Auswahl der wissenschaftlichen Literatur zum Thema „Electromagnetic dispersive media“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electromagnetic dispersive media" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Electromagnetic dispersive media"

1

Hillion, P. „Electromagnetic Pulses in Dispersive Media“. Progress In Electromagnetics Research 18 (1998): 245–60. http://dx.doi.org/10.2528/pier97050700.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hillion, P. „Electromagnetic Pulses in Dispersive Media“. Journal of Electromagnetic Waves and Applications 12, Nr. 5 (Januar 1998): 587. http://dx.doi.org/10.1163/156939398x00133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Phelps, A. D. R. „Electromagnetic Processes in Dispersive Media“. Journal of Modern Optics 40, Nr. 1 (Januar 1993): 183. http://dx.doi.org/10.1080/09500349314550171.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cairns, R. A. „Electromagnetic Process in Dispersive Media“. Journal of Modern Optics 40, Nr. 11 (November 1993): 2311. http://dx.doi.org/10.1080/09500349314552311.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hillion, P. „Electromagnetic Pulse Propagation in Dispersive Media“. Progress In Electromagnetics Research 35 (2002): 299–314. http://dx.doi.org/10.2528/pier02021703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jiang, Yimin, und Mario Liu. „Electromagnetic force in dispersive and transparent media“. Physical Review E 58, Nr. 5 (01.11.1998): 6685–94. http://dx.doi.org/10.1103/physreve.58.6685.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Crenshaw, Michael E. „Electromagnetic energy in dispersive magnetodielectric linear media“. Journal of Physics B: Atomic, Molecular and Optical Physics 39, Nr. 1 (05.12.2005): 17–25. http://dx.doi.org/10.1088/0953-4075/39/1/003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Beezley, R. S., und R. J. Krueger. „An electromagnetic inverse problem for dispersive media“. Journal of Mathematical Physics 26, Nr. 2 (Februar 1985): 317–25. http://dx.doi.org/10.1063/1.526661.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hillion, P. „Electromagnetic Pulse Propagation in Dispersive Media - Abstract“. Journal of Electromagnetic Waves and Applications 16, Nr. 10 (Januar 2002): 1393–94. http://dx.doi.org/10.1163/156939302x00039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Capsalis, C. N., N. K. Uzunoglu und D. J. Frantzeskakis. „PROPAGATION OF ELECTROMAGNETIC WAVES IN NONLINEAR DISPERSIVE MEDIA“. Electromagnetics 9, Nr. 3 (Januar 1989): 273–80. http://dx.doi.org/10.1080/02726348908915239.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Electromagnetic dispersive media"

1

McCormack, Matthew. „Propagation of electromagnetic waves in spatially dispersive inhomogeneous media“. Thesis, Lancaster University, 2014. http://eprints.lancs.ac.uk/74368/.

Der volle Inhalt der Quelle
Annotation:
Spatial dispersion is the effect where media respond not only to a signal at one particular point, but to signals in an area around that point. While temporal dispersion is a well studied topic, spatial dispersion is relatively unexplored. This thesis investigates the behaviour of electromagnetic waves in spatially dispersive, inhomogeneous media. In particular, two types of inhomogeneity are considered: media formed from two homogeneous regions with a common interface, and those with a periodic structure. For a material made of two homogeneous regions joined together we establish a set of boundary conditions to describe the behaviour of waves at this interface. These boundary conditions are additional to the standard ones provided by Maxwell’s equations. The conditions found are shown to reduce to those established previously by Pekar in the case of a boundary between a spatially dispersive region and a purely temporally dispersive region. The polarisation is also found for a spatially dispersive medium with periodic structure. Numeric solutions are found and non-divergent modes are identified. Analytic solutions are also found for small magnitudes of the inhomogeneity. Most interestingly these results show that, for certain conditions, there exist coupled mode solutions. This is an unusual phenomena which arises as a result of the spatial dispersion in the system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rosas, Martinez Luis. „Study of two wave propagation problems in electromagnetic dispersive media : 1) Long-time stability analysis in Drude-Lorentz media; 2) Transmission between a slab of metamaterial on a dielectric“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAE011.

Der volle Inhalt der Quelle
Annotation:
Cette thèse traite de deux problèmes indépendants liés aux phénomènes de propagation des ondes dans les milieux dispersifs. Dans la première partie, nous étudions le comportement en temps long des solutions des équations de Maxwell dans des milieux dissipatifs généralisés de Drude-Lorentz. Plus précisément, nous souhaitons quantifier les pertes dans de tels milieux à l'aide du taux de décroissance de l'énergie électromagnétique pour le problème de Cauchy correspondant. Cette première partie est elle-même composée de deux approches. La première, l'approche par fonctions de Lyapunov en fréquence, consiste à obtenir une inégalité différentielle (en temps) pour certaines fonctionnelles de la solution, les fonctions de Lyapunov L(k) où k désigne la fréquence spatiale. Les estimations de stabilité sont ensuite obtenues par l'intégration en temps de l'inégalité différentielle. En développant cette méthode, nous obtenons un résultat de stabilité polynomiale sous des hypothèses de dissipation fortes. La deuxième approche, l'approche modale, exploite les propriétés spectrales de l'opérateur hamiltonien apparaissant dans le problème de Cauchy. Cette dernière approche améliore la première en autorisant des hypothèses de dissipation faibles. Dans la deuxième partie du travail, nous nous intéressons au problème de transmission d'une couche de métamatériau de Drude non dissipatif dans un milieu diélectrique. Dans ce contexte, nous considérons les équations de Maxwell temporelles bidimensionnel en polarisation TM et nous les reformulons en une équation de Schrödinger dont le Hamiltonien, A, est un opérateur autoadjoint non borné. La transformation de Fourier nous permet de travailler avec des Hamiltoniens réduits A(k), k ∈ R. Enfin, nous nous intéressons au spectre ponctuel du Hamiltonien réduit qui est lié aux modes guidés du problème original. Cette étude débouche sur une relation de dispersion dont la difficulté réside dans son caractère hautement non linéaire par rapport au paramètre spectral. Nous prouvons l'existence d'une infinité dénombrable de branches de solutions pour la relation de dispersion : les courbes de dispersion. Nous donnons une analyse précise de ces courbes et mettons en lumière, notamment, l'existence d'ondes guidées correspondant à des palsmons surface
This PhD thesis addresses two independent problems related to wave propagation phenomena in dispersive media. In the first part, we investigate the long-time behavior of solutions of Maxwell’s equations in dissipative generalized Drude-Lorentz media. More precisely, we wish to quantify the loss in such media in terms of the decay rate of the electromagnetic energy for the corresponding Cauchy problem. This first part is in turn composed by two approaches. The first one, namely, the frequency dependent Lyapunov approach, consists in deriving a differential inequality (in time) for certain functionals of the solution, the Lyapunov functions L(k), where k is the spatial frequency. The stability estimates are then obtained from the time integration of the differential inequality. By developing this method, we obtain a polynomial stability result under strong dissipative assumptions. The second approach, the modal approach, exploits the spectral properties of the Hamiltonian operator appearing in the Cauchy problem. This last approach ameliorates the first one by considering weak dissipation assumptions. In the second part of the work, we are interested in the transmission problem of a slab of non-dissipative Drude metamaterial within a dielectric. In this context, we consider the TM two dimensional time-dependent Maxwell’s equations and we reformulate it into a Schrödinger equation whose Hamiltonian, A, is a unbounded self-adjoint operator. Fourier transform allow us to work with the reduced Hamiltonians A(k), k ∈ R. Finally, we are interested in the point spectrum of the reduced Hamiltonian which is related to the guided modes of the original problem. This study leads to a diseprsion relation whose difficulty lies in its highly non-linear character with respect to the spectral parameter. We prove the existence of a countable infinity of solution branches for the dispersion relation: the so-called dispersion curves. We give a precise analysis of these curves and enlighten the existence of guided waves which correspond to surface plasmons
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Azam, Md Ali. „Wave reflection from a lossy uniaxial media“. Ohio : Ohio University, 1995. http://www.ohiolink.edu/etd/view.cgi?ohiou1179854582.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Janeiro, Fernando M. „Quiralidade e Não-Linearidade em Fibras Ópticas“. Doctoral thesis, IST, 2004. http://hdl.handle.net/10174/2008.

Der volle Inhalt der Quelle
Annotation:
This thesis addresses the effects of chirality and nonlinearity in fiber optics. Most photonic applications are based on conventional optical fibers in the linear regime. Although nonlinear effects in fiber optics have been extensively studied, that is not the case with chirality. In fact, the study of chirality in fiber optics is in its very early stages. Maxwell’s equations are unified with Einstein’s special theory of relativity through a tensor formulation of classical electrodynamics. Through the study of a moving dielectric medium the general concept of bianisotropic media is introduced. A modified Lorentz model, based on the dipole response of a single helix, is developed. This model is used to obtain the dispersion behavior of the constitutive parameters of chiral isotropic media (also known as optically active media). The study of propagation in a symmetric planar chirowaveguide naturally evolves into the analysis of the propagation characteristics of chiral optical fibers. Dispersion diagrams for guided modes, surface and semileaky, are presented. Radiation loss in semileaky modes is also analyzed. Semileaky modes in chirowaveguides are physically explained through the study of the reflection problem at a planar interface between chiral media. Propagation of solitary waves is studied in the framework of multichannel nonlinear optical communication systems with dispersion management. A Lagrangian formulation is developed in order to obtain optimal dispersion maps for both filtered and unfiltered optical communication systems. A good agreement between the results obtained using this variational approach and the Split-Step Fourier Method was found.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chen, Poting, und 陳博亭. „Lattice Boltzmann Model for Electromagnetic Waves in Dispersive Media“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/70808340344700971976.

Der volle Inhalt der Quelle
Annotation:
碩士
國立中正大學
機械工程學系暨研究所
99
An extended lattice Boltzmann modeling with special forcing terms for one-dimensional Maxwell equations exerting on a dispersive medium is presented in this thesis. The time dependent dispersive effect is obtained by the inverse Fourier transform of the frequency-domain permittivity and is incorporated into the evolution equations of LBM via an equivalent forcing effect. The Chapman-Enskog multi-scale analysis is employed to make sure the proposed scheme is mathematically consistent with the targeted Maxwell’s equations. The numerical accuracy was then confirmed by comparing the LBM results with those from the FDTD. Results show that the numerical values for the frequency-dependent reflection coefficients at the air/water interface as well as the reflection and transmission coefficients at the vacuum/plasma interface obtained by these two methods were all in excellent agreement compared with the exact solutions. The present model can be used for dispersive media described by the Debye, Drude and Lorentz models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wang, Yu-Chieh, und 王豫潔. „Prediction of electromagnetic wave propagation in three-dimensional dispersive media“. Thesis, 2014. http://ndltd.ncl.edu.tw/handle/17582476103033237197.

Der volle Inhalt der Quelle
Annotation:
碩士
國立臺灣大學
工程科學及海洋工程學研究所
102
An explicit finite-difference scheme for solving the three-dimensional Maxwell''s equations in staggered grids is presented in time domain. The aim of this thesis is to solve the Faraday''s and Ampere''s equations in time domain within the discrete zero-divergence context for the electric and magnetic fields (or Gauss''s law). The local conservation laws in Maxwell''s equations are also numerically preserved all the time using proposed the explicit second-order accurate symplectic partitioned Runge-Kutta temporal scheme. Following the method of lines, the spatial derivative terms in the semi-discretized Faraday''s and Ampere''s equations are then properly discretized to get a dispersively very accurate solution. To achieve the goal of getting the best dispersive characteristics, this centered scheme minimizes the difference between the exact and numerical phase velocities with good rates of convergence are demonstrated for the problem. The significant dispersion and anisotropy errors manifested normally in finite difference time domain methods are therefore much reduced. The dual-preserving (symplecticity and dispersion relation equation) wave solver is numerically demonstrated to be efficient for use to get in particular long-term accurate Maxwell''s solutions. The emphasis of this study is also placed on the accurate modelling of EM waves in the dispersive media of the Debye, Lorentz and Drude types. Through the computational exercises, the proposed dual-preserving solver is computationally demonstrated to be efficient for use to predict the long-term accurate Maxwell''s solutions for the media of frequency independent and dependent types.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Keefer, Olivia A. „Operator splitting methods for Maxwell's equations in dispersive media“. Thesis, 2012. http://hdl.handle.net/1957/30019.

Der volle Inhalt der Quelle
Annotation:
Accurate modeling and simulation of wave propagation in dispersive dielectrics such as water, human tissue and sand, among others, has a variety of applications. For example in medical imaging, electromagnetic waves are used to interrogate human tissue in a non-invasive manner to detect anomalies that could be cancerous. In non-destructive evaluation of materials, such interrogation is used to detect defects in these materials. In this thesis we present the construction and analysis of two novel operator splitting methods for Maxwell's equations in dispersive media of Debye type which are used to model wave propagation in polar materials like water and human tissue. We construct a sequential and a symmetrized operator splitting scheme which are first order, and second order, respectively, accurate in time. Both schemes are second order accurate in space. The operator splitting methods are shown to be unconditionally stable via energy techniques. Their accuracy and stability properties are compared to established schemes like the Yee or FDTD scheme and the Crank-Nicolson scheme. Finally, results of numerical simulations are presented that confirm the theoretical analysis.
Graduation date: 2012
Access restricted to the OSU Community at author's request from June 20, 2012 - Dec. 20, 2012
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Electromagnetic dispersive media"

1

Melrose, D. B. Electromagnetic processes in dispersive media: A treatment based on the dielectric tensor. Cambridge [England]: Cambridge University Press, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

McPhedran, R. C., und D. B. Melrose. Electromagnetic Processes in Dispersive Media. Cambridge University Press, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

McPhedran, R. C., und D. B. Melrose. Electromagnetic Processes in Dispersive Media. Cambridge University Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

McPhedran, R. C., und D. B. Melrose. Electromagnetic Processes in Dispersive Media. Cambridge University Press, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Oughstun, Kurt E. Electromagnetic and Optical Pulse Propagation 1: Spectral Representations in Temporally Dispersive Media. Springer, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Electromagnetic And Optical Pulse Propagation 1 Spectral Representations In Temporally Dispersive Media. Springer, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Oughstun, Kurt E. Electromagnetic and Optical Pulse Propagation 1: Spectral Representations in Temporally Dispersive Media (Springer Series in Optical Sciences). Springer, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Oughstun, Kurt E. Electromagnetic and Optical Pulse Propagation 2: Temporal Pulse Dynamics in Dispersive, Attenuative Media. Springer London, Limited, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Oughstun, Kurt E. Electromagnetic and Optical Pulse Propagation 2: Temporal Pulse Dynamics in Dispersive, Attenuative Media. Springer, 2018.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Electromagnetic and Optical Pulse Propagation 2: Temporal Pulse Dynamics in Dispersive, Attenuative Media. Springer, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Electromagnetic dispersive media"

1

Kamberaj, Hiqmet. „Electromagnetic Waves in Dispersive Media“. In Undergraduate Texts in Physics, 359–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96780-2_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Stancil, Daniel D. „Electromagnetic Waves in Anisotropic Dispersive Media“. In Theory of Magnetostatic Waves, 60–88. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9338-2_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Stancil, Daniel D., und Anil Prabhakar. „Electromagnetic Waves in Anisotropic-Dispersive Media“. In Spin Waves, 111–37. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77865-5_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Stancil, Daniel D., und Anil Prabhakar. „Electromagnetic Waves in Anisotropic Dispersive Media“. In Spin Waves, 67–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68582-9_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Keqian, und Dejie Li. „Chapter 7 Electromagnetic Waves in Dispersive Media“. In Electromagnetic Theory for Microwaves and Optoelectronics, 433–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03553-5_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shvartsburg, A. B. „Anharmonic Alternating Electromagnetic Fields in Dispersive Materials“. In Impulse Time-Domain Electromagnetics of Continuous Media, 1–35. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-0773-3_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dvorak, Steven L., und Donald G. Dudley. „Propagation of UWB Electromagnetic Pulses Through Dispersive Media“. In Ultra-Wideband, Short-Pulse Electromagnetics 2, 297–304. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1394-4_31.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Petropoulos, Peter G. „Wave Hierarchies for Propagation in Dispersive Electromagnetic Media“. In Ultra-Wideband, Short-Pulse Electromagnetics 2, 351–54. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1394-4_37.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Oughstun, Kurt E. „Pulsed Electromagnetic and Optical Beam WaveFields in Temporally Dispersive Media“. In Springer Series in Optical Sciences, 1–93. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b97737_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Oughstun, Kurt E. „Pulsed Electromagnetic and Optical Beam WaveFields in Temporally Dispersive Media“. In Springer Series in Optical Sciences, 1–93. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0149-1_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Electromagnetic dispersive media"

1

S. Svetov, B., und V. V. Ageev. „Electromagnetic sounding of frequency dispersive media“. In 58th EAEG Meeting. Netherlands: EAGE Publications BV, 1996. http://dx.doi.org/10.3997/2214-4609.201408665.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

IOANNIDIS, A. D., I. G. STRATIS und A. N. YANNACOPOULOS. „ELECTROMAGNETIC WAVE PROPAGATION IN DISPERSIVE BIANISOTROPIC MEDIA“. In Proceedings of the Sixth International Workshop. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702593_0031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ijjeh, Abdelrahman, Michel M. Ney und Francesco Andriulli. „Dispersion analysis in time-domain simulation of complex dispersive media“. In 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE, 2015. http://dx.doi.org/10.1109/nemo.2015.7415016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

M. Kamenetsky, F., und P. V. Novikov. „Analog-Scale Modelling Transient Electromagnetic Field in Dispersive Media“. In 57th EAEG Meeting. Netherlands: EAGE Publications BV, 1995. http://dx.doi.org/10.3997/2214-4609.201409532.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mikki, Said M., und Ahmed A. Kishky. „Electromagnetic wave propagation in dispersive negative group velocity media“. In 2008 IEEE MTT-S International Microwave Symposium Digest - MTT 2008. IEEE, 2008. http://dx.doi.org/10.1109/mwsym.2008.4633139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shubitidze, Ph, R. Jobava, R. Beria, I. Shamatava, R. Zaridze und D. Karkashadze. „Application of FDTD to dispersive media“. In Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. Proceedings of 4th International Seminar/Workshop. DIPED - 99. IEEE, 1999. http://dx.doi.org/10.1109/diped.1999.822141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhang Zihua und Zhong Zhiying. „Effect of chirp on light pulse propagation in dispersive media“. In Proceedings of International Symposium on Electromagnetic Compatibility. IEEE, 1997. http://dx.doi.org/10.1109/elmagc.1997.617070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chen, Penghui, Xiaojian Xu, Qingsheng Zeng und Mustapha C. E. Yagoub. „Time domain analysis of waves in layered lossy dispersive media“. In 2012 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC). IEEE, 2012. http://dx.doi.org/10.1109/apemc.2012.6238019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

V. Novikov, P. „Physical modelling electromagnetic field in dispersive media and criteria of similarity“. In 58th EAEG Meeting. Netherlands: EAGE Publications BV, 1996. http://dx.doi.org/10.3997/2214-4609.201408664.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chufo, Robert. „An electromagnetic noncontacting sensor for thickness measurement in a dispersive media“. In Conference on Intelligent Robots in Factory, Field, Space, and Service. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Electromagnetic dispersive media"

1

Banks, H. T., und M. W. Buksas. A Semigroup Formulation for Electromagnetic Waves in Dispersive Dielectric Media. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada446033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Oughstun, Kurt E., und Natalie A. Cartwright. A Research Program on the Asymptotic Description of Electromagnetic Pulse Propagation in Spatially Inhomogeneous, Temporally Dispersive, Attenuative Media. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada474484.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yakura, S. J., und Jeff MacGillivray. Finite-Difference Time-Domain Calculations Based on Recursive Convolution Approach for Propagation of Electromagnetic Waves in Nonlinear Dispersive Media. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1997. http://dx.doi.org/10.21236/ada336967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Oughston, Kurt. The Asymptotic Theory of the Reflection and Transmission of a Pulsed Electromagnetic Beam Field at a Planar Interface Separating Two Dispersive Media. Fort Belvoir, VA: Defense Technical Information Center, März 1993. http://dx.doi.org/10.21236/ada269033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie