Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Électrolyte composite“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Électrolyte composite" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Électrolyte composite"
BERÇOT, Patrice. „Dépôts composites par électrolyse - Modélisation“. Traitements des métaux, Juni 2003. http://dx.doi.org/10.51257/a-v1-m1622.
Der volle Inhalt der QuelleBERÇOT, Patrice. „Dépôts composites par électrolyse - Paramètres et applications“. Traitements des métaux, September 2003. http://dx.doi.org/10.51257/a-v1-m1623.
Der volle Inhalt der QuelleDissertationen zum Thema "Électrolyte composite"
Manfroi, Olivier. „Contribution à l’étude des charges carbonées et des films de supercondensateurs à électrolyte organique“. Nancy 1, 2005. http://www.theses.fr/2005NAN10162.
Der volle Inhalt der QuelleThis work is dedicated to the survey of the carbonated compounds and the composite films of supercondensateur to organic electrolyte. We have in a first time approached the carbonated compounds, main materials of the composite films. This materials has been characterized so much to the point of view of the morphology of the carbon skeleton that of the chemistry surface. The modifications of the functional groupings show the ominous impact of these groupings on the ageing of the component. The clarification of macroscopic original methods of characterization of the composite movies permitted to approach the influence of the parameters of realization on the properties of the films. Finally, the analysis of the competition situates the Batscap films and put in evidence the existence of a layer interfaces, gate to the diffusion of the ions, between the collector and the composite film
Ricca, Chiara. „Combined theoretical and experimental study of the ionic conduction in oxide-carbonate composite materials as electrolytes for solid oxide fuel cells (SOFC)“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066623/document.
Der volle Inhalt der QuelleOxide-carbonate composites are promising electrolytes for LT-SOFC, thanks to their high conductivity (0.1-1 S/cm at 600°C). A deeper understanding on the origins of their improved performances is still necessary. For this purpose, a combined theoretical and experimental approach was developed. We first studied systematically the conductivity of the material, measured through EIS, as a function of different oxide or carbonate phases and of the operating atmosphere. Results on YSZ- and CeO2-based materials indicate that by only taking into account the interfaces it is possible to rationalize some surprising observations, while reactivity issues have been observed for TiO2-carbonate composites. We then proposed a computational strategy based on periodic DFT calculations: we first studied the bulk structure of each phase so as to select an adequate computational protocol, which has then been used to identify a suitable model of the most stable surface for each phase. These surface models have thus been combined to obtain a model of the oxide-carbonate interface that through static DFT and MD provides a deeper insight on the interface at the atomic level. This strategy was applied to provide information on the structure, stability and electronic properties of the interface. YSZ-LiKCO3 was used as a case study to investigate the conduction mechanisms of different species. Results showed a strong influence of the interfaces on the transport properties. The TiO2-LiKCO3 model was, instead, used to investigate the reactivity of these materials. Overall, these results pave the way toward a deeper understanding of the basic operating principles of SOFC based on these materials
Navallon, Guillaume. „Caractérisation d'électrolytes composites pour batteries tout-solide par diffusion de neutrons et rayonnement synchrotron“. Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALY087.
Der volle Inhalt der QuelleState-of-the-art lithium–ion technology is reaching its limits regarding applications as energy storage devices for electric mobility. In fact, both high energy density and safety standards requested by the market are hardly attainable with the actual materials and components. In theory, the current limitations could be overcome by the use of metallic lithium as the negative electrode, which would increase the energy density of the cell but would also require a mean to prevent lithium dendritic growth. In this context, polymer electrolytes are promising materials as their solid state could hinder the dendritic growth. Nevertheless, in practice, they still lack sufficient ionic conductivity. It has been reported that, in some conditions, the fabrication of composite material by adding fillers inside a polymer electrolyte can enhance the ionic conductivity. Some studies attributed this effect to beneficial interactions occurring at the interface between fillers and the polymer-lithium salt system. Other studies, on a larger scale, highlighted modifications of the polymer mobility in presence of filler. Together, these results suggest that fillers create faster conduction pathways surrounding them, which on a macroscopic scale could enhance the electrolyte conductivity.This thesis work aims at understanding the contribution of these effects on the transport properties, in order to clarify the role of fillers added inside a polymer electrolyte. The system under investigation is an electrolyte based on poly(trimethylene carbonate) (PTMC) and LiTFSI, inside which we mixed different proportion of alumina particles. We selected three kind of particles with different morphologies and crystalline phases. In order to study the impact of fillers at multiple scales, we combined characterizations in lab and at large-scale facilities. The ionic transport properties were studied by electrochemical techniques. The composite microstructure was probed by phase contrast X-ray imaging and small angle scattering - X-rays and neutrons. Several relevant microstructural parameters were identified, quantified, and then correlated with the properties of ion transport of the electrolyte. We showed that the density of hydroxyls on the surface of particles for a given volume of electrolyte could be increased two-fold depending on the filler type, and that this parameter is linked to the state of agglomeration of fillers and the homogeneity of their dispersion. This structural study is supplemented by a study on the dynamics of PTMC at the molecular scale by quasi-elastic neutron scattering (QENS). Our results show that the presence of lithium salt hinders the intrinsic mobility of PTMC, while in presence of alumina, the PTMC polymer backbone recovers a local mobility. At typical timescales of hundreds of picoseconds, relaxation times are divided by a factor two in presence of fillers.All the characterization conducted shed light on the impact of inert filler on the transport properties of polymer electrolyte. Inside a composite electrolyte, the presence of filler induce multiple effects that combine and the complex outcome depend on multiple factors. We showed that the extent of interactions at the interface between particles and polymer as well as variations in the local mobility of polymer correlate with changes in the ionic transport properties of the electrolyte. The understanding of these mechanisms establish an important step toward the optimization of composite formulation for the production of better performing composite electrolytes
Celikbilek, Ozden. „Optimisation de la cathode pour pile à combustible à oxyde électrolyte solide : approches expérimentale et numérique“. Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI071/document.
Der volle Inhalt der QuelleUnderstanding, controlling and optimizing the mechanism of oxygen reduction reaction at the cathode need to be addressed for high performance energy conversion devices such as solid oxide fuel cells (SOFCs). Structured porous films of mixed ionic electronic conductors (MIECs) and their composites with addition of a pure ionic conductor offer unique properties. However, correlating the intrinsic properties of electrode components to microstructural features remains a challenging task. In this PhD thesis, cathode functional layers (CFL) of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and LSCF/Ce0.9Gd0.1O2-δ (CGO) composite cathodes with hierarchical porosity from nano- to micro-range are fabricated by electrostatic spray deposition technique. The films were topped with LSCF as a current collecting layer (CCL) by screen printing technique. A parametric optimization study was conducted experimentally in terms of particle size, composition, and thickness of CFL and CCL layers. The experimental results were supported by a numerical 3D Finite Element Model (FEM). Microstructural parameters determined by FIB-SEM tomography were used in a simple geometry similar to experimentally observed columnar features. In this work, experimental results and modelling were combined to provide design guidelines relating optimized electrochemical performances to the microstructure and bulk material properties. A complete fuel cell with optimized cathode film was tested in real SOFC operational conditions
Morin, Arnaud. „Développement d'un électrolyte solide pour application piles à combustible fonctionnant entre 100°C et 200°C à faible humidité relative : Le composite polyimide/SiO2-B2O3-P2O5“. Montpellier 2, 2004. http://www.theses.fr/2004MON20228.
Der volle Inhalt der QuelleBaudry, Paul. „Etude de vitrages électrochromes à électrolyte polymère“. Grenoble INPG, 1989. http://www.theses.fr/1989INPG0004.
Der volle Inhalt der QuellePrincivalle, Agnès. „Nouvelle électrode à gradients pour piles à combustible à oxyde électrolyte solide“. Grenoble INPG, 2006. http://www.theses.fr/2006INPG0142.
Der volle Inhalt der QuelleThe objective of this thesis is related ta the synthesis and the structural, morphological and electrochemical characterization of cathodes to be used in the domain of solid oxide fuel cells (SOFC) operating at temperature ta 700°C ta ensure its industrialization. We have chosen ta carry out a composite cathode with continuous graded of porosity and composition, starting From typical materials: such as yttria-stabilized zirconia (YSZ) and lanthanum strontium manganite (LSM). The purpose of the addition o. F YSZ is to improve adhesion with the electrolyte (YSZ) and ta enlarge the triple contact area, where the gas, the electrocle and the electrolyte are in contact. For that, we have developed a new technique of synthesis, unique in France, the electrostatic spray deposition and undertook an original study of optimization of the microstructure of these new cathodes
Fichou, Denis. „L'interface oxyde de zinc/électrolyte : étude des processus primaires“. Paris 6, 1986. http://www.theses.fr/1986PA066259.
Der volle Inhalt der QuelleLeloup, Jean-Michel. „Matériaux composites conducteurs protoniques“. Montpellier 2, 1993. http://www.theses.fr/1993MON20219.
Der volle Inhalt der QuelleLauret, Hervé. „Propriétés électriques et électrochimiques de manganites de lanthane dopées comme matériau de cathode pour pile à combustible à oxyde électrolyte solide“. Grenoble INPG, 1994. http://www.theses.fr/1994INPG0053.
Der volle Inhalt der Quelle