Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „ELECTROCONDUCTIVITY“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "ELECTROCONDUCTIVITY" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "ELECTROCONDUCTIVITY"
Londar, S. L. „Electroconductivity of Ca5Ga6O14 crystals“. Physica Status Solidi (a) 146, Nr. 2 (16.12.1994): 765–70. http://dx.doi.org/10.1002/pssa.2211460221.
Der volle Inhalt der QuelleIlicheva, N. S., N. K. Kitaeva, V. R. Duflot und V. I. Kabanova. „Synthesis and Properties of Electroconductive Polymeric Composite Material Based on Polypyrrole“. ISRN Polymer Science 2012 (29.02.2012): 1–7. http://dx.doi.org/10.5402/2012/320316.
Der volle Inhalt der QuelleSakai, Takenobu, Tomohiko Gushiken, Jun Koyanagi, Rolando Rios-Soberanis, Tomoki Masuko, Satoshi Matsushima, Satoshi Kobayashi und Satoru Yoneyama. „Effect of Viscoelastic Behavior on Electroconductivity of Recycled Activated Carbon Composites“. Applied Mechanics and Materials 70 (August 2011): 231–36. http://dx.doi.org/10.4028/www.scientific.net/amm.70.231.
Der volle Inhalt der QuelleSorokin, N. I., und E. I. Ardashnikova. „Electroconductivity of Oxyfluoride 3NdOF · KF“. Russian Journal of Electrochemistry 40, Nr. 5 (Mai 2004): 578–79. http://dx.doi.org/10.1023/b:ruel.0000027631.56744.54.
Der volle Inhalt der QuelleSavic, Slobodan, und Branko Obrovic. „The influence of variation of electroconductivity on ionized gas flow in the boundary layer along a porous wall“. Theoretical and Applied Mechanics 33, Nr. 2 (2006): 149–79. http://dx.doi.org/10.2298/tam0602149s.
Der volle Inhalt der QuelleODINAEV, S., und I. ODJIMAMADOV. „THE RELAXATION THEORY OF ELECTROELASTICITY AND DIELECTRIC PROPERTIES OF IONIC LIQUIDS“. Modern Physics Letters B 15, Nr. 09n10 (30.04.2001): 285–90. http://dx.doi.org/10.1142/s021798490100177x.
Der volle Inhalt der QuelleLiu, Hongbo, Ben Li, Jing Xue, Jiayu Hu und Jing Zhang. „Mechanical and Electroconductivity Properties of Graphite Tailings Concrete“. Advances in Materials Science and Engineering 2020 (04.04.2020): 1–20. http://dx.doi.org/10.1155/2020/9385097.
Der volle Inhalt der QuelleErshov, A. P., N. P. Satonkina und G. M. Ivanov. „Electroconductivity profiles in dense high explosives“. Russian Journal of Physical Chemistry B 1, Nr. 6 (Dezember 2007): 588–99. http://dx.doi.org/10.1134/s1990793107060139.
Der volle Inhalt der QuelleFujii, Masak, und Tatsuo Wakayama. „4834910 Coating agent for imparting electroconductivity“. Carbon 28, Nr. 1 (1990): IV. http://dx.doi.org/10.1016/0008-6223(90)90148-r.
Der volle Inhalt der QuelleSurzhikov, A. P., T. S. Frangulyan, S. A. Ghyngazov, E. N. Lisenko und O. V. Galtseva. „Investigation of electroconductivity of lithium pentaferrite“. Russian Physics Journal 49, Nr. 5 (Mai 2006): 506–10. http://dx.doi.org/10.1007/s11182-006-0133-6.
Der volle Inhalt der QuelleDissertationen zum Thema "ELECTROCONDUCTIVITY"
Ichkitidze, L. P., V. M. Podgaetsky, S. V. Selishchev, E. V. Blagov, V. A. Galperin und Yu P. Shaman. „Laser Stimulation the Electroconductivity of Composite Layers with Multiwalled Carbon Nanotubes“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35631.
Der volle Inhalt der QuelleRethwisch, Michael D., Michael D. Kruse, Roy Leivas, Jack Watson und Michael Sheedy. „Effects of High Electroconductivity Field Conditions on Production of Six Alfalfa Varieties on the Colorado River Indian Tribes Reservation“. College of Agriculture, University of Arizona (Tucson, AZ), 2000. http://hdl.handle.net/10150/204058.
Der volle Inhalt der QuelleRethwisch, Michael D., Michael D. Kruse, Roy Leivas, Jack Watson und Michael Sheedy. „First Year Effects of High Electroconductivity Field Conditions on Production of Six Alfalfa Varieties on the Colorado River Indian Tribes Reservation“. College of Agriculture, University of Arizona (Tucson, AZ), 1999. http://hdl.handle.net/10150/205152.
Der volle Inhalt der QuelleЖурило, Алла Григорівна. „Технологія одержання якісних безперервнолитих заготовок дрібного перерізу із вторинної міді з застосуванням розробленого процесу її виплавки“. Thesis, Фізико-технологічний інститут металів та сплавів НАН України, 2003. http://repository.kpi.kharkov.ua/handle/KhPI-Press/38025.
Der volle Inhalt der QuelleThesis for submitting a Technical science candidate degree on specialty 05. 16. 04 – Foundry production.- Physico-technological Institute of Metals and Alloys of NAS of Ukraine, Kiyv, 2003. This thesis describes the development of melting and treatment for the smelt of secondary copper for the manufacturing bars with 55 Siemens conductance and more using the horizontal continuous casting. The thesis proposes a new technology for the production of a cable-conductor product from secondary copper based on horizontal continuous casting that consists of 4 stages namely: - melting secondary copper with an exposed mirror of metal (copper includes less than 0,15% of oxygen); - flux melting metal (flux consists of: soda, quarts sand, borax (1:4,5:4,5)), the results of copper includes less than 0,05% of oxygen; - the treatment of molten copper by argon and then deoxidizing by an alloy of “lithium-calcium” composition (50% per lach), the results of copper have density of 8940 kg/m3, 58 Siemens electroconductivity (then flow raze of argon then being 0,8 m3/t copper); - horizontal continuous casting with the following parameters: - velocity of casting – 0,48 m/min; - space for drawing – 40 mm; - time for drawing – 4 – 6 s; - time for pause – 5 - 6 s; - the angle of mould inclination to horizon – 15 O. The horizontal continuous casting has been shown to offer many advantages over wirebarce casting. The basic results of the work have found industrial implementation into the melting and treatment of secondary copper.
Максимчук, Т. Ю., und T. Yu Maksimchuk. „Кристаллическая структура и физико-химические свойства сложнооксидных фаз Nd1.6Ca0.4Ni1-yCuyO4+δ : магистерская диссертация“. Master's thesis, б. и, 2021. http://hdl.handle.net/10995/99984.
Der volle Inhalt der QuellePresent work contains 71 pages, 52 figures, 8 tables, 73 references in the literature list. Keywords: SOLID OXIDE FUEL CELLS, CATHODE, RUDDLESDEN-POPPER STRUCTURE, THERMAL EXPANSION, ELECTROCONDUCTIVITY, CHEMICAL COMPATIBILITY. Synthesis of the Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0-0.4) complex oxides was carried out by the glycerol-nitrate compositions pyrolysis. Phase composition of the Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0-0.4) powders was determined by the X-ray diffraction (DRON-6). The crystal structure parameters of the Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0-0.4) oxides at 25 °C were refined by the Rietveld method using the FullProf Suite software package. High-temperature X-ray studies were performed on the Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0-0.3) powders. The thermogravimetry (NETZSCH STA 449F3) and redox titration (potentiometric) methods (Aquilon ATP-02) were used for the determination of an absolute oxygen content in the Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0-0.4) samples in air. Thermal expansion of the compact Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0-0.4) samples were studied using the dilatometry (Netzsch DIL 402C) method. The isobaric linear coefficients of the Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0-0.4) thermal expansion were calculated from linearization of the experimental dependencies of samples’ relative elongation. The temperature dependencies of the Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0-0.4) compact samples’ conductivity were obtained using the four-probe method at direct current in air with automatic system Zirconia-318. Chemical compatibility of the Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0; 0.2; 0.4) with electrolytes oxide materials for solid oxide fuel cells (SOFC) has been studied. Particle size distribution in the Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0-0.4) powders was determined by laser light scattering using a SALD-7101 Shimadzu dispersion analyzer. The values of the Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0-0.4) specific surface were estimated by the method of nitrogen thermal desorption on an automatic surface and porosity analyzer SoftSorbi-II ver.1.0. The oxygen ion diffusion coefficients were determined by temperature programmed isotope exchange of oxygen. Electrochemical activity of the Nd1.6Ca0.4Ni1-yCuyO4+δ (y = 0.0-0.4) cathode materials was investigated by impedance spectroscopy using a SI 1260 potentiostat and SI 1287 electrochemical interface (Solartron Industries Inc.). Based on the obtained data, it could be concluded that the Nd1.6Ca0.4Ni1-yCuyO4+δ oxide materials are promising as cathode materials for intermediate-temperature SOFC’s.
Buchteile zum Thema "ELECTROCONDUCTIVITY"
Zhang, Qingguo. „Electroconductivity of Ionic Liquids“. In Encyclopedia of Ionic Liquids, 1–7. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-10-6739-6_110-1.
Der volle Inhalt der QuelleBorisova, V. P., T. A. Vasilieva, S. L. Kostuchenko und E. B. Fainberg. „On Deep Electroconductivity of Tobol-Ishim Interfluve“. In Springer Proceedings in Earth and Environmental Sciences, 249–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97670-9_29.
Der volle Inhalt der QuelleDiezma Iglesias, Belén. „Soil sensors“. In Manuali – Scienze Tecnologiche, 15. Florence: Firenze University Press, 2020. http://dx.doi.org/10.36253/978-88-5518-044-3.15.
Der volle Inhalt der QuelleKaneko, Hiroaki, Yoshiaki Miura, Motozo Kaneko und Seiichi Tokura. „Photo-Induced Electroconductivity by Hematoprophyrin IX Doped Chitosan Films“. In Advances in Chitin and Chitosan, 586–93. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-5942-5_67.
Der volle Inhalt der QuelleVasenev, Viacheslav, Irina Veretelnikova, Inna Brianskaia, Sofiya Demina, Olga Romzaykina, Bakhtiyor Pulatov und Alim Pulatov. „Soil Electroconductivity as a Proxy to Monitor the Desertification in the Hungry Steppe (Uzbekistan)“. In Springer Geography, 125–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16091-3_15.
Der volle Inhalt der Quelle„Electroconductivity“. In Encyclopedia of Thermal Stresses, 1214. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_100185.
Der volle Inhalt der QuelleChanga, Taity, Jane Asiyo Okalebo und Shaokun Wang. „Spatio-Temporal Dynamics of Soil Microbial Communities in a Pasture: A Case Study of Bromus inermis Pasture in Eastern Nebraska“. In Agrometeorology [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93548.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "ELECTROCONDUCTIVITY"
BOLINCHES, A. S., E. KLYATSKINA, E. F. S. LÓPEZ, A. ZHOLNIN und V. STOLYAROV. „ELECTROCONDUCTIVITY OF AL2O3/GRAPHENE NANOCOMPOSITE PROCESSED BY SPS TECHNIQUE“. In СИНТЕЗ И КОНСОЛИДАЦИЯ ПОРОШКОВЫХ МАТЕРИАЛОВ. TORUS PRESS, 2018. http://dx.doi.org/10.30826/scpm2018005.
Der volle Inhalt der QuelleLyshenjuk, K. P., Felix N. Marchevskii, H. Ponat und Vladimir L. Strizshevskii. „Nonlinear surface polaritons under conditions of surface electroconductivity availability“. In XIV International Conference on Coherent and Nonlinear Optics, herausgegeben von Nikolay N. Rosanov. SPIE, 1992. http://dx.doi.org/10.1117/12.131797.
Der volle Inhalt der QuelleMedvids, Arthur, und V. Frishfelds. „Photoconductivity of a semiconductor with anisotropic electroconductivity in a nonhomogeneous electric field“. In International Conference on Advanced Optical Materials and Devices, herausgegeben von Edgar A. Silinsh, Arthur Medvids, Andrejs R. Lusis und Andris O. Ozols. SPIE, 1997. http://dx.doi.org/10.1117/12.266819.
Der volle Inhalt der QuelleLebedev, Y. A., L. A. Kosykh und A. N. Chuvyrov. „The electroconductivity and electron spin resonance in doped natural /spl pi/-conjugated polymers“. In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.834718.
Der volle Inhalt der QuelleAbramov, I. I., A. L. Danilyuk, G. V. Litvinovich, G. V. Sokol, E. A. Burova, V. V. Uglov und N. N. Cherenda. „Electroconductivity and structural-phase changes of anodic aluminum oxide implanted by titanium and molybdenum“. In 1999 9th International Crimean Microwave Conference 'Microwave and Telecommunication Technology'. Conference Proceedings. IEEE, 1999. http://dx.doi.org/10.1109/crmico.1999.815241.
Der volle Inhalt der QuelleArakelian, S., A. Kucherik, S. Kutrovskaya und A. Osipov. „The topological electroconductivity control in the semiconductor/metal/carbon unit by laser-induced nanogranular structures“. In 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS). IEEE, 2017. http://dx.doi.org/10.1109/piers.2017.8262347.
Der volle Inhalt der QuelleKasianenko, E. M., und A. I. Omelchenko. „Electroconductivity of cartilage in the temperature range from -10°C to 50°C with laser heating“. In 2020 International Conference Laser Optics (ICLO). IEEE, 2020. http://dx.doi.org/10.1109/iclo48556.2020.9285615.
Der volle Inhalt der QuelleKuzanyan, A. S., V. A. Petrosyan, V. T. Tatoyan, V. S. Kuzanyan, V. R. Nikoghosyan, V. H. Vardanyan, S. Kh Pilosyan und A. M. Gulian. „Investigation of microstructure, composition and electroconductivity of CuO x ceramics before and after influence of laser radiation“. In International Conference on Laser Physics 2010, herausgegeben von Aram V. Papoyan. SPIE, 2010. http://dx.doi.org/10.1117/12.891714.
Der volle Inhalt der QuelleBurge, Scott R. „Automated Analysis of Trichloroethene and Chloroform“. In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4648.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "ELECTROCONDUCTIVITY"
Yusun, Lu, Li Hua, Han Xiaowen und Chen Wenying. Evaluation of Electroconductivity of Two Surface Paints for Spacecraft. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada273063.
Der volle Inhalt der Quelle