Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electromagnetic calculation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electromagnetic calculation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electromagnetic calculation"
Viktorov, V. A. „METHODOLOGY FOR CALCULATING ELECTROMAGNETIC FIELDS GENERATED BY AN AUTOMATED WORKPLACE OF AN OBJECT OF INFORMATIZATION“. RADIO COMMUNICATION TECHNOLOGY, Nr. 46 (30.09.2020): 30–44. http://dx.doi.org/10.33286/2075-8693-2020-46-30-44.
Der volle Inhalt der QuellePodgornovs, Andrejs, und Antons Sipovichs. „Electromechanical Battery EMB Mass Minimization taking into Account its Electrical Machines Rotor Energy“. Electrical, Control and Communication Engineering 7, Nr. 1 (01.12.2014): 5–10. http://dx.doi.org/10.1515/ecce-2014-0017.
Der volle Inhalt der QuelleOrlov, S. A. „PHOTON MASS“. International Journal of Research -GRANTHAALAYAH 6, Nr. 3 (31.03.2018): 49–54. http://dx.doi.org/10.29121/granthaalayah.v6.i3.2018.1497.
Der volle Inhalt der QuelleDing, Feng, Yunyun Gao und Jianhui Tian. „A Novel Method for Output Characteristics Calculation of Electromagnetic Devices using Multi-kernel RBF Neural Network“. Applied Computational Electromagnetics Society 35, Nr. 8 (07.10.2020): 855–63. http://dx.doi.org/10.47037/2020.aces.j.350802.
Der volle Inhalt der QuelleGoby, F., und A. Razek. „Numerical calculation of electromagnetic forces“. Mathematics and Computers in Simulation 29, Nr. 5 (Oktober 1987): 343–50. http://dx.doi.org/10.1016/0378-4754(87)90069-3.
Der volle Inhalt der QuelleLu, Ying, Zhibin Zhao, Jian gong Zhang und Zheyuan Gan. „Analysis on the Influence of the Height of Tower on Passive Interference in shortwave“. E3S Web of Conferences 64 (2018): 05005. http://dx.doi.org/10.1051/e3sconf/20186405005.
Der volle Inhalt der QuelleWu, Xiao Yu, Zhe Ming Chen und Ze Hao Huang. „Analysis and Calculation of Electromagnetic Torque for the Voltage Source Traction Motors“. Applied Mechanics and Materials 446-447 (November 2013): 672–77. http://dx.doi.org/10.4028/www.scientific.net/amm.446-447.672.
Der volle Inhalt der QuelleGurova, Elena G. „Eddy Current Impact Estimation in Designing Vibroisolator with 3D Electromagnetic Stiffness Compensator“. Applied Mechanics and Materials 792 (September 2015): 519–23. http://dx.doi.org/10.4028/www.scientific.net/amm.792.519.
Der volle Inhalt der QuelleLi, Yong Gang, Guo Wei Zhou, Yu Ca Wu und He Ming Li. „Impact of Rotor Inter-Turn Short-Circuit on Generator Rotor Force“. Applied Mechanics and Materials 143-144 (Dezember 2011): 125–31. http://dx.doi.org/10.4028/www.scientific.net/amm.143-144.125.
Der volle Inhalt der QuelleHuang, Lei, Huang Xin Cheng und Mei Wang. „Study on Selection Method of Analogy Line in High Voltage Transmission Project Environmental Impact Assessment“. Applied Mechanics and Materials 209-211 (Oktober 2012): 1126–30. http://dx.doi.org/10.4028/www.scientific.net/amm.209-211.1126.
Der volle Inhalt der QuelleDissertationen zum Thema "Electromagnetic calculation"
Manolatou, Christina. „Calculation of effective electromagnetic parameters of helix loaded composites“. Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36970.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 101-104).
by Christina Manolatou.
M.S.
Xu, Xiaoming. „New approximations in finite element calculation in high frequency“. Thesis, London South Bank University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245127.
Der volle Inhalt der QuelleSargeant, Adam J. „Systematic semiclassical calculation of Coulomb excitation observables“. Thesis, University of Surrey, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244783.
Der volle Inhalt der QuelleIrenji, Neamat Taghizadeh. „Calculation of electromagnetic rotor losses in high-speed permanent magnet machines“. Thesis, University of Southampton, 1998. https://eprints.soton.ac.uk/47948/.
Der volle Inhalt der QuelleAti, Modafar K. „Calculation of electromagnetic field problems in large electrical machines using the finite element method“. Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238937.
Der volle Inhalt der QuelleMackenzie, Anne I. Rao S. M. „Paired pulse basis functions and triangular patch modeling for the method of moments calculation of electromagnetic scattering from three-dimensional, arbitrarily-shaped bodies“. Auburn, Ala., 2008. http://hdl.handle.net/10415/1447.
Der volle Inhalt der QuelleSimonazzi, Mattia. „Misalignment tolerant model and force calculation in a resonator array for inductive power transfer“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18981/.
Der volle Inhalt der QuelleBendz, Jon Eskil. „Modelagem, simulação, e visualização imersiva de redes sem fio“. Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-30092008-144928/.
Der volle Inhalt der QuelleImmersive visualizations are very valuable in order to improve the understanding of a variety of physical phenomena that can be modeled numerically and simulated by computers. Amongst the possible applications, we could utilize immersive visualizations as a pedagogical tool for enhanced perception of complex topics, or as a powerful tool that helps engineers interpret the outcome of simulations. This research project approaches the use of immersive visualizations of electromagnetic fields, especially fields generated by wireless networks widely utilized in the everyday life, as is the case for networks of the type IEEE 802.11 (Wi-Fi). For such a purpose this work proposes new methods to three-dimensionally visualize time-varying electromagnetic fields, and distributions of interesting parameters related to wireless networks. To achieve these objectives, a better version of the finite-difference time-domain (FDTD) method is developed: the Coarse Grid Higher Order FDTD (CGHO-FDTD) method. Thus highly accurate, faster and more computationally efficient numerical solutions of Maxwells equations can be obtained. The numerical calculations are made even faster by the use of parallel computing on a cluster of computers. The characteristics of the time domain facilitate the creation of snapshots of the propagating electromagnetic fields, and in this manner it is possible to create three-dimensional figures and animations that can be used to explain some of the following common physical effects found in wireless networks: diffraction, reflection, and attenuation. To further enhance the perception of the physics, immersive visualizations are carried out in a virtual reality environment. Finally, the developed tool can also be used to create highly detailed distributions of important parameters that affect the performance in wireless networks. It is shown that simulations to predict the power distribution in an indoor wireless network of the type IEEE 802.11 (Wi-Fi), agree very well with measurements.
Krahn, Alexander Philipp. „Hardware development to increase NMR sensitivity and spectral resolution by novel rf resonators and polarization transfer“. Lyon, Ecole normale supérieure, 2010. http://www.theses.fr/2010ENSL0561.
Der volle Inhalt der QuelleIn this thesis, methods are investigated to increase the inherently low detection sensitivity of the NMR experiment by an optimization of the detection hardware and by DNP experiments. In the first part, the emphasis is put on the sample coil and the rf circuitry of the NMR probehead, especially for conditions typical in high-field solid-state experiments. Based on a reciprocity principle and by electromagnetic field calculations, generalized coil parameters are derived and used to optimize the geometry of solenoid sample coils. In this context, the problem of fringe electric fields experienced by a sample at high Larmor frequencies is addressed. In the past, this has put severe limitations on the possibility to apply strong decoupling field amplitudes to temperature sensitive and dispersive samples. Resulting from the numerical field analysis of common NMR coils a novel sample coil geometry – the LLC resonator – is presented that significantly reduces the rf electric field in the sample volume. To characterize the novel structure, a comparative numerical and experimental study for a static field of 16. 4 T is demonstrated. In the second part, dedicated resonators are discussed to apply the method of DNP to increase the nuclear spin polarization by polarization transfer from coupled electron spins. The experimental setup of these experiments is challenging and requires the construction of double resonant structures operated at the electron and nuclear Larmor frequencies. An efficient mode-matching method is implemented that allows the calculation of the electromagnetic field distribution inside cylindrical cavities considering explicitly the dielectric properties of the sample. From the set of cavity modes, two potential resonator geometries are derived that are advantageous for two different experimental DNP approaches. Preliminary experimental data are shown that are measured with prototype resonators in a static field of 0. 35 T and 3. 5 T
Gärskog, Gustav. „NUMERICAL CALCULATION METHOD FOR MAGNETIC FIELDS IN THE VICINITY OF CURRENT-CARRYING CONDUCTORS“. Thesis, Uppsala universitet, Elektricitetslära, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353338.
Der volle Inhalt der QuelleBücher zum Thema "Electromagnetic calculation"
Ida, N. Electromagnetics and calculation of fields. New York: Springer-Verlag, 1992.
Den vollen Inhalt der Quelle findenIda, Nathan. Electromagnetics and calculation of fields. 2. Aufl. New York: Springer, 1997.
Den vollen Inhalt der Quelle findenIda, Nathan. Electromagnetics and calculation of fields. New York: Springer-Verlag, 1992.
Den vollen Inhalt der Quelle findenOstreĭko, V. N. Calculation of electromagnetic fields in multilayer media. New York: Gordon and Breach Science Publishers, 1989.
Den vollen Inhalt der Quelle findenHuppunen, Jussi. High-speed solid-rotor induction machine: Electromagnetic calculation and design. Lappeenranta: Lappeenranta University of Technology, 2004.
Den vollen Inhalt der Quelle findenHaase, Heiko. Transmission line super theory: A new approach to an effective calculation of electromagnetic interference. Magdeburg: Otto-von-Guericke-Universität Magdeburg, 2004.
Den vollen Inhalt der Quelle findenIda, Nathan, und João P. A. Bastos. Electromagnetics and Calculation of Fields. Herausgegeben von R. Mittra. New York, NY: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-0526-2.
Der volle Inhalt der QuelleIda, Nathan, und João P. A. Bastos. Electromagnetics and Calculation of Fields. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0661-3.
Der volle Inhalt der QuelleIda, Nathan. Electromagnetics and Calculation of Fields. New York, NY: Springer US, 1992.
Den vollen Inhalt der Quelle findenHafner, Christian. The generalized multipole technique for computational electromagnetics. Boston: Artech House, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Electromagnetic calculation"
Durney, Carl H. „Calculation of Electromagnetic Power Deposition“. In Physics and Technology of Hyperthermia, 152–58. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3597-6_6.
Der volle Inhalt der QuelleLefevre, Yvan, Michel Lajoie-Mazenc und Bernard Davat. „Force Calculation in Electromagnetic Devices“. In Electromagnetic Fields in Electrical Engineering, 231–35. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0721-1_42.
Der volle Inhalt der QuelleIda, Nathan, und João P. A. Bastos. „The Electromagnetic Field and Maxwell’s Equations“. In Electromagnetics and Calculation of Fields, 22–46. New York, NY: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4684-0526-2_2.
Der volle Inhalt der QuelleIda, Nathan, und João P. A. Bastos. „Interaction Between Electromagnetic and Mechanical Forces“. In Electromagnetics and Calculation of Fields, 175–211. New York, NY: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4684-0526-2_6.
Der volle Inhalt der QuelleIda, Nathan, und João P. A. Bastos. „The Electromagnetic Field and Maxwell’s Equations“. In Electromagnetics and Calculation of Fields, 22–46. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0661-3_2.
Der volle Inhalt der QuelleIda, Nathan, und João P. A. Bastos. „Interaction between Electromagnetic and Mechanical Forces“. In Electromagnetics and Calculation of Fields, 175–211. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0661-3_6.
Der volle Inhalt der QuelleIda, Nathan, und João P. A. Bastos. „Wave Propagation and High Frequency Electromagnetic Fields“. In Electromagnetics and Calculation of Fields, 212–64. New York, NY: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4684-0526-2_7.
Der volle Inhalt der QuelleIda, Nathan, und João P. A. Bastos. „Wave Propagation and High-Frequency Electromagnetic Fields“. In Electromagnetics and Calculation of Fields, 212–64. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0661-3_7.
Der volle Inhalt der QuelleHaznadar, Zijad, und Sead Berberovic. „Numerical Field Calculation of Earthing Systems“. In Electromagnetic Fields in Electrical Engineering, 269–74. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0721-1_49.
Der volle Inhalt der QuelleDurney, C. H. „Discussion: Calculation of Electromagnetic Power Deposition“. In Physics and Technology of Hyperthermia, 628–29. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3597-6_32.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electromagnetic calculation"
Huang, Jisheng, Ping Guo, Enxin Xiang, Wei Li, Lingyun Tang und Zhengjie Cai. „Underground Electromagnetic Wave Velocity Calculation Method“. In the 2nd International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3207677.3278086.
Der volle Inhalt der QuelleFan, Tian-Yu, Li-Xin Guo und Zhong-Yu Liu. „Electromagnetic Transmission Calculation in Single Room“. In 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). IEEE, 2019. http://dx.doi.org/10.1109/csqrwc.2019.8799247.
Der volle Inhalt der QuelleHe, Wei, Huafu Li, Limin Feng, Xingtuan Yang, Qiqi He, Jinji Zheng und Tianyi Jiang. „Lightning electromagnetic pulse magnetic field calculation“. In 6th International Conference on Mechatronics, Materials, Biotechnology and Environment (ICMMBE 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmmbe-16.2016.100.
Der volle Inhalt der QuelleLiu, Junyi, Xiaoning Chen, Yunsheng Zhang und Xiaofeng Zhou. „Electromagnetic calculation of cylindrical linear induction motors“. In 2009 5th Asia-Pacific Conference on Environmental Electromagnetics (CEEM 2009). IEEE, 2009. http://dx.doi.org/10.1109/ceem.2009.5303528.
Der volle Inhalt der QuelleSzedenik, N. „Calculation of the induced voltages in large buildings“. In International Conference on Electromagnetic Compatibility. IEE, 1997. http://dx.doi.org/10.1049/cp:19971112.
Der volle Inhalt der QuelleWorshevsky, A. „Calculation of surge attenuation in filters“. In Proceedings of 4th International Symposium on Electromagnetic Compatability. IEEE, 1999. http://dx.doi.org/10.1109/elmagc.1999.801259.
Der volle Inhalt der QuelleZaharchenko, Mikhail, und Yuri Zaharchenko. „The method of electrostatic and electromagnetic fields calculation“. In 2014 20th International Workshop on Beam Dynamics and Optimization (BDO). IEEE, 2014. http://dx.doi.org/10.1109/bdo.2014.6890099.
Der volle Inhalt der QuelleZhao, Zhibin, Xiang Cui, Tiebing Lu und Changzheng Gao. „Calculation of the Transient Electromagnetic Fields in Substation“. In 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. IEEE, 2007. http://dx.doi.org/10.1109/mape.2007.4393772.
Der volle Inhalt der QuelleTikhonova, Olga V., und Anatoliy T. Plastun. „Electromagnetic calculation of induction motor by “ANSYS Maxwell”“. In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2018. http://dx.doi.org/10.1109/eiconrus.2018.8317216.
Der volle Inhalt der QuelleRen, Weihe, Maohui Xia, Li Ying und Yupeng Zhai. „Local orthogonal meshless method in electromagnetic numerical calculation“. In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002432.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Electromagnetic calculation"
Gibson, B. F. Calculation of electromagnetic observables in few-body systems. Office of Scientific and Technical Information (OSTI), Oktober 1986. http://dx.doi.org/10.2172/6930874.
Der volle Inhalt der QuelleCox, Jr, und Larry T. Calculation of Resonant Values of Electromagnetic Energy Incident Upon Dielectric Spheres. Fort Belvoir, VA: Defense Technical Information Center, Februar 1994. http://dx.doi.org/10.21236/ada620844.
Der volle Inhalt der QuelleFry, Edward S., George W. Kattawar und Chia-Ren Hu. Measurement and Calculation of the Stokes or Mueller Matrix for the Scattering of Electromagnetic Radiation from Irregular Particles. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada171502.
Der volle Inhalt der QuelleTesny, Neal. Software Tools for Measuring and Calculating Electromagnetic Shielding Effectiveness. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada439634.
Der volle Inhalt der QuelleRoussel-Dupre, R. Transionospheric propagation calculations for the output of two EMP (electromagnetic pulse) simulators. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6416786.
Der volle Inhalt der QuelleSilberstein, Marian. Application of a Generalized Leibniz Rule for Calculating Electromagnetic Fields within Continuous Source Regions. Fort Belvoir, VA: Defense Technical Information Center, Januar 1989. http://dx.doi.org/10.21236/ada212470.
Der volle Inhalt der QuelleYakura, S. J., und Jeff MacGillivray. Finite-Difference Time-Domain Calculations Based on Recursive Convolution Approach for Propagation of Electromagnetic Waves in Nonlinear Dispersive Media. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1997. http://dx.doi.org/10.21236/ada336967.
Der volle Inhalt der Quelle