Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electrode de zinc“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electrode de zinc" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electrode de zinc"
Payer, Gizem, und Özgenç Ebil. „Zinc Electrode Morphology Evolution in High Energy Density Nickel-Zinc Batteries“. Journal of Nanomaterials 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/1280236.
Der volle Inhalt der QuelleKim, Ji-Hyun, Jung Eun Park und Eun Sil Lee. „Zinc Recovery through Electrolytic Refinement Using Insoluble Ir + Sn + Ta + PdOx/Ti Cathode to Reduce Electrical Energy Use“. Materials 12, Nr. 17 (29.08.2019): 2779. http://dx.doi.org/10.3390/ma12172779.
Der volle Inhalt der QuelleKim, Ki Jae, Han Jun Leem, Jisang Yu und Hyun-seung Kim. „Spontaneous Lithiophilic and Lithium-Ion Conductive Functional Layer Formation Enabled by Solution-Casted Zinc Nitride for Highly Stable Lithium Metal Electrode in Carbonate Electrolyte“. International Journal of Energy Research 2023 (11.02.2023): 1–8. http://dx.doi.org/10.1155/2023/9526791.
Der volle Inhalt der QuelleNazri, M. A., Anis Nurashikin Nordin, L. M. Lim, M. Y. Tura Ali, Muhammad Irsyad Suhaimi, I. Mansor, R. Othman, S. R. Meskon und Z. Samsudin. „Fabrication and characterization of printed zinc batteries“. Bulletin of Electrical Engineering and Informatics 10, Nr. 3 (01.06.2021): 1173–82. http://dx.doi.org/10.11591/eei.v10i3.2858.
Der volle Inhalt der QuellePark, Mijung, und Taeksoon Lee. „A Study on the Application Characteristics of the Insoluble MMO (Mixed Metal Oxide) Electrode for Energy Reduction of Zinc Electrowinning Process“. Journal of Korean Society of Environmental Engineers 42, Nr. 9 (30.09.2020): 424–30. http://dx.doi.org/10.4491/ksee.2020.42.9.424.
Der volle Inhalt der QuelleLiang, Hong Xia, und Zhi Lin Wang. „Effect of Indium Addition on the Electrochemical Behavior of Zinc Electrodes in Concentrated Alkaline Solutions“. Advanced Materials Research 721 (Juli 2013): 95–104. http://dx.doi.org/10.4028/www.scientific.net/amr.721.95.
Der volle Inhalt der QuelleLee, Sangyup, Paul Maldonado Nogales und Soon Ki Jeong. „Influence of Electrolyte Concentration on the Electrochemical Behavior of Copper Hexacyanoferrate as an Active Material for Zinc-Ion Batteries“. Materials Science Forum 1119 (29.03.2024): 25–30. http://dx.doi.org/10.4028/p-2jsyvs.
Der volle Inhalt der QuelleNor Hairin, Assayidatul Laila, Raihan Othman, Hanafi Ani Mohd, Hens Saputra und Muhd Zu Azhan Yahya. „Evaluation of Porous Electrode Properties Using Metal-Air Electrochemical System“. Advanced Materials Research 512-515 (Mai 2012): 1619–23. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.1619.
Der volle Inhalt der QuelleYang, Xiao Yong, Pei Xian Zhu und Yun Sen Si. „Preparation and Application of Lead Dioxide Electrode for Zinc Electrolysis“. Advanced Materials Research 785-786 (September 2013): 1125–29. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.1125.
Der volle Inhalt der QuelleBoonpong, Rabat, Attera Worayingyong, Marisa Arunchaiya und Atchana Wongchaisuwat. „Effect of LaCoO3 Additive on the Electrochemical Behavior of Zinc Anode in Alkaline Solution“. Materials Science Forum 663-665 (November 2010): 596–99. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.596.
Der volle Inhalt der QuelleDissertationen zum Thema "Electrode de zinc"
Bass, Kevin. „Zinc electrode performance in modified electrolyte“. Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/10348.
Der volle Inhalt der QuelleCaldeira, Vincent. „Développement d'électrodes composites architecturées à base de zinc pour accumulateurs alcalins rechargeables“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI065.
Der volle Inhalt der QuelleThe work presented in this document results from a multidisciplinary study, the unique goal of which is to develop a negative electrode for alkaline rechargeable batteries. At the origin of this thesis, is the surprising discovery by EASYL of a new way to synthesize calcium zincate (CAZN), an electrochemically active material known for its good cycling characteristics in alkaline batteries. The advantage of such a discovery resides in its unique characteristics: the ultra-fast synthesis is carried out continuously, uses neither heating system nor alkaline solutions, yields pure and tailored CAZN crystals; it is therefore compatible with an industrial production of this material.Its use in a 4 Ah prismatic batteries allowed to unveil a core-shell operation mechanism, in which the electrode evolves towards an active zinc-core surrounded by a protective shell. So, if the nominal capacity remains below the theoretical one, the core of the electrode can be kept active while the surface is maintained, thus avoiding (or at least slowing down) possible dendrite formation and yielding prolonged cycle life.However, the use of calcium zincate as the only active material source is not appropriate, because the formation of the zinc-core leads to the appearance of a resistive layer of calcium hydroxide at its periphery, which reduces the overall electrochemical performance. As surprising as it may seem, it is possible to regenerate an electrode having formed such a calcium hydroxide-rich layer by a simple rest such as a stop of the battery. Nevertheless, it is preferable to avoid the formation of this resistive layer and to do so, the use of a mixture of sacrificial zinc oxide combined with calcium zincate has proven very effective, both from a morphological and an electrochemical point-of-view.However, the controlled formation of a zinc-rich core leads to zinc densification on itself; this decreases the surface of contact between the active material and the electrolyte, and thus the electrochemical performance. This negative effect has been overcome by drastically rethinking the structure of the electrode, in order to allow the formation of multiple and tailored zinc cores. To that goal, multilayers of current collector were employed, which proved simple and effective to reach high-performance and high cyclability zinc electrodes for alkaline batteries
Dong, Mengyang. „Heterostructured Electrocatalysts for Oxygen Electrode in Rechargeable Zinc-Air Batteries“. Thesis, Griffith University, 2022. http://hdl.handle.net/10072/418672.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Gong, Minhui. „Etude des électrodes sur batterie zinc-air“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLC024.
Der volle Inhalt der QuelleZinc-air battery is becoming a potential alternative for lithium-ion battery owing to its resource stock advantage, high theoretical energy density, and low potential of safety risk. This work emphasizes the conventional issues involving both zinc and air electrode, aiming to application.For the zinc electrode, two homemade setups are used to study the zinc dendrite growth and hydrogen evolution during deposition with static and flowing electrolyte, respectively. It is found that high zincate concentration in electrolyte with 7 M KOH (>0.4 M ZnO) and flowing electrolyte are preferable for depressing dendrite growth. While flowing electrolyte would generate more hydrogen evolution. For the air electrode, a detailed cyclic voltametric investigation of the catalytic activity of lanthanum strontium manganese oxides (LSMO) towards oxygen reduction reaction is conducted. A new current normalization method is proposed for comparison of catalytic activity of the LSMOs. Zinc-air battery assembly is also tested, while remaining to be improved. Nevertheless, cost-effective PVDF-HFP is found to be a promising binder for air electrode formulation
Dongui, Bini Kouame. „Electrode métallique négative pour générateurs électrochimiques "tout solide" à conduction protonique“. Grenoble INPG, 1988. http://www.theses.fr/1988INPG0111.
Der volle Inhalt der QuelleFerreira, Jane Zoppas. „Electrocristallisation et dissolution du zinc dans un electrolite alcalinen circulation : cas d'une electrode poreuse et d'une electrode massive bombardee par des particules spheriques“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1991. http://hdl.handle.net/10183/170149.
Der volle Inhalt der QuelleIn alkaline medium, the behaviour of two types of zinc electrodes has been studicd : a porous electrode flowed through by thc electrolyte and a solid one collided by sp herical particles circulating with the clcctrolyte. From clcctrochcmical impcdance measuremcnts, it is shown that the porous electrode behaves as a cylindrical pores clcctrode the tcxture of which changes with increasing polarisation. It was found that cvcn under forced electrolyte circulation. the current penetration in pores is shallow both under anodic and cathodic polarisations. The panicles impacts on the solid clcctrode result in a noise analyzcd both in the frequency and time domains. Simultaneous mcasurements of potcntial and electro lyte resistance fluctuations are used to identify the charactcristic time constants related to thc approach and rcsidence times of panicles within the electrode vicinity. While glass panicles gene rate only ohmic drop flutuations during the zinc dissolution or clcctrodcposition. zinc particles also induced potential fluctuations in the high frcqucncy domain. Modelling these fluctuations has concluded that they are related to thc recharging time of the electrode capacitance subsequent to the instantancous charge exchange taking place when zinc particles collide the electrodc. As rcvcalcd by impedance spectroscopy and electrode morphology, thesc collisions also influence the interfacial processes controlling the reactions on the zinc clectrode.
Rodrigues, Joel da Silva. „Estudo da corrosão de revestimentos de zinco-ligas obtidos por imersão a quente sobre aços baixo-carbono“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/49059.
Der volle Inhalt der QuelleZinc has been used for quite some time, as decorative and protective coating for metal parts. However, the industry increasingly seeks protective coatings that are more resistant to corrosion, have good weldability characteristics, and especially low cost. The most common methods by which zinc coatings are applied are hot dipping, electroplating and thermal spraying. The present work aims to characterize the morphology of the coatings Galvanized (GI), galvannealed (GA) and Zn-55Al of zinc obtained by hot dip process, check the electrochemical behavior and analyze the behavior of coatings for corrosion techniques of pots and Vibrating electrode (SVET). The results showed that it is possible to analyze the phases by microcell voltammetry in the coating in which the phases were grown, however, is not possible to apply the technique in the different phases formed in industrial coatings due to the thickness of coatings. There was no influence of UV-VIS in the corrosion rate of the coatings studied by SVET and this technique was satisfactory for large and small areas increases. The analysis by SVET demonstrated the possibility of analyzing the localized corrosion in different intermetalic phases in coatings.
MacDonald, Gordon Alex. „Nanoscale Characterization of the Electrical Properties of Oxide Electrodes at the Organic Semiconductor-Oxide Electrode Interface in Organic Solar Cells“. Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/347338.
Der volle Inhalt der QuelleHolden, Nicholas John. „The improvement of weld quality in medium frequency direct current resistance spot welding“. Thesis, Birmingham City University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312224.
Der volle Inhalt der QuelleZoppas, Ferreira Jane. „Electrocristallation et dissolution du zinc dans un electrolyte alcalin en circulation : cas d'une electrode poreuse et d'une electrode massive bombardee par des particules spheriques“. Paris 6, 1991. http://www.theses.fr/1991PA066392.
Der volle Inhalt der QuelleBücher zum Thema "Electrode de zinc"
United States. National Aeronautics and Space Administration., Hrsg. [Frequency response measurements in battery electrodes]: [final report, 1 Feb. - 31 Dec. 1991]. [Washington, DC: National Aeronautics and Space Administration, 1992.
Den vollen Inhalt der Quelle findenSagüés, Alberto A. Sprayed zinc galvanic anodes for concrete marine bridges substructures. Washington, DC: Strategic Highway Research Program, 1994.
Den vollen Inhalt der Quelle findenMisiewicz, Jan. Optical excitations in zinc phosphide (zn3p2). Wrocław: Wydawn. Politechniki Wrocławskiej, 1989.
Den vollen Inhalt der Quelle findenMa, Jun. The deposition and electro-optical properties of thin film zinc sulphide phosphors. [s.l: The Author], 1998.
Den vollen Inhalt der Quelle findenGanter, Barbara E. Thermokraft abschreckend kondensierter Legierungsschichten: Am Beispiel des amorphen Legierungssystems Zinn-Gold und binärer Edelmetall, 3d-Metall Spingläser. Konstanz: Hartung-Gorre, 1986.
Den vollen Inhalt der Quelle findenPatterson, James D. Electronic characterization of defects in narrow gap semiconductors: Final report, November 25, 1992 to November 25, 1994. Marshall Space Flight Center, AL: [National Aeronautics and Space Administration], George C. Marshall Space Flight Center, 1994.
Den vollen Inhalt der Quelle findenPatterson, James D. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in Mercury Cadmium Telluride Mercury Zinc Telluride and Mercury Zinc Selenide, semi-annual report, September 19, 1994 to March 19, 1995. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenBass, Kevin. Zinc electrode performance in modified electrolyte. 1990.
Den vollen Inhalt der Quelle findenDuffield, A. Optimisation of conductor modified zinc electrodes. 1986.
Den vollen Inhalt der Quelle findenZachara, John Michael. A solution chemistry and electron spectroscopic study of zinc adsorption and precipitation on calcite. 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Electrode de zinc"
Rajarathnam, Gobinath Pillai, und Anthony Michael Vassallo. „Bromine-Side Electrode Functionality“. In The Zinc/Bromine Flow Battery, 63–79. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-646-1_5.
Der volle Inhalt der QuelleSchröder, Daniel. „Detailed One-Dimensional Air Electrode Model“. In Analysis of Reaction and Transport Processes in Zinc Air Batteries, 83–94. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-12291-1_6.
Der volle Inhalt der QuelleTagbo, Philips Chidubem, Chukwujekwu Augustine Okaro, Cyril Oluchukwu Ugwuoke, Henry Uchenna Obetta, Onyeka Stanislaus Okwundu, Sabastine Ezugwu und Fabian I. Ezema. „Zinc Anode in Hydrodynamically Enhanced Aqueous Battery Systems“. In Electrode Materials for Energy Storage and Conversion, 47–70. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003145585-4.
Der volle Inhalt der QuelleWang, Yu Qiao, Chun Ping Liu, Kang Li und Yue Ming Sun. „Fabrication and I-V Characteristics of Nanocrystalline Titania Electrode Sensitized by Zinc Phthalocyanine“. In Experimental Mechanics in Nano and Biotechnology, 365–68. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-415-4.365.
Der volle Inhalt der QuelleTakasaki, Y., K. Koike und N. Masuko. „Mechanical Properties and Electrolytic Behavior of Pb-Ag-Ca Ternary Electrodes for Zinc Electro Winning“. In Lead-Zinc 2000, 599–614. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118805558.ch40.
Der volle Inhalt der QuelleDas, Sanghamitra, und Shrikrishna N. Joshi. „Experimental Investigations into Erosion of Zinc-Coated Brass Wire Electrode During WEDM of Ti-6Al-4 V Alloy“. In Lecture Notes in Mechanical Engineering, 77–85. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7150-1_7.
Der volle Inhalt der QuelleFrackowiak, Elzbieta, und Krzysztof Jurewicz. „Improvement of Secondary Zinc Electrodes“. In Electrochemical Engineering and Energy, 41–46. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2514-1_4.
Der volle Inhalt der QuelleVerbeken, K., M. Verhaege und E. Wettinck. „Separation of Iron from a Zinc Sulphate Electrolyte by Combined Liquid-Liquid Extraction and Electro-Reductive Stripping“. In Lead-Zinc 2000, 779–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118805558.ch52.
Der volle Inhalt der QuelleBarbic, Paul, Leo Binder, Susanne Voß, Ferdinand Hofer und Werner Grogger. „Thin-Film Zinc/Manganese Dioxide Electrodes“. In Electroactive Materials, 45–52. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-6211-8_5.
Der volle Inhalt der QuelleTian, Qing Hua, Xue Yi Guo, Ping Xue, Yu Song und Lian Duan. „Electro-Deposition for Foamed Zinc Material from Zinc Sulfate Solution“. In Materials Science Forum, 1669–72. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.1669.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electrode de zinc"
Chamran, Fardad, Hong-Seok Min, Bruce Dunn und Chang-Jin "CJ" Kim. „Zinc-air microbattery with electrode array of zinc microposts“. In 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2007. http://dx.doi.org/10.1109/memsys.2007.4433097.
Der volle Inhalt der QuelleL., Sin L., M. K. Md Arshad, M. F. M. Fathil, R. Adzhri, M. Nuzaihan M. N., A. R. Ruslinda, Subash C. B. Gopinath und U. Hashim. „Zinc oxide interdigitated electrode for biosensor application“. In INTERNATIONAL CONFERENCE ON NANO-ELECTRONIC TECHNOLOGY DEVICES AND MATERIALS 2015 (IC-NET 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4948893.
Der volle Inhalt der QuelleDhanush, P. C., K. Brijesh, S. Vinayraj und H. S. Nagaraja. „High stable zinc tungstate electrode for electrochemical supercapacitor“. In ADVANCES IN MECHANICAL DESIGN, MATERIALS AND MANUFACTURE: Proceeding of the Second International Conference on Design, Materials and Manufacture (ICDEM 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0004023.
Der volle Inhalt der QuelleRadha Shanmugam, Nandhinee, Sriram Muthukumar und Shalini Prasad. „Zinc Oxide Nanostructures as Electrochemical Biosensors on Flexible Substrates“. In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-9085.
Der volle Inhalt der QuelleKiasari, Nima Mohseni, Jun Shen, Bobak Gholamkhass, Saeid Soltanian und Peyman Servati. „Well-aligned zinc oxide nanowire arrays for transparent electrode applications“. In 2011 IEEE Photonics Conference (IPC). IEEE, 2011. http://dx.doi.org/10.1109/pho.2011.6110671.
Der volle Inhalt der QuelleAlshareef, Husam. „Electrode & Electrolyte Engineering in Rechargeable Aqueous Zinc-ion Batteries“. In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.195.
Der volle Inhalt der QuelleSchacht, Benny, Raf Verheyen, Jean-Pierre Kruth und Bert Lauwers. „An Erosion Index for Wire Electrode Materials in EDM“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60798.
Der volle Inhalt der QuelleMizutani, S., S. Nakashima, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, T. Kondo et al. „Indium-zinc oxide transparent electrode for nitride-based light-emitting diodes“. In SPIE OPTO, herausgegeben von Klaus P. Streubel, Heonsu Jeon, Li-Wei Tu und Martin Strassburg. SPIE, 2013. http://dx.doi.org/10.1117/12.2003536.
Der volle Inhalt der QuelleSakhairi, Khairunnisa Nasirah Ahmad, Azrif Manut, Ahmad Sabirin Zoolfakar und Maizatul Zolkapli. „Effect of Zinc Precursor on Interdigitated Electrode using Electrochemical Deposition Method“. In 2021 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). IEEE, 2021. http://dx.doi.org/10.1109/rsm52397.2021.9511608.
Der volle Inhalt der QuelleLin, Cheng-Li, Chi-Chang Tang, Shu-Ching Wu, Syuan-Ren Yang, Yi-Hsiu Lai und Shich-Chuan Wu. „Resistive switching characteristics of zinc oxide (ZnO) resistive RAM with Al metal electrode“. In 2011 IEEE 4th International Nanoelectronics Conference (INEC). IEEE, 2011. http://dx.doi.org/10.1109/inec.2011.5991798.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Electrode de zinc"
Sutija, Dave P., Rolf H. Muller und Charles W. Tobias. The development of a micropatterned electrode for studies of zinc electrodeposition. Office of Scientific and Technical Information (OSTI), Dezember 1986. http://dx.doi.org/10.2172/7088787.
Der volle Inhalt der QuelleJain, R., F. McLarnon und E. Cairns. Cycle-life improvement of Zn/NiOOH cells by the addition of Ca(OH) sub 2 to the zinc electrode. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/5194778.
Der volle Inhalt der QuelleKlein, M., und S. Viswanathan. Zinc/air battery R and D research and development of bifunctional oxygen electrode: Tasks I and II, Final report. Office of Scientific and Technical Information (OSTI), Dezember 1986. http://dx.doi.org/10.2172/6539188.
Der volle Inhalt der QuelleStoyanova-Ivanova, Angelina, Alexander Vasev, Peter Lilov, Violeta Petrova, Yordan Marinov, Antonia Stoyanova, Galia Ivanova und Valdek Mikli. Conductive Ceramic Based on the Bi-Sr-Ca-Cu-O HTSC System as an Additive to the Zinc Electrode Mass in the Rechargeable Ni-Zn Batteries – Electrochemical Impedance Study. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, Februar 2019. http://dx.doi.org/10.7546/crabs.2019.02.05.
Der volle Inhalt der QuelleMurakoshi, Kei, Shozo Yanagida und M. Capel. Interfacial electron transfer dynamics of photosensitized zinc oxide nanoclusters. Office of Scientific and Technical Information (OSTI), Juni 1997. http://dx.doi.org/10.2172/489691.
Der volle Inhalt der QuelleGummow. L51908 AC Grounding Effects on Cathodic Protection Performance in Pipeline Stations.pdf. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 2001. http://dx.doi.org/10.55274/r0010269.
Der volle Inhalt der QuelleB. A. Brunett, J. C. Lund, J. M. Van Scyoc, N. R. Hilton, E. Y. Lee und R. B. James. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs. Office of Scientific and Technical Information (OSTI), Januar 1999. http://dx.doi.org/10.2172/751018.
Der volle Inhalt der QuelleLi, H., J. Q. Chambers und D. T. Hobbs. Electroreduction of nitrate ions in concentrated sodium hydroxide solutions at lead, zinc, nickel, and phthalocyanine-modified electrodes. Office of Scientific and Technical Information (OSTI), Dezember 1987. http://dx.doi.org/10.2172/665993.
Der volle Inhalt der Quelle