar, Brigida R.P. da Rocha, Robert Marsden und Michael S. King. „Permeability Prediction from Electromagnetic Measurements“. In 5th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 1997. http://dx.doi.org/10.3997/2214-4609-pdb.299.253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Moskaletz, Oleg D. „Electromagnetic signals and spectral measurements“. In SPIE Proceedings, herausgegeben von Vadim E. Privalov. SPIE, 2007. http://dx.doi.org/10.1117/12.725613.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Norgard, J., D. Metzger, R. Sega, M. Harrison, R. Komar, H. Pohle, A. Schmelzel et al. „Infrared measurements of electromagnetic fields“. In 1992 Quantitative InfraRed Thermography. QIRT Council, 1992. http://dx.doi.org/10.21611/qirt.1992.048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kawaji, Nagashima, Kikuchi, Wakabayashi, Inagaki, Kinoshita, Yoshihiro und Yamanouchi. „Quantized Hall Resistance Measurements“. In Conference on Precision Electromagnetic Measurements. IEEE, 1988. http://dx.doi.org/10.1109/cpem.1988.671305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Electromagnetic measurements":

1

Jones, Chriss A. Stripline resonator for electromagnetic measurements of materials. Gaithersburg, MD: National Bureau of Standards, 1998. http://dx.doi.org/10.6028/nist.tn.1505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Palacky, G. J., und L. E. Stephens. Electromagnetic Measurements On the Beaufort Shelf, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/133567.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

McGahan, Robert V. Scattering Experiments at the Ipswich Electromagnetic Measurements Facility: Swept Bistatic Angle Measurement System. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada274060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Aurand, J. F. Measurements of transient electromagnetic propagation through concrete and sand. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/380334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Matthews, P., Y. Kang, T. Berenc, R. Kustom, T. Willke und A. Feinerman. Electromagnetic field measurements on a mm-wave linear accelerator. Office of Scientific and Technical Information (OSTI), Juli 1994. http://dx.doi.org/10.2172/10165941.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Reil, K. Measurements of the Fluorescence Light Yield in Electromagnetic Showers. Office of Scientific and Technical Information (OSTI), März 2005. http://dx.doi.org/10.2172/839935.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Coburn, William O., Calvin Le und Harry Martin. Electromagnetic Field Measurements Near a Single-Stage Reconnection Gun. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada293346.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Camell, D. G., Robert T. Johnk, Galen H. Koepke, David R. Novotny und Chriss A. Grosvenor. Electromagnetic airframe penetration measurements of a Beechraft Premier IA. Gaithersburg, MD: National Bureau of Standards, 2008. http://dx.doi.org/10.6028/nist.tn.1548.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Camell, D. G., Seturnino Canales, Robert T. Johnk, Galen H. Koepke, David R. Novotny und Chriss A. Grosvenor. Electromagnetic airframe penetration measurements of the FAA's 737-200. Gaithersburg, MD: National Bureau of Standards, 2010. http://dx.doi.org/10.6028/nist.tn.1549.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sheffield, S. A., R. L. Gustavsen, L. G. Hill und R. R. Alcon. Electromagnetic gauge measurements of shock initiating PBX9501 and PBX9502 explosives. Office of Scientific and Technical Information (OSTI), Dezember 1998. http://dx.doi.org/10.2172/350871.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie