Auswahl der wissenschaftlichen Literatur zum Thema „Electrodes composites nanostructurées“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electrodes composites nanostructurées" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Electrodes composites nanostructurées"

1

Li, Geng. „Electrochemical Sensor under Nanostructured Materials“. Key Engineering Materials 852 (Juli 2020): 70–79. http://dx.doi.org/10.4028/www.scientific.net/kem.852.70.

Der volle Inhalt der Quelle
Annotation:
In order to study the electrochemical sensor of nanometer mechanism materials to realize the high sensitive detection of different chemical molecules, in this research, the preparation methods of molybdenum dioxide nanomaterials, molybdenum dioxide/metal particles (Au, Pt, Au@Pt) composites and the preparation of molybdenum dioxide nanomaterials, molybdenum dioxide /Au composite nanomaterials, molybdenum dioxide /Pt composite nanomaterials and molybdenum dioxide /Au @Pt composite nanomaterials were introduced. Then the electrochemical behavior of several modified electrodes, electrochemical behavior in catechol system, scanning and pH were applied to the modified electrode. Finally, the electrode p-catechol system was detected by differential pulse voltammetry and the actual samples were analyzed. The results showed that compared with unmodified electrode materials, the electrode modified by molybdenum dioxide nanomaterials, molybdenum dioxide /Au composite nanomaterials, molybdenum dioxide /Pt composite nanomaterials and molybdenum dioxide /Au @Pt composite nanomaterials has better electrocatalytic performance and the detection of catechol has a good effect. Among them, the electrochemical sensor constructed by MoS2-Au@Pt composite has the best detection performance for catechol. The results have a good guiding significance for the performance improvement of electrochemical sensor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chen, Tingting, Guangning Wang und Qianyan Ning. „Rationally Designed Three-Dimensional NiMoO4/Polypyrrole Core–Shell Nanostructures for High-Performance Supercapacitors“. Nano 12, Nr. 05 (28.03.2017): 1750061. http://dx.doi.org/10.1142/s1793292017500618.

Der volle Inhalt der Quelle
Annotation:
Electrodes of rationally designed composite nanostructures can offer many opportunities for the enhanced performance in electrochemical energy storage. This paper attempts to illustrate the design and production of NiMoO4/polypyrrole core–shell nanostructures on nickel foam to be used in supercapacitor via a facile hydrothermal and electrodeposition process. It has been verified that this novel nanoscale morphology has outstanding capacitive performances. While employed as electrodes in supercapacitors, the composite nanostructures showed remarkable electrochemical performances with a great areal capacitance (3.2[Formula: see text]F/cm2 at a current density of 5[Formula: see text]mA/cm2), and a significant cycle stability (80% capacitance retention after 1000 cycles). The above results reveal that the composite nanostructures may be a likely electrode material for high-performance electrochemical capacitors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chen, Tingting, Yong Fan, Guangning Wang, Jing Zhang, Huixin Chuo und Ruixiao Yang. „Rationally Designed Carbon Fiber@NiCo2O4@Polypyrrole Core–Shell Nanowire Array for High-Performance Supercapacitor Electrodes“. Nano 11, Nr. 02 (Februar 2016): 1650015. http://dx.doi.org/10.1142/s1793292016500156.

Der volle Inhalt der Quelle
Annotation:
The composite supercapacitor electrodes were rationally fabricated by facile electrochemical deposition of polypyrrole (PPy) on NiCo2O4 nanowire arrays which were grown radially on carbon fiber (CF). When used as electrodes in supercapacitors, the composite nanostructures demonstrated prominent electrochemical performances with a high areal capacitance (1.44[Formula: see text]F/cm2 at a current density of 2[Formula: see text]mA/cm2), a good rate capability (80.5% when the current density increases from 2[Formula: see text]mA/cm2 to 20[Formula: see text]mA/cm2), and a good cycling ability (85% of the initial specific capacitance remained after 5000 cycles at a high current density of 10[Formula: see text]mA/cm2). The excellent electrochemical performance of NiCo2O4@PPy nanostructures can be mainly ascribed to the good electrical conductivity of PPy, the enhanced adherent force between electrode materials and CF to hold the electrode fragments together by means of NiCo2O4 nanowires, the short ion diffusion pathway in ordered porous NiCo2O4 nanowires and the three-dimensional nanostructures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rajagopal, Rajesh, und Kwang-Sun Ryu. „Temperature Controlled Synthesis of Ce–MnO2 Nanostructure: Promising Electrode Material for Supercapacitor Applications“. Science of Advanced Materials 12, Nr. 4 (01.04.2020): 461–69. http://dx.doi.org/10.1166/sam.2020.3638.

Der volle Inhalt der Quelle
Annotation:
The objective of this study was to prepare Ce–MnO2 nanostructure composite as an electrode material for supercapacitor application. Ce–MnO2 nanostructure composite was synthesized by facile hydrothermal method at different temperatures. Structural details of pure and Ce–MnO2 nanostructure composite were studied using powder X-ray diffraction technique. The formation of flower like structure and strong interaction with Ce and MnO2 were confirmed by field emission electron microscope technique. Their electrochemical performances were elucidated by using cyclic voltammetry, charge–discharge, and electrochemical impedance spectroscopy techniques. Nearly rectangular shaped cyclic voltagram was observed for synthesized Ce–MnO2 nanostructure composite electrode, indicating the existence of electric double layer capacitance nature. Ce–MnO2 (130) nanostructure composite exhibited high specific capacitance value of 147.25 F/g at applied current density of 1 A/g in 1 M Li2SO4 aqueous electrolyte. Furthermore, resistive and capacitive behaviors of these electrodes were studied from Nyquist and bode diagrams within frequency range of 10 mHz to 100 kHz.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Liu, Yang, und Junbo Zhou. „Electroadsorption Desalination with Carbon Nanotube/PAN-Based Carbon Fiber Felt Composites as Electrodes“. Scientific World Journal 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/253713.

Der volle Inhalt der Quelle
Annotation:
The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution’s pH, the better the desalting; the smaller the ions’ radius, the greater the amount of adsorption.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Li, Li, Lihui Chen, Weijin Qian, Fei Xie und Changkun Dong. „Directly Grown Multiwall Carbon Nanotube and Hydrothermal MnO2 Composite for High-Performance Supercapacitor Electrodes“. Nanomaterials 9, Nr. 5 (06.05.2019): 703. http://dx.doi.org/10.3390/nano9050703.

Der volle Inhalt der Quelle
Annotation:
MnO2–MWNT–Ni foam supercapacitor electrodes were developed based on directly grown multiwalled carbon nanotubes (MWNTs) and hydrothermal MnO2 nanostructures on Ni foam substrates. The electrodes demonstrated excellent electrochemical and battery properties. The charge transfer resistance dropped 88.8% compared with the electrode without MWNTs. A high specific capacitance of 1350.42 F·g−1 was reached at the current density of 6.5 A·g−1. The electrode exhibited a superior rate capability with 92.5% retention in 25,000 cycles. Direct MWNT growth benefits the supercapacitor application for low charge transfer resistance and strong MWNT–current collector binding.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Song, Yu, Mingyue Zhang, Tianyu Liu, Tianjiao Li, Di Guo und Xiao-Xia Liu. „Cobalt-Containing Nanoporous Nitrogen-Doped Carbon Nanocuboids from Zeolite Imidazole Frameworks for Supercapacitors“. Nanomaterials 9, Nr. 8 (02.08.2019): 1110. http://dx.doi.org/10.3390/nano9081110.

Der volle Inhalt der Quelle
Annotation:
Pyrolyzing metal–organic frameworks (MOFs) typically yield composites consisting of metal/metal oxide nanoparticles finely dispersed on carbon matrices. The blend of pseudocapacitive metal oxides and conductive metals, as well as highly porous carbon networks, offer unique opportunities to obtain supercapacitor electrodes with mutually high capacitances and excellent rate capabilities. Herein, we demonstrate nitrogen-doped carbon nanocuboid arrays grown on carbon fibers and incorporating cobalt metal and cobalt metal oxides. This composite was synthesized via pyrolysis of a chemical bath deposited MOF, cobalt-containing zeolite imidazole framework (Co–ZIF). The active materials for charge storage are the cobalt oxide and nitrogen-doped carbon. Additionally, the Co metal and the nanoporous carbon network facilitated electron transport and the rich nanopores in each nanocuboid shortened ion diffusion distance. Benefited from these merits, our Co–ZIF-derived electrode delivered an areal capacitance of 1177 mF cm−2 and excellent cycling stability of ~94% capacitance retained after 20,000 continuous charge–discharge cycles. An asymmetric supercapacitor prototype having the Co–ZIF-derived hybrid material (positive electrode) and activated carbon (negative electrode) achieved a maximal volumetric energy density of 1.32 mWh cm−3 and the highest volumetric power density of 376 mW cm−3. This work highlights the promise of metal–metal oxide–carbon nanostructured composites as electrodes in electrochemical energy storage devices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Maitra, Soumyajit, Arundhati Sarkar, Toulik Maitra, Somoprova Halder, Subhasis Roy und Kajari Kargupta. „Cadmium Sulphide Sensitized Crystal Facet Tailored Nanostructured Nickel Ferrite @ Hematite Core-Shell Ternary Heterojunction Photoanode for Photoelectrochemical Water Splitting“. MRS Advances 5, Nr. 50 (2020): 2585–93. http://dx.doi.org/10.1557/adv.2020.316.

Der volle Inhalt der Quelle
Annotation:
AbstractDesign of composite semiconductor nanostructures with proper band alignment for efficient charge separation and carrier transport has been at the center of research for photoelectrochemical water splitting. This work demonstrates the deposition of a NiFe2O4 @Fe2O3 core-shell nanostructured film sensitized with CdS to form a ternary heterojunction for cascade type electron transfer. The hematite nanostructures were grown by hydrothermal approach through dipping into a solution of Nickel Nitrate yielded anchoring of Ni2+ ions on the outer surface. The films were then annealed at 650 0C for the diffusion of Ni2+ ions into the hematite lattice which forms core-shell NiFe2O4 @Fe2O3 heterojunction. The films were further sensitized with CdS nanoparticles deposited by a hydrothermal approach to form the final ternary heterojunction photoanode. Several different nanostructures were grown and the effect of crystal facet tailoring was observed on Ni loading and photoelectrochemical performance. The photoelectrochemical measurements were carried out using a potentiostat under 100 mW/cm2 light source (150W Xenon Lamp) with Pt counter electrode and 0.5 M Na2S and 0.5 M Na2SO3 electrolyte. A current density of 3.47 mA/cm2 was observed at 1.23 V (vs Ag/AgCl). An Applied Bias to Photocurrent Efficiency (ABPE) of 1.8 % photoconversion efficiency was observed using the fabricated electrodes at 0.288V (vs Ag/AgCl).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wu, Wenguo, Hao Niu, Dayun Yang, Shi-Bin Wang, Jiefu Wang, Jia Lin und Chaoyi Hu. „Controlled Layer-By-Layer Deposition of Carbon Nanotubes on Electrodes for Microbial Fuel Cells“. Energies 12, Nr. 3 (24.01.2019): 363. http://dx.doi.org/10.3390/en12030363.

Der volle Inhalt der Quelle
Annotation:
Carbon nanotubes (CNTs) and polyelectrolyte poly(allylamine hydrochloride) (PAH) composite modified indium tin oxide (ITO) electrodes, by a layer-by-layer (LBL) self-assembly technique, was evaluated as an anode for microbial fuel cells (MFCs). The bioelectrochemistry of Shewanella loihica PV-4 in an electrochemical cell and the electricity generation performance of MFCs with multilayer (CNTs/PAH)n-deposited ITO electrodes as an anode were investigated. Experimental results showed that the current density generated on the multilayer modified electrode increased initially and then decreased as the deposition of the number of layers (n = 12) increased. Chronoamperometric results showed that the highest peak current density of 34.85 ± 2.80 mA/m2 was generated on the multilayer (CNTs/PAH)9-deposited ITO electrode, of which the redox peak current of cyclic voltammetry was also significantly enhanced. Electrochemical impedance spectroscopy analyses showed a well-formed nanostructure porous film on the surface of the multilayer modified electrode. Compared with the plain ITO electrode, the multilayered (CNTs/PAH)9 anodic modification improved the power density of the dual-compartment MFC by 29%, due to the appropriate proportion of CNTs and PAH, as well as the porous nanostructure on the electrodes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Stine, Keith J. „Biosensor Applications of Electrodeposited Nanostructures“. Applied Sciences 9, Nr. 4 (24.02.2019): 797. http://dx.doi.org/10.3390/app9040797.

Der volle Inhalt der Quelle
Annotation:
The development of biosensors for a range of analytes from small molecules to proteins to oligonucleotides is an intensely active field. Detection methods based on electrochemistry or on localized surface plasmon responses have advanced through using nanostructured electrodes prepared by electrodeposition, which is capable of preparing a wide range of different structures. Supported nanoparticles can be prepared by electrodeposition through applying fixed potentials, cycling potentials, and fixed current methods. Nanoparticle sizes, shapes, and surface densities can be controlled, and regular structures can be prepared by electrodeposition through templates. The incorporation of multiple nanomaterials into composite films can take advantage of the superior and potentially synergistic properties of each component. Nanostructured electrodes can provide supports for enzymes, antibodies, or oligonucleotides for creating sensors against many targets in areas such as genomic analysis, the detection of protein antigens, or the detection of small molecule metabolites. Detection can also be performed using electrochemical methods, and the nanostructured electrodes can greatly enhance electrochemical responses by carefully designed schemes. Biosensors based on electrodeposited nanostructures can contribute to the advancement of many goals in bioanalytical and clinical chemistry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Electrodes composites nanostructurées"

1

Rogier, Clémence. „Vers le développement d’un pseudocondensateur asymétrique avec des électrodes composites à base d’oxydes métalliques (MnO2, MoO3) et de carbones nanostructurés“. Thesis, CY Cergy Paris Université, 2020. http://www.theses.fr/2020CYUN1098.

Der volle Inhalt der Quelle
Annotation:
Les supercondensateurs sont des systèmes de stockage de l’énergie destinés à des applications de nécessitant de fortes densité de puissance. Leur densité d’énergie peut être augmentée en développant de nouveaux matériaux d’électrode à forte capacitance. Dans cet objectif ces travaux décrivent le développement de matériaux composites à base de carbones nanostructurés (architectures avec des nanotubes de carbones et/ou de graphène oxydé réduit) et d’oxydes métalliques pseudocapacitifs (MnO2 et MoO3 pour les électrodes positive et négative respectivement). Les oxydes métalliques permettent de générer de fortes capacitances grâce à des réactions redox réversibles sur une large gamme de potentiels. La matrice carbonée nanostructurée induit une porosité et une conductivité des électrodes optimisées et assure le transport des ions et des électrons au sein des matériaux.L’électrode positive MnO2-rGO-CNTs est développée par pulvérisation des nanomatériaux carbonés directement sur le collecteur de courant avec un spray dynamique robotisé puis par croissance électrochimique de l’oxyde. Sa capacitance maximale est de 265 F/g. Dans une approche similaire, l’électrode négative MoO3-CNTs est développée, avec une capacitance maximale de 274 F/g. Les matériaux d’électrodes sont caractérisés par différentes techniques physicochimiques (microscopies, analyses de porosité, DRX, spectroscopies).Ces électrodes sont ensuite associées au sein d’un pseudocondensateur hybride asymétrique utilisant un électrolyte organique (LiTFSI/GBL) avec une tension de fonctionnement de 2V. Les performances de ce système en termes de densités d’énergie et de puissance ainsi que de stabilité électrochimique sont étudiées sur plusieurs milliers de cycles. La densité d’énergie maximale est calculée à 25 Wh/kg pour une densité de puissance de 0,1 kW/kg
Supercapacitors are energy storage devices for applications requiring high power densities. By developing new electrode materials with high capacitance energy densities can be enhanced. In that regard this work presents the development of composites materials associating nanostructured carbons (architectures with carbon nanotubes and/or reduced graphene oxide) and pseudocapacitive metal oxides (MnO2 and MoO3 for positive and negative electrodes respectively). Metal oxides generate high capacitances thanks to reversible redox reactions in a wide range of potentials. The nanostructured carbon matrix optimizes porosity and conductivity of the electrodes to ensure good ionic and electronic transport within the materials.First MnO2-rGO-CNTs is developed as a positive electrode using spray gun deposition of carbon nanomaterials before electrochemical growth of the oxide. The interest of these elaboration techniques lies in their easy large-scale implementation. Its maximum capacitance is measured at 265 F/g. In a similar approach MoO3-CNTs is developed as a negative electrode with a maximum capacitance of 274 F/g. The materials are characterized using different physicochemical methods (microscopy, spectroscopy, porosity analysis, XRD).These electrodes are then combined in an asymmetric hybrid pseudocapacitor in an organic electrolyte (LiTFSI/GBL) with an operating voltage window of 2V. The performances of this system in terms of energy and power densities as well as electrochemical stability were studied over several thousand cycles. The maximum energy density was found to be of 25 Wh/kg for a power density of 0.1 kW/kg
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Thaury, Claire. „Optimisation de matériaux composites Si/Intermétallique/Al/C utilisés comme électrode négative dans des accumulateurs Li-ion“. Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1068/document.

Der volle Inhalt der Quelle
Annotation:
Ce mémoire est consacré à l'étude de matériaux composites innovants du type Si/Intermétallique/Al/C utilisés comme matériaux d'électrodes négatives pour les batteries lithium ion. L'objectif de ces travaux est d'optimiser un matériau de composition 20Ni-48Sn-20Si-3Al-9C ayant été développé auparavant pour obtenir les meilleures performances électrochimiques. Ce matériau se présente sous la forme de nanoparticules de silicium enrobées par une matrice submicrométrique. Plusieurs stratégies ont été mises en œuvre : optimisation des teneurs en carbone et en silicium, influence de l'état de surface du silicium sur les propriétés électrochimiques et remplacement de l'intermétallique Ni3+xSn4 par d'autres alliages : un composé zinc-aluminium Al0, 23Zn0,77 et deux intermétalliques Cu6Sn5 et CoSn. Les composés intermétalliques ont été synthétisés par métallurgie des poudres et les matériaux composites par mécanosynthèse. Les propriétés chimiques et structurales de ces matériaux ont été déterminées par microsonde de Castaing, diffraction des rayons X et microscopies électroniques. Les caractérisations électrochimiques ont été réalisées en demi-cellules (Swagelok et bouton) par cyclage galvanostatique et par voltamétrie cyclique. Ce mémoire détaille l'influence des paramètres étudiés sur les propriétés structurales. Une large étude a notamment été menée sur l'influence des teneurs en carbone et en silicium sur l'obtention d'une matrice homogène, une condition nécessaire pour atteindre de bonnes performances électrochimiques. Le même type d'étude a été mené sur l'influence de l'effet de surface du Si et la nature de l'alliage utilisé. Il a par exemple été montré de meilleurs résultats électrochimiques pour les intermétalliques présentant une réactivité modérée avec le silicium lors du broyage mécanique. Les meilleures performances ont été obtenues pour la composition Ni0.13Sn0.15Si0.26Al0.04C0.42. Ce composite présente une capacité de 650 mAh.g-1 pendant 1000 cycles. L'utilisation d'un silicium carboné en surface améliore la stabilité en cyclage de la SEI même si son utilisation reste à optimiser
This study focuses on the optimization of innovative composite materials Si/Intermetallic/Al/C used as negative electrode in lithium-ion batteries. The aim of this work is optimization of the composition for the material (20Ni-48Sn-20Si-3Al-9C) to improve its electrochemical performances. All materials are made up of silicon nanoparticles embedded in a sub micrometrical matrix. Several issues have been studied in this essay: optimization of the silicon and carbon contents, influence of the silicon surface composition, and substitution of the former intermetallic Ni3+xSn4 by other ones: zinc aluminium compound Al0,23Zn0,77 and two intermetallics Cu6Sn5 et CoSn. Metallic compounds and composites have been synthesised by powder metallurgy and mechanical alloying, respectively. Their chemical and structural properties have been determined by electron probe microanalysis, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Electrochemical characterisations have been carried out by galvanostatic cycling and cyclic voltammetry in coin and Swagelok half cells. This report details the influence of the studied parameters on the structural properties of the composite materials. A large study was devoted to the influence of carbon and silicon contents on the achievement of a homogeneous matrix, which is mandatory to get good electrochemical performances. Influence of the composition of silicon surface and intermetallic on the microstructure and electrochemical properties of the composites was also studied. Thus, we have shown that intermetallics reacting moderately with Si during mechanical alloying have better electrochemical properties. The best electrochemical properties have been obtained for the nominal composition Ni0.13Sn0.15Si0.26Al0.04C0.42. This material provides a reversible capacity of 650 mAh.g-1 during 1000 cycles. The use of carbon coated silicon improves the stability of the SEI during cycling even if this composite still has to be optimized
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Edfouf, Zineb. „Étude de nouveaux matériaux composites de type Si/Sn Ni/Al/C pour électrode négative de batteries lithium ion“. Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00673220.

Der volle Inhalt der Quelle
Annotation:
Ce mémoire est consacré à l'étude de nouveaux matériaux composites de type Si/Sn-Ni/Al/C pour former des électrodes négatives de batteries lithium ion. La microstructure de ces matériaux se présente sous la forme de nanoparticules de Si enrobées dans une matrice conductrice constituée de carbone et d'un composé intermétallique Ni3,4Sn4. La nanostructure et la composition du matériau composite lui confèrent de très bonnes performances en termes de capacité réversible, de stabilité électrochimique, et de cinétique de réaction. La mécanosynthèse a été choisie comme méthode d'élaboration. Les propriétés structurales et chimiques du composite ont été déterminées par analyses DRX, par microscopies électroniques MET et MEB, par analyses EDX et EFTEM et par spectroscopie Mössbauer de 119Sn. La caractérisation électrochimique a été réalisée par cyclage galvanostatique et par voltamétrie cyclique. La réactivité de ces matériaux envers le lithium a été étudiée par analyses DRX et spectroscopie Mössbauer de 119Sn in-situ. Ce mémoire détaille les résultats structuraux et électrochimiques obtenus pour différents matériaux composites basés sur Ni3,4Sn4 en ajoutant les éléments C, Al et Si. Une étude des mécanismes réactionnels lors du broyage mécanique ainsi que pendant le cyclage électrochimique a été effectuée et le rôle des différents éléments a été mis en évidence. Enfin, une discussion sur l'influence de la microstructure sur les performances électrochimiques des matériaux composites est donnée. Les meilleures performances électrochimiques sont obtenues pour le composite de composition nominale Ni0,14Sn0,17Si0,32Al0,04C0,35. Il présente une capacité réversible de 920 mAh/g avec une très bonne stabilité sur 280 cycles. Le matériau possède une excellente cinétique de délithiation : 90% de la capacité peut être délivrée en moins de 5 minutes. La capacité irréversible (20%) reste toutefois élevée et doit être encore améliorée en stabilisant l'interface solide/électrolyte (SEI)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Johns, Phillip A. „Investigations of rate limitation in nanostructured composite electrodes and experiments towards a 3D Li-ion microbattery“. Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/206161/.

Der volle Inhalt der Quelle
Annotation:
The factors effecting discharge rate limitation within LiFePO4 composite electrode structures have been investigated. It was found that for composite electrodes containing ‘small particles’ of active material solid state processes are not necessarily rate limiting. A simple model has been developed to describe the rate limitation that occurs in the composite electrode structure due to electrolyte concentration, electrode thickness and lithium ion transference number. The conformal electrodeposition of cathode materials onto 3D current collectors has been achieved with good control of film thickness. The advantage of the 3D current collector configuration over a conventional thin film arrangement has been realised by a 250 times capacity increase for a given footprint area. It was suggested the observed rate performance of half-cell 3D microbatteries, based on a manganese dioxide cathode and a lithium foil anode, was limited by the lithium ion transport distance through the porous 3D structure. The electrodeposition of conformal polymers layers onto 3D substrates was investigated. The use of electrodeposited, electrolyte swollen, poly(acrylonitrile) and poly(aniline) films as polymer electrolytes was demonstrated. A novel method for the determination and differentiation of electronic and ionic resistance in electrodeposited polymer layers has been developed. A ‘working’ cell based on consecutively electrodeposited cathode and polymer electrolyte layers and a ‘soft contact’ liquid anode was presented
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lai, Yu-Sheng, und 賴譽生. „Hydrothermal Synthesis of Dendritic NiCo2O4 Nanostructures and Carbon Nanotube Composite Electrodes for Supercapacitors“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/j68fmm.

Der volle Inhalt der Quelle
Annotation:
碩士
國立高雄應用科技大學
化學工程與材料工程系博碩士班
103
This study used a facile hydrothermal synthesis to prepare the nanodendritic NiCo2O4 spinel on the conductive substrate for supercapacitors. Generally, electrode structure with large surface area could effectively improve the electrochemical performance of electrode due to the increase in the contact area between the electrode material and electrolyte. Therefore, we used the stainless steel wire mesh (SS mesh) to replace the stainless steel sheet (SS) as an electrode substrate. The composite electrode composed of carbon nanotubes (CNTs) and active materials were prepared. Results indicated that the composite electrode exhibited an excellent capacitive behavior due to presence of 3D CNTs that considerably increase the electrical conductivity of composite electrode, making the transport of electron easier. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, surface area analyzer, and thermal gravimetric analysis were used to characterize the physical properties of the electrodes. The results showed that nanodendritic NiCo2O4 could be successfully prepared on the conductive substrate. Electrochemical performance of electrodes was systematically investigated by cyclic voltammetry, galvanostatic charge/discharge, AC impedance, and cyclic life in 1 M KOH electrolyte. The result revealed that the CNT/NiCo2O4-SS mesh exhibited superior specific capacitance of 1213 F g-1 at a current density of 1 A g-1 and the better capacitance retention (about 92 % after 3000 cycles). Keywords: hydrothermal synthesis, NiCo2O4, nanodendritic structures, carbon nanotube, supercapacitors
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Fu, Yan-Hao, und 傅彥澔. „Electrochemical Behavior of Nanostructured Graphene/Manganese Oxide Composite Electrodes Prepared by Electrophoretic Deposition“. Thesis, 2013. http://ndltd.ncl.edu.tw/handle/74765360594860862392.

Der volle Inhalt der Quelle
Annotation:
碩士
國立高雄應用科技大學
化學工程與材料工程系博碩士班
101
In this study, VGCF (vapor grown carbon fiber) and MCMB (mesocarbon microbeads) were used as raw materials to synthesize the graphene oxide (GO) powder for supercapacitor applications. The porous graphene oxide electrodes were prepared by electrophoretic deposition (EPD). The effects of porous structure and surface area on the capacitive behavior were systematically investigated. X-ray diffraction analysis and transmission electron microscopy observation reveal that the spacing of the graphite layer was increased after chemical oxidation treatment. The specific surface area of synthesized GO powder measured by BET (Brunauer-Emmett-Teller) analyzer was significantly increased compared to that of raw materials. The electrodes were heat-treated at 300℃ in air for 1 h before the electrochemical measurements. Cyclic voltammetry (CV) test was carried out in 1 M Na2SO4 electrolyte solution to diagnose the reversibility of the electrodes. Galvanostatic charge and discharge tests were used to evaluate the specific capacitance value and the cycle-life stability of the electrodes. The results showed that at a discharge current density of 1 A g-1, the specific capacitance values increase up to 88 F g-1 and 43 F g-1 for VGCF and MCMB after oxidation reaction, respectively. The improved capacitive behavior was attributed to the large graphite layer spacing, high specific surface area, and special electrode structure for facilitating the charge storage. GNR (graphene nanoribbon)/MnO2 composite film electrode (36 wt.% MnO2) was fabricated by EPD in the isopropanol solution containing GNR powder and 0.5 mM manganese nitrate. After heat treated at 300℃ for 1 h, the specific capacitance value of GNR/MnO2 electrode could reach as high as 266 F g-1 (discharged at a current density of 1 A g-1). The GNR/MnO2 electrode showed a stable cycle-life performance, the capacitance retention was about 98% after 3000 charge/discharge cycle tests. The improved capacitive behavior of the GNR/MnO2 electrode could be attributed to the manganese oxide nanoparticles that prevent the graphite layers from restacking and inhibit the exfoliation of active materials from the electrode surface. Therefore, the electrochemical properties of GNR/MnO2 composite film electrode were considerably improved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chen, Yi Wen Wang Ben. „Nanotube and nanofiber buckypaper cold cathode illumination experimental investigation /“. 2006. http://etd.lib.fsu.edu/theses/available/etd-07102006-161808.

Der volle Inhalt der Quelle
Annotation:
Thesis (M.S.)--Florida State University, 2006.
Advisor: Ben Wang, Florida State University, College of Engineering, Dept. of Industrial Engineering. Title and description from dissertation home page (viewed Sept. 22, 2006). Document formatted into pages; contains xii, 93 pages. Includes bibliographical references.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ou-Yang, Huei, und 歐陽暉. „Characterization of nanostructured iron oxide composite electrode as an anode material for high-capacity Li-ion batteries“. Thesis, 2009. http://ndltd.ncl.edu.tw/handle/20292566236248703085.

Der volle Inhalt der Quelle
Annotation:
碩士
國立高雄應用科技大學
化學工程與材料工程系
97
In this study, the iron oxide (α-Fe2O3) active materials are synthesized by electrochemical deposition and chemical precipitation methods, respectively. In addition, the iron oxide was coated on the surface of carbon fiber (VGCF) to form α-Fe2O3/VGCF composite electrode as an anode material for high-capacity Li-ion batteries. In the first part, the iron oxide film and α-Fe2O3/VGCF composite electrodes are prepared by electrochemical deposition method. The effects of different deposition current densities (0.025 and 0.125 mA cm-2) on the material characteristics and electrochemical performances of iron oxide electrode are investigated. According to the SEM analysis, the iron oxide film deposited at low-current density (0.025 mA cm-2) is rod-like morphology and that deposited at high-current density (0.125 mA cm-2) is sheet-like morphology. During the first charge-discharge process, the reversible capacity of films deposited at 0.025 and 0.125 mA cm−2 are 1390 and 1275 mAh g-1, respectively; At 10 C rate, the reversible capacity are 803 and 797 mAh g-1, respectively. The synthesized anode materials have a higher capacity than the graphite material for lithium storage. The SEM and XRD results indicate that iron oxide films are uniformly coated on the surface of carbon fiber by means of electrochemical deposition process. Compared with iron oxide electrode (deposited at 0.125 mA cm-2), the reversible capacity of α-Fe2O3/VGCF composite electrodes are increased by 17.9 % in first charge-discharge process and 12 % at 10 C rate. The results show that carbon fiber can improve the electrochemical performance of the composite electrodes effectively. In the second part, the iron oxide powder is synthesized by chemical precipitation method and is deposited onto the stainless steel substrate by electrophoretic deposition to form iron oxide film and α-Fe2O3/VGCF composite electrodes. The effects of different precursors [Fe(NH4)2(SO4)2.6H2O and FeCl3.6H2O] on the material characteristics and electrochemical performances of the iron oxide electrode is investigated. According to the SEM analysis, when the precursors are Fe(NH4)2(SO4)2.6H2O and FeCl3.6H2O, the morphologies of resulting iron oxide powder are nanorod and nanoparticles, respectively. The TG-DTA and XRD results indicate that FeOOH is fully converted into α-Fe2O3 when the annealing temperature is elevated to 400℃. During the first charge-discharge process, the reversible capacity of films for Fe(NH4)2(SO4)2.6H2O and FeCl3.6H2O are 1390 and 1275 mAh g-1, respectively; At 10 C rate, the reversible capacity are 713 and 503 mAh g-1, respectively. Compared with iron oxide electrode [Fe(NH4)2(SO4)2.6H2O], the reversible capacity of α-Fe2O3/VGCF composite electrodes are increased by 16.2 % in first charge-discharge process and 11.8 % at 10 C rate.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Libánský, Milan. „Testování nových elektrodových uspořádání pro monitorování elektrochemicky oxidovatelných biologicky aktivních organických látek“. Doctoral thesis, 2017. http://www.nusl.cz/ntk/nusl-354366.

Der volle Inhalt der Quelle
Annotation:
Submitted Ph.D. Thesis is focused on the electrochemical characterization and testing of recently developed working electrodes made from pure gold or graphitic carbon particles and electrochemical arrangements. These electrodes are suitable for large screening measurements of various organic compounds. The development of new sensitive voltammetric methods for determination of oxidisable biologically active organic compounds is another aim of this work. To verify its applicability, the array of carbon composite film electrodes integrated in measuring cell system was selected for the development of voltammetric methods for determination of homovanillic acid, vanillylmandelic acid, and indoxyl sulphate. These analytes, which belong to the group of biomarkers of human diseases, were selected for increasing interest in their determination in medical laboratories. Moreover, determination of indoxyl sulphate was coupled to its solid phase extraction from human urine prior to voltammetric determination. Obtained results were compared with measurements of standards with well-established carbon paste electrode. Sputtered (physical vapour deposition method) gold nanostructured film electrodes on treated PTFE substrates and gold nanostructured film electrodes modified with various functional groups on the...
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Electrodes composites nanostructurées"

1

Jahid Akhtar, Abu. „Graphene-Based Materials for Supercapacitor“. In Supercapacitors [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98011.

Der volle Inhalt der Quelle
Annotation:
Graphene, a one-atomic-thick film of two-dimensional nanostructure, has piqued the attention of researchers due to its superior electrical conductivity, large surface area, good chemical stability, and excellent mechanical behaviour. These extraordinary properties make graphene an appropriate contender for energy storage applications. However, the agglomeration and re-stacking of graphene layers due to the enormous interlayer van der Waals attractions have severely hampered the performance of supercapacitors. Several strategies have been introduced to overcome the limitations and established graphene as an ideal candidate for supercapacitor. The combination of conducting polymer (CP) or metal oxide (MO) with graphene as electrode material is expected to boost the performance of supercapacitors. Recent reports on various CP/graphene composites and MO/graphene composites as supercapacitor electrode materials are summarised in this chapter, with a focus on the two basic supercapacitor mechanisms (EDLCs and pseudocapacitors).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Laxman Jadhav, Amar, Sharad Laxman Jadhav und Anamika Vitthal Kadam. „Effect of Different Metals Doped in Nickel Oxide Nanomaterials on Electrochemical Capacitive Performance“. In Supercapacitors [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99326.

Der volle Inhalt der Quelle
Annotation:
Recently, the various porous nano metal oxides used for the electrochemical energy storage supercapacitor applications. Some researchers focus on the binary as well as ternary metal oxides and more metal oxide complex composite materials used for the supercapacitors. In the review article focused on the effect of different metals doped in a nickel oxide nano material on the electrochemical capacitive performance, discussion on methodologies, charge storage mechanism, latest research articles and prepared nanostructures. Nowadays nickel oxide is developing electrode material for storage of charge due to its higher thermal stability, excellent chemical stability, cost effective materials, higher theoretical values of specific capacitance, naturally rich and environment friendliness material. The various metals doped in NiO and their composite oxides have shown good structural stability, reversible capacity, long cycling stability and have been also studied nano structured electrode materials for electrochemical supercapacitor applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kučinskis, Gints, Kaspars Kaprāns und Gunārs Bajārs. „Nanostructured materials and their thin films for Li-ion battery electrodes: synthesis, research and performance“. In Nanostructured Composite Materials for Energy Storage and Conversion: collection of articles, 101–23. Latvijas Universitātes Akadēmiskais apgāds, 2019. http://dx.doi.org/10.22364/ncmesc.05.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dindune, Antonija, Jānis Ronis, Dagnija Valdniece, Antanas Orliukas, Tomas Salkus und Vilma Venckute. „Synthesis and research of electrode and solid electrolyte materials for lithium ion batteries“. In Nanostructured Composite Materials for Energy Storage and Conversion: collection of articles, 25–53. Latvijas Universitātes Akadēmiskais apgāds, 2019. http://dx.doi.org/10.22364/ncmesc.02.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Electrodes composites nanostructurées"

1

Liao, G. Y., S. Geier, T. Mahrholz, P. Wierach und M. Wiedemann. „Temperature Influence on Electrical Properties of Carbon Nanotubes Modified Solid Electrolyte-Based Structural Supercapacitor“. In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3908.

Der volle Inhalt der Quelle
Annotation:
In the present work, we report on structural supercapacitors which are based on NASICON-type solid electrolyte Li1.4Al0.4Ti1.6(PO4)3 (LATP). The nanostructured electrodes incorporate single-wall carbon nanotubes (SWCNTs) mixed with the LATP electrolyte. The complete energy storage devices are manufactured in a sandwich structure consisting of two nanostructured electrode layers which are separated by a pure LATP layer. The as-prepared specimens are embedded in composite materials with Airstone 880/886H epoxy resin as matrix. Their electrical properties are characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). At ambient temperature, the addition of 6.5 wt. % SWCNTs results in a distinct improvement by reducing the total resistance of the embedded devices and enhances the capacitance from 0.025 mF g−1 to 3.160 mF g−1 at a scan rate of 5 mV s−1. Electrical measurements of two types of specimens are then applied under different temperatures from ambient temperature to 80 °C. It is observed that the equivalent series resistance (ESR) of device with SWCNTs decreases greatly and capacitance increases comparing with the device without SWCNTs. As a conclusion, the structural supercapacitors acquire excellent performance through high efficient double layer effects realized by nanostructured electrode/electrolyte interphase (large surface electrode areas).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sakhapov, Salavat. „Nanostructures Material Synthesis at Arc Spray of Composite Ruby-Carbon Electrodes“. In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9242055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Valentini, F., A. Lupu, S. Orlanducci, D. Compagnone, C. Cremisini, M. L. Terranova und G. Palleschi. „DIAMOND-BASED NANO-COMPOSITES AND CARBON NANOSTRUCTURES ELECTRODES AS NEW ELECTROCHEMICAL PROBES“. In Proceedings of the 7th Italian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776457_0043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Béguin, F. „Carbon Nanotubes as Backbones for Composite Electrodes of Supercapacitors“. In ELECTRIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES: XVII International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2004. http://dx.doi.org/10.1063/1.1812129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chung, Jaehyun, Kyong-Hoon Lee, Rodney S. Ruoff und Junghoon Lee. „Electric-Field-Driven Fluid Flow Around Nano Particles“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62247.

Der volle Inhalt der Quelle
Annotation:
Recently there has been significant progress in assembling an array of individual carbon nanotubes (CNTs) on microfabricated electrodes using the Composite Electric-field Guided Assembly (CEGA) method. This technology allows for integrating individual nano components with micro/nano systems, and should find application in areas such as sensors and NEMS devices. For realizing this as a viable technology, it is crucial to understand the electric-field-driven flow around the nanostructures being deposited. We previously discovered that the flow patterns that are present can lead to deposition of a periodic array CNTs. Here, we present recent experimental observations and the results of modeling/simulation on the electric-field-driven flow around CNTs. The results suggest that this method of assembling nanostructures be used for integration with an accuracy approaching tens of nanometers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Illera, Danny, Victor Fontalvo und Humberto Gomez. „Cellulose Nanocrystals Assisted Preparation of Electrochemical Energy Storage Electrodes“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71495.

Der volle Inhalt der Quelle
Annotation:
Renewable energy sources demands sustainable energy storage technologies through the incorporation of low-cost and environment-friendly materials. In this regard, cellulose nanocrystals (CN), which are needle-shaped nanostructure derived from cellulose-rich resources, are extracted by sulfuric acid hydrolysis of biomass and used as both template and binder for the construction of electrochemical capacitors electrodes. A composite material is synthetized comprising CN and a conjugated electroactive polymer (CEP) to overcome the electrical insulating properties of cellulose as well as to exploit enhanced electrochemical activity by increased electrode surface-area. A one-step in-situ film synthesis protocol is evaluated by performing simultaneous polymerization and film deposition. The effect of proportion of starting components are evaluated through statistical Response Surface Methodology towards optimizing the electrochemical performance. Depending on the mass proportion of the starting components, a conducting network could be created by surface coating of the CEP on the whiskers during polymerization. Electrochemical measurements suggest an increase in specific surface area by at least a factor of two relative to bare CEP as a consequence of the template role of cellulose. Therefore, adjustment of the proposed one-step synthesis parameters allows tuning the material properties to meet specific application requirements regarding electrochemical performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Basheer, Rafil, und Nedal Abu-Thabit. „Nanostructured Conductive Composite Filter Electrodes for Water Sterealization by Application of Low Electrical Current“. In 1st International Electronic Conference on Materials. Basel, Switzerland: MDPI, 2014. http://dx.doi.org/10.3390/ecm-1-b015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Couderc, H., Y. Corlu, S. Savoie, M. Frechette und E. David. „Dielectric breakdown of an epoxy/quartz composite and a nanostructured epoxy/quartz/Montmorillonite composite. Influence of electrode geometry“. In 2011 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP 2011). IEEE, 2011. http://dx.doi.org/10.1109/ceidp.2011.6232760.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pint, Cary L. „Capillary Force Guided Nanomanufacturing of Composite Materials for Advanced Battery Applications“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71738.

Der volle Inhalt der Quelle
Annotation:
This paper introduces the use of capillary thermodynamics as a powerful nanomanufacturing tool, and its specific application to infiltrate sulfur into 3-D nanostructured electrodes for advanced lithium-sulfur and/or sodium-sulfur battery development. The capillary effect specifically targets nucleation from the equilibrium vapor pressure of bulk sulfur (gas phase) onto nanoscale surfaces (liquid phase). This leads to condensates that nucleate and grow uniformly over the surface leading to self-limited and conformal composite materials moderated by the chemical potential driving force between the nanoscale nuclei and the bulk sulfur. Our studies show highly consistent and repeatable sulfur loading exceeding 80 wt.% sulfur, fast kinetics that can lead to full infiltration in ∼ 10 minutes, and synergy with pre-formed carbon materials including carbon nanotube arrays, carbon nanotube foams and sponges, and microporous carbons with pore sizes ∼ 0.5 nm. This overcomes challenges of scaling to high areal capacity in lithium-sulfur and sodium-sulfur batteries, and our results emphasize the highest reported areal capacities for solid-processed cathodes to date (> 19 mAh/cm2). This paves the route to batteries with energy density > 500 Wh/kg with reliable manufacturing processes that simultaneously sustain low cost and high throughput.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Raffaelle, R. P., B. Landi, T. Gennett, R. S. Morris, B. Dixon und P. Lamarre. „Fuel Cell Applications of Single Wall Carbon Nanotubes“. In ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1708.

Der volle Inhalt der Quelle
Annotation:
Novel carbon materials with nanometer dimensions are of potentially significant importance for a number of advanced technological applications. Currently, considerable interest exists in the possible applications of single wall carbon nanotubes (SWNTs) to proton exchange membrane (PEM) fuel cells. Proposed uses include as anode materials in both hydrogen and direct methanol fuel cells, solid polymer electrolyte additives, active cathode materials and bipolar plate interconnects. One of the desirable attributes afforded by the use of SWNTs in fuel cell applications stems from a combination of their extremely high electrical conductivity and large aspect ratios which results in a low weight percent for the electrical percolation threshold. This conductivity combined with the outstanding catalytic surface area offered by these nanostructured materials makes them a potentially outstanding active material for PEM electrodes. In addition, the high thermal conductivity, enhanced mechanical properties and corrosion resistance of polymer-SWNT composites may play a large role in developing new fuel cell designs such as thin-film microelectronic fuel cells. We will review the current applications involving SWNTs in PEM fuel cells and report on the recent work in the Nanopower Research Lab at RIT and it partners on utilizing high purity SWNT’s in microelectronic fuel cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Electrodes composites nanostructurées"

1

Meilin Liu, James Gole. Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report). US: Georgia Institute of Technology, Dezember 2006. http://dx.doi.org/10.2172/896312.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie