Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electromagnetic-Based modeling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electromagnetic-Based modeling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electromagnetic-Based modeling"
Yang, Tian Peng, und Qi Shuang Ma. „MOSFET Modeling Based on Electromagnetic Interference (EMI)“. Applied Mechanics and Materials 268-270 (Dezember 2012): 1299–303. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.1299.
Der volle Inhalt der QuelleShi, Shouyuan, Brandon Redding, Tim Creazzo, Elton Marchena und Dennis W. Prather. „Quantum Electrodynamic Modeling of Silicon-Based Active Devices“. Advances in Optical Technologies 2008 (16.06.2008): 1–11. http://dx.doi.org/10.1155/2008/615393.
Der volle Inhalt der QuelleLiang, Xiao Bin, Fan Tang, Jie Wu und Wei Zhen. „Electromagnetic Parameters Extraction of Electronic Current Transformer Based on Finite Element Modeling“. Advanced Materials Research 1070-1072 (Dezember 2014): 1085–91. http://dx.doi.org/10.4028/www.scientific.net/amr.1070-1072.1085.
Der volle Inhalt der QuelleKaraagac, U., J. Mahseredjian, I. Kocar, G. Soykan und O. Saad. „Partial Refactorization-Based Machine Modeling Techniques for Electromagnetic Transients“. IEEE Transactions on Power Delivery 31, Nr. 5 (Oktober 2016): 2370–78. http://dx.doi.org/10.1109/tpwrd.2016.2529662.
Der volle Inhalt der QuelleChobanyan, Elene, Dragan I. Olcan, Milan M. Ilic und Branislav M. Notaros. „Volume Integral Equation-Based Diakoptic Method for Electromagnetic Modeling“. IEEE Transactions on Microwave Theory and Techniques 64, Nr. 10 (Oktober 2016): 3097–107. http://dx.doi.org/10.1109/tmtt.2016.2598175.
Der volle Inhalt der QuelleHuang, Chao Qun, und Fei Lai. „Modeling and Experimental Investigation on Vehicle Active Suspension Electromagnetic Actuator“. Applied Mechanics and Materials 278-280 (Januar 2013): 303–6. http://dx.doi.org/10.4028/www.scientific.net/amm.278-280.303.
Der volle Inhalt der QuelleMishra, Anand Kumar, Romil Kumar und Somnath Sarangi. „Mathematical Modeling of Electromagnetic Levitation Based Active Suspension Using Bond Graph“. Applied Mechanics and Materials 575 (Juni 2014): 785–89. http://dx.doi.org/10.4028/www.scientific.net/amm.575.785.
Der volle Inhalt der QuelleMarkov, M. B., und S. V. Parot’kin. „Modeling a Stationary Electromagnetic Field Based on the Maxwell Equations“. Mathematical Models and Computer Simulations 13, Nr. 2 (März 2021): 254–62. http://dx.doi.org/10.1134/s2070048221020101.
Der volle Inhalt der QuelleTasic, M., und B. Kolundzija. „Efficient electromagnetic modeling based on automated quadrilateral meshing of polygons“. Engineering Analysis with Boundary Elements 27, Nr. 4 (April 2003): 361–73. http://dx.doi.org/10.1016/s0955-7997(02)00124-8.
Der volle Inhalt der QuelleXueru Bai und Zheng Bao. „Imaging of rotation-symmetric space targets based on electromagnetic modeling“. IEEE Transactions on Aerospace and Electronic Systems 50, Nr. 3 (Juli 2014): 1680–89. http://dx.doi.org/10.1109/taes.2014.120772.
Der volle Inhalt der QuelleDissertationen zum Thema "Electromagnetic-Based modeling"
Minteer, Timothy Michael. „Electromagnetic modeling based on directional time-distance energy transfer analogies“. Thesis, Washington State University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3587146.
Der volle Inhalt der QuelleA new electromagnetic model is established based on an average rate of directional time-distance energy transfers. A directional time-distance energy transfer is defined as an energy carrier mediator (boson) exchange. Electromagnetic force is modeled as mean valued, continual emission and absorption of energy carrier mediators.
For an isolated, spherically symmetric static charge distribution, Maxwell's stress equation is recast using a variant of Stokes' Theorem. The recast stress equation eliminates the stress normal to the electric field and establishes a stress only aligned with the electric field. The remaining stress is identified as an external omnidirectional Poincaré stress, inwardly directed towards the charge distribution. The Poincaré stress is modeled as a mean valued, continual exchange of bosons between the charge distribution and the distant matter of the universe.
For two separated, spherically symmetric static charge distributions, Maxwell's stress equation is recast using a variant of Stokes' Theorem. The recast stress equation develops a line stress that only exists on the straight path between the two charge distributions. The line stress is identified as a Coulomb stress modeled as a mean valued, continual exchange of photons back and forth between two like-charge distributions.
For an isolated, differential current element, Maxwell's stress equation is recast using a variant of Stokes' Theorem. The recast stress equation establishes a pinch stress that is normal to the magnetic field and is directed inward toward the differential current element. Similar to the Poincaré stress, the pinch stress is omnidirectional and is modeled as a mean valued, continual exchange of bosons between the current element and the distant matter of the universe.
For two separated, static differential current elements, a Neumann stress is established by analyzing the historical current force formulas known to be compatible with Maxwell's equations for closed circuits. The term Neumann stress is assigned to the line stress that only exists at each point on the straight path between two separated, differential current elements. Similar to the Coulomb stress, the Neumann stress is modeled as a mean valued, continual exchange of photons back and forth between two differential current elements in opposite directions.
Chien, Wei-Yin. „Electromagnetic modeling and experimental evaluation of plasmon-based molecular sensors“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21949.
Der volle Inhalt der QuelleL'avancée des nanosciences et de la nanotechnologie au cours des dernières décennies a suscité un renouvellement de l'intérêt pour les propriétés optiques des métaux. Aujourd'hui, la Plasmonique cherche à contrôler les champs proches électromagnétiques des nanostructures métalliques afin de bénéficier des nouvelles applications reposant sur l'optique de sous-longueur d'onde. En particulier, ce mémoire explore l'utilisation de la résonance à plasmons pour la capture des molécules. L'étude se divise en la résonance à plasmons de surface (SPR) pour des surfaces métalliques planes et pour des nanosphères métalliques. Ces deux méthodes permettent de créer des capteurs sensibles aux variations d'indice de réfraction et d'autres qui reposent sur des effets non-linéaires tels que la diffusion Raman exaltée de surface (SERS). Suite à l'introduction des bases, l'opération ainsi que des résultats expérimentaux de deux capteurs à plasmons de surface sont présentés. Un capteur intégré et une version 2D avec modulation de longueur d'onde et de l'angle possèdent une sensibilité angulaire d'environ 126°/RIU et 91°/RIU, respectivement. Par la suite, la réalisation de la méthode du multiple-multipole, utile pour évaluer l'efficacité de la concentration des champs entre des nanosphères métalliques, est discutée. Une amélioration de la concentration de champ optique de l'ordre de 450 par des nanospheres d'or est présentée. Mots-clés: plasmon de surface, plasmonique, biocapteurs optiques, diffusion Raman exaltée de surface, optique des métaux, nanophotonique, nanomatériel, électro-dynamique classique
Spinelli, Giovanni. „Electromagnetic characterization and modeling of CNT-based composites for industrial applications“. Doctoral thesis, Universita degli studi di Salerno, 2012. http://hdl.handle.net/10556/343.
Der volle Inhalt der QuelleIn several applications for the aeronautic, automative and electronic industries, there is an increasing demand of structural nanocomposites exhibiting remarkable thermal and mechanical properties and, at the same time, tailored and controlled electromagnetic (EM) performances. The interest and the scientific importance of the topic is justified by the fact that the conventional materials do not have the suitable properties to satisfy the specific requirements for modern applications. Instead, two or more distinct materials may be combined to form a material which possesses superior properties, with respect to those of individual components. Thus the individuation and preparation of advanced composites with best features respect to the traditional materials is currently required in several industrial sectors. Since CNTs can be exploited with varying structural and physical properties, geometry and functionality, that result in a different dispersion and adhesion with the polymer matrix, the possible range of composite material properties can be very large... [edited by author]
X n.s.
Barzegaran, Mohammadreza. „Physics-Based Modeling of Power System Components for the Evaluation of Low-Frequency Radiated Electromagnetic Fields“. FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1239.
Der volle Inhalt der QuelleLim, Jung Youl. „A distributed multi-level current modeling method for design analysis and optimization of permanent magnet electromechanical actuators“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53990.
Der volle Inhalt der QuelleDU, ZIWEIHUA. „Time-domain Analysis of Multiconductor Transmission Lines Excited by Transient Electromagnetic Disturbances Based on the Analog Behavior Modeling“. Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2842495.
Der volle Inhalt der QuelleNejadpak, Arash. „Development of Physics-based Models and Design Optimization of Power Electronic Conversion Systems“. FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/824.
Der volle Inhalt der QuelleDanufane, Fadil. „Wireless communications assisted by reconfigurable intelligent surfaces : an electromagnetic model“. Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG038.
Der volle Inhalt der QuelleThe emergence of smart radio environment (SRE) as a new paradigm that challenges the status quo in wireless communication has motivated the use of metasurface-based reconfigurable intelligent surface (RIS) to improve the performance limits in wireless communication systems. The main focus of this thesis is the modeling of reconfigurable intelligent surfaces (RIS)-aided communication systems using electromagnetic based methods.Chapter 1 introduces the concept of smart radio environment. We also give the definition of RIS and how RIS can be used in context of SRE. To give some historical perspectives, we also discuss several important milestone papers throughout the development of research activities that lead to the current state of the art.Chapter 2 introduces theoretical concepts that are necessary to understand the results in the subsequent chapters. This chapter is divided into two parts. The first part discusses the metasurfaces modeling where we move from a physics-based microscopic description of a metasurface and introduces a macroscopic representation for it, which is shown to be suitable for application in wireless communications. The second part introduces several analytical approaches that allow us to compute the EM field at any point of a given volume that contains the metasurface.Chapter 3 provides a performance comparison between RISs operating as anomalous reflectors and a decode-and-forward relaying scheme that is representative of competing candidate technologies to realize SREs. The comparison is qualitative and covers multitude metrics. Furthermore, a quantitative comparison in terms of achievable data rates is presented. In particular, the numerical results show that sufficiently large RISs can outperform relay-aided systems in terms of data rate, while reducing the implementation complexity.Chapter 4 proposes an electromagnetic-based analytical characterization of the free-space path-loss of a wireless link in the presence of a RIS that is modeled as a two-dimensional homogenized metasurface made of sub-wavelength scattering elements and that operate either in reflection or transmission mode. The analytical method of physical optics is employed. Closed-form expressions are also obtained in two asymptotic regimes that are representative of far-field and near-field deployments. Based on the proposed approach, the impact of several design parameters and operating regimes is unveiled.Finally, Chapter 5 summarizes the main findings of the thesis and discusses possible future directions that are worth investigating to unlock the full potential of RIS and bring it into practice
Argyropoulos, Christos. „FDTD modelling of electromagnetic transformation based devices“. Thesis, Queen Mary, University of London, 2010. http://qmro.qmul.ac.uk/xmlui/handle/123456789/367.
Der volle Inhalt der QuelleKharrat, Mouna. „Contribution au choix d'architecture 3D des systèmes mécatroniques sous contraintes multi-physiques : Application aux Interférences Electro-Magnétiques (IEM)“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST049.
Der volle Inhalt der QuelleThe integration of mechatronic systems generates many multi-physical disturbances (thermal, electromagnetic and dynamic) making their choice of architecture complex. Indeed, the increasing introduction of electronic and electrical (E/E) components in most of the current systems, increases the risk of occurrence of many electromagnetic interferences (EMI) that can strongly degrade their behavior. While these electromagnetic compatibility (EMC) problems are usually addressed in the detailed design phase, where the possibilities of compromise are limited to a few positioning adjustments or costly protection solutions, one solution is to propose a collaborative framework for the evaluation, from the early design phases, of physical design architectures taking into account these electromagnetic (EM) constraints. Actually, it is important at this stage that all the multidisciplinary actors involved can define, modify/update, add their knowledge and constraints and exchange their data while continuing to work in their usual digital environment. In addition, these system engineering activities must be supported with "Model-Based System Engineering" (MBSE) approaches, to support the digital continuity, consistency and traceability of the models and data required for this evaluation process.To meet this need, this thesis is based on the MBSE SAMOS (Spatial Architecture based on Multi-physics and Organization of Systems) collaborative approach to support, from the preliminary design phase, the evaluation of the 3D concept architecture under electromagnetic constraints. In this context, we have initially developed a SysML extension called EMILE (ElectroMagnetic Interactions Layout Extension) to formalize and model, as early as possible, the EM constraints in the system model.This extension notably includes the definition of EM requirements, the description of electromagnetic coupling modes and the specification of simulation configurations allowing the further verification and validation of the requirements, thanks to the development of a Human-Machine Interface. Our research work then focused on an evaluation methodology combining a topological approach with EM modeling, in order to support the process of qualitative and quantitative evaluation of electromagnetic interference (EMI). Indeed, for a given type of EMI, the topological analysis of the system architecture allows to qualitatively identify the existence of the victim components and their associated potential aggressors. Once these potential EMIs have been identified, a quantitative evaluation can then be performed, for example based on the physical equations and laws of the identified coupling, and on the electromagnetic and geometric requirements predefined with the EMILE extension. As a result, this approach ensures the relevant choice of a 3D physical architecture of the concept under EM constraints. The proposed approaches have been illustrated on a case study of an electric vehicle power train, based on various software implementation scenarios (SysML, Modelica, Matlab, FreeCAD) within the Sketcher 3D EM tool
Bücher zum Thema "Electromagnetic-Based modeling"
Smaini, Lydi. RF analog impairments modeling for communication systems simulation: Application to OFDM-based transceivers. Chichester, West Sussex: Wiley, 2012.
Den vollen Inhalt der Quelle findenRF analog impairments modeling for communication systems simulation: Application to OFDM-based transceivers. Chichester, West Sussex: Wiley, 2012.
Den vollen Inhalt der Quelle findenMATLAB-Based Finite Element Programming in Electromagnetic Modeling. Taylor & Francis Group, 2018.
Den vollen Inhalt der Quelle findenÖzgün, Özlem, und Mustafa Kuzuoğlu. MATLAB-Based Finite Element Programming in Electromagnetic Modeling. Taylor & Francis Group, 2018.
Den vollen Inhalt der Quelle findenÖzgün, Özlem, und Mustafa Kuzuoğlu. MATLAB-Based Finite Element Programming in Electromagnetic Modeling. Taylor & Francis Group, 2018.
Den vollen Inhalt der Quelle findenÖzgün, Özlem, und Mustafa Kuzuoğlu. MATLAB-Based Finite Element Programming in Electromagnetic Modeling. Taylor & Francis Group, 2018.
Den vollen Inhalt der Quelle findenÖzgün, Özlem, und Mustafa Kuzuoğlu. MATLAB-Based Finite Element Programming in Electromagnetic Modeling. Taylor & Francis Group, 2018.
Den vollen Inhalt der Quelle findenZaitsev, Fedor, und Vladimir Bychkov. Mathematical modeling of electromag-netic and gravitational phenomena by the methodology of continuous media mechanics. LCC MAKS Press, 2021. http://dx.doi.org/10.29003/m2011.978-5-317-06604-8.
Der volle Inhalt der QuelleBuchteile zum Thema "Electromagnetic-Based modeling"
Liu, Lanrong, Jie Li und Fulai Che. „Electromagnetic and Thermal Modeling Based on Large Power Transformers“. In Modeling and Application of Electromagnetic and Thermal Field in Electrical Engineering, 553–86. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0173-9_14.
Der volle Inhalt der QuelleLiu, Tao. „Electromagnetic Property Modeling Based on Product-Level Core Models“. In Modeling and Application of Electromagnetic and Thermal Field in Electrical Engineering, 299–344. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0173-9_9.
Der volle Inhalt der QuelleAbed, I., N. Kacem, N. Bouhaddi und M. L. Bouazizi. „Optimized Nonlinear MDOF Vibration Energy Harvester Based on Electromagnetic Coupling“. In Design and Modeling of Mechanical Systems—III, 31–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66697-6_4.
Der volle Inhalt der QuelleCaratelli, Diego, Luciano Mescia und Pietro Bia. „Fractional–Calculus–Based FDTD Algorithm for Ultra–Wideband Electromagnetic Pulse Propagation in Complex Layered Havriliak–Negami Media“. In Modeling in Mathematics, 1–15. Paris: Atlantis Press, 2017. http://dx.doi.org/10.2991/978-94-6239-261-8_1.
Der volle Inhalt der QuelleRajput, Shivam, Gaurav Kumar, Satyam Swarup, Prasanth Nomula, Anil Pawar, J. C. Joshi, Pradeep Kumar und S. K. Nayak. „Modeling and Simulation of High Energy Capacitor Bank based Electromagnetic Railgun“. In Lecture Notes in Electrical Engineering, 313–21. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0337-1_31.
Der volle Inhalt der QuelleZhang, Haiyang, Yufeng Wang, Yong Wang, Enzhong Gong, Zhan Yu, Zhenli Qu, Dandan Lei und Zhengguo Li. „Analysis of Electromagnetic Environment of Distribution Transformer Based on ANSYS Maxwell Modeling“. In Lecture Notes in Electrical Engineering, 390–400. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0869-7_43.
Der volle Inhalt der QuelleKlyuev, Dmitriy S., Anatoly M. Neshcheret, Oleg V. Osipov und Alexander A. Potapov. „Investigation of Electromagnetic Characteristics of a Chiral Metamaterial Based on Mutually Orthogonal Helical and Fractal Elements“. In 13th Chaotic Modeling and Simulation International Conference, 387–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70795-8_30.
Der volle Inhalt der QuellePepe, G., G. Peluso, A. Ruosi, M. Valentino und D. Tescione. „Electromagnetic SQUID Based NDE: a Comparison Between Experimental Data and Numerical FEM Modeling“. In Review of Progress in Quantitative Nondestructive Evaluation, 547–54. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4791-4_69.
Der volle Inhalt der QuelleNingbo, Gong, Diao Guijie, Chen Hui, Ni Hong, Du Xin und Liu Zhe. „Fast Electromagnetic Scattering Modeling of Complex Scenes Based on Multi-scale Coherent Computation“. In Communications in Computer and Information Science, 50–59. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-9195-0_5.
Der volle Inhalt der QuelleZaidi, Tayeb, und Kyoko Fujimoto. „Evaluation and Comparison of Simulated Electric Field Differences Using Three Image Segmentation Methods for TMS“. In Brain and Human Body Modelling 2021, 75–87. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15451-5_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electromagnetic-Based modeling"
Spada, Luigi La. „Electromagnetic modeling of metamaterial-based sensors“. In 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO). IEEE, 2014. http://dx.doi.org/10.1109/imws-bio.2014.7032448.
Der volle Inhalt der QuelleYou, Jian Wei, und Tie Jun Cui. „Electromagnetic Modeling of Nonlinear Graphene-Based Nanostructures“. In 2022 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2022. http://dx.doi.org/10.1109/iceaa49419.2022.9899960.
Der volle Inhalt der QuelleBarnes, Bryan M., Hui Zhou, Richard M. Silver und Mark-Alexander Henn. „Supplementing rigorous electromagnetic modeling with atomistic simulations for optics-based metrology“. In Modeling Aspects in Optical Metrology VII, herausgegeben von Bernd Bodermann, Karsten Frenner und Richard M. Silver. SPIE, 2019. http://dx.doi.org/10.1117/12.2525115.
Der volle Inhalt der QuelleThi Bich, Mai Nguyen, und Ngoc Thien Le. „Electromagnetic Field Modeling and Analysis Based on QuickField Simulator“. In 2018 4th International Conference on Green Technology and Sustainable Development (GTSD). IEEE, 2018. http://dx.doi.org/10.1109/gtsd.2018.8595507.
Der volle Inhalt der QuelleHursán, Gábor, und Michael S. Zhdanov. „3‐D electromagnetic modeling based on quasi‐analytical series“. In SEG Technical Program Expanded Abstracts 1999. Society of Exploration Geophysicists, 1999. http://dx.doi.org/10.1190/1.1820997.
Der volle Inhalt der QuelleHuang, Nick K. H., Tao Wang, Li Jun Jiang und X. Y. Xiong. „Data pattern based electromagnetic interference modeling for IC packaging“. In 2014 IEEE 23rd Electrical Performance of Electronic Packaging and Systems (EPEPS). IEEE, 2014. http://dx.doi.org/10.1109/epeps.2014.7103640.
Der volle Inhalt der QuelleKaraagac, Ulas, Jean Mahseredjian, Ilhan Kocar, Gurkan Soykan und Omar Saad. „Partial refactorization based machine modeling techniques for electromagnetic transients“. In 2017 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2017. http://dx.doi.org/10.1109/pesgm.2017.8274156.
Der volle Inhalt der QuelleKafafy, Raed, Abdulhakeem Javeed, Moumen Idres und Sany Ihsan. „Modeling Flutter-Based Microgenerators“. In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70964.
Der volle Inhalt der QuelleChu, Sung Yul, und Al-Thaddeus Avestruz. „Electromagnetic Model-Based Foreign Object Detection for Wireless Power Transfer“. In 2019 20th Workshop on Control and Modeling for Power Electronics (COMPEL). IEEE, 2019. http://dx.doi.org/10.1109/compel.2019.8769626.
Der volle Inhalt der QuelleZaky, Mostafa, und Kamal Sarabandi. „Physics-Based Modeling and Electromagnetic Scattering Computation for Snow-Packs“. In 2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE, 2019. http://dx.doi.org/10.1109/nemo.2019.8853777.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Electromagnetic-Based modeling"
Hussein, Y. Time-Domain Electromagnetic-Physics-Based Modeling of Complex Microwave Structures. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/826850.
Der volle Inhalt der Quelle