Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Électrolyte solide sulfuré“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Électrolyte solide sulfuré" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Électrolyte solide sulfuré"
Wang, Hongjiao. „Liquid phase synthesis and application of sulfide solid electrolyte“. Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS101.
Der volle Inhalt der QuelleTraditional Li-ion batteries use organic liquid electrolytes, which are susceptible to high temperatures due to their low flash point and high volatility. Therefore, it becomes one of the research hotspots for next generation chemical energy storage batteries to replace liquid electrolytes with solid electrolytes. In this thesis, a liquid-phase method using LiEt3BH or Li-Naph as raw materials is invented to synthesize Li3PS4 precursor sol and to obtain monodispersed Li3PS4 nanoparticles. This thesis also develops Li3PS4 sol exhibiting excellent compatibility with Li anodes, so that a Li3PS4 protective layer can be coated on Li by spin-coating of the sol. As a result, the lithium symmetrical cells with Li3PS4-modified lithium electrodes can be cycled stably for 800 h at 1 mA cm−2. To further improve the cycling stability of the Li anode under an extremely high current density, a Ag/Li-LiF-PEO (alloy, inorganic and organic) three-layer structure is proposed. The Ag/Li-LiF-PEO structure enhances the cycling stability of Li anodes under ultrahigh current density, which is demonstrated in lithium symmetrical batteries and Li//LFP batteries. At an ultrahigh current density of 20 mA cm-2, the lithium symmetrical cell survives a 1450-cycle test. This study may contribute to the development of high-performance Li metal batteries
Saha, Sujoy. „Exploration of ionic conductors and Li-rich sulfides for all-solid-state batteries“. Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS041.pdf.
Der volle Inhalt der QuelleGrowing needs for energy storage applications require continuous improvement of the lithium ion batteries (LIB). The anionic redox chemistry has emerged recently as a new paradigm to design high-energy positive electrodes of LIBs, however with some issues (i.e., voltage hysteresis and fading, sluggish kinetics, etc.) that remained to be solved. In addition, the safety of the LIBs can be improved by designing all-solid-state batteries (ASSB). In this thesis, we first focused on the development of new oxide-based solid electrolytes (SE) for applications in ASSBs. We explored the influence of disorder on the ionic conductivity of SEs and demonstrated how to increase the conductivity by stabilizing disordered high-temperature phases. Furthermore, we designed Li-rich layered sulfide electrodes that undergo anionic sulfur redox, with excellent reversibility. Thus, the newly designed electrode materials show a possible direction to mitigate the issues related to anionic redox. Lastly, we used the Li-rich sulfides as positive electrode in ASSB with sulfide-based SEs that demonstrate excellent cyclability, thereby highlighting the importance of interfacial compatibility in ASSBs
Xu, Yanghai. „Matériaux de cathode et électrolytes solides en sulfures pour batteries au lithium“. Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S094/document.
Der volle Inhalt der QuelleLithium-air and Li-S batteries are promising techniques for high power density storage. The main challenges are to develop solid electrolyte with high ionic conductivity and highly efficient catalyzed cathode. In this work, highly conductive carbon aerogels with dual-pore structure have been synthesized by using sol-gel method, and have been used as air cathode in Lithium-air batteries. This dual- pore structure can provide two types of channels for storing discharge products and for gas-liquid diffusion, thus reducing the risk of clogging. Nearly 100 cycles with a capacity of 0.4mAh at a current density of 0.1 mA cm-2 have been obtained. For developing stable and highly conductive solid electrolyte, sulfides, especially Li4SnS4 and its phosphorous derivative Li10SnP2S12 have been particularly investigated. These compounds have been synthesized by using a two-step technique including ball milling and a relatively low temperature heat treatment. The heat treatment has been carefully optimized in order to enhance the ionic conductivity. The best-obtained conductivity is 8.27×10-4 S/cm at 25°C and the electrolytes show high electrochemical stability over a wide working range of 0.5 – 7V. Thin films have also been deposited by using the sputtering technique, with generally improved ionic conductivity. The performance of the Li-S batteries assembled with these bulk electrolytes is still to be improved, particularly by improving the ionic conductivity of the electrolyte
Tarhouchi, Ilyas. „Etude des phases Li10MP2S12 (M=Sn, Si) comme électrolyte pour batteries tout-solide massives“. Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0220/document.
Der volle Inhalt der QuelleBy replacing the liquid electrolyte by a solid one, solid state batteries are oftenconsidered as a solution to safety issues in current Li-ion batteries. The recentdiscovery of Li10GeP2S12 with so-called LGPS structure, which exhibits an ionicconductivity equivalent to that of liquid electrolytes, has boosted related researchactivities.In this perspective, we studied the Li10MP2S12 (M=Sn, Si) materials with LGPSstructure, using various methods to characterize the structure (XRD, 31P NMR,Mössbauer spectroscopy …), the ionic mobility/conductivity (7Li NMR, Impedancespectroscopy), and the electrochemical properties (cycling voltammetry,galvanostatic cycling) of the material.Commercially available Li10SnP2S12 batches contain impurities and there remains anambiguity in the actual composition of the LGPS type phase. Modelling of the 31PNMR shifts reveals the effect of lithium in neighboring octahedral sites. Impedencemeasurements suggest reactivity with Li metal, and cyclic voltammetry confirms thatthe material is highly unstable at low potential, which excludes its use as a simpleelectrolyte in solid state batteries. We propose that it might be used both as anelectrolyte and as a negative electrode.The preliminary study on silicon based materials highlights difficulties in obtaining apure LGPS-type compound and questions the real nature of the so-calledthio-LiSICON structural model. Besides, it also shows the instability of thesematerials versus lithium metal
Cozic, Solenn. „Étude des propriétés électriques et structurales de verres de sulfures au lithium pour électrolytes de batteries tout-solide“. Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S054/document.
Der volle Inhalt der QuelleThe energy storage market is in constant growth for both portable and stationary applications. To satisfy the requirements of various applications (electronic devices, hybrid-electric vehicles, renewable energy storage…), always more efficient, more compact and lightweight batteries have to be developed. Then, thanks to their high energy densities, batteries using Li metal anodes are the most promising to complete this challenge. However, the use of conventional liquid electrolytes raises safety issues, mainly related to the flammability of the organic liquid. In this thesis, glassy materials, exhibiting great interest towards developing solid electrolytes are considered and might enable the development of safe and efficient all-solid-state batteries. Here, Li-sulfide glasses, attractive for their ionic conduction properties, have been studied and characterized. The ionic conduction properties of glasses are still misunderstood and controversial, the structural investigation of glasses is of great interest in order to get a better understanding of structure-properties relationship. Then, the short and intermediate range order of prepared glasses have been investigated by the mean of various complementary structural analysis techniques. Finally, glassy materials are usually quite easy to shape. Thus, studied glasses in this thesis can also be used as thin-film electrolytes in microbatteries. First tests of sputtering of conducting thin-films have been performed by RF magnetron sputtering and constitute a first step in order to design microbatteries
Michel-Lledos, Valérie. „Verres chalcogénures conducteurs par ions lithium : caractérisations électriques et structurales“. Montpellier 2, 1991. http://www.theses.fr/1991MON20279.
Der volle Inhalt der Quelle