Zeitschriftenartikel zum Thema „Électrocatalyseur à base de palladium“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Électrocatalyseur à base de palladium.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Électrocatalyseur à base de palladium" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Sodeoka, Mikiko, und Yoshitaka Hamashima. „Acid-base catalysis using chiral palladium complexes“. Pure and Applied Chemistry 78, Nr. 2 (01.01.2006): 477–94. http://dx.doi.org/10.1351/pac200678020477.

Der volle Inhalt der Quelle
Annotation:
Chiral Pd aqua and µ-hydroxo complexes were found to act as mild Brønsted acids and bases, and chiral Pd enolates were generated from these complexes even under acidic conditions. Highly enantioselective Michael addition, Mannich-type reaction, fluorination, and conjugate addition of amines have been developed based on the acid-base character of these Pd complexes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nagle, Lorraine C., und L. D. Burke. „Anomalous electrochemical behaviour of palladium in base“. Journal of Solid State Electrochemistry 14, Nr. 8 (02.12.2009): 1465–79. http://dx.doi.org/10.1007/s10008-009-0975-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Vila, J. M., M. T. Pereira, A. Suárez, E. Gayoso, M. Gayoso, J. Selbin und A. Sen. „Cyclometallation, Palladium(II) Complexes with Schiff Base Ligands“. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 16, Nr. 4 (Januar 1986): 499–511. http://dx.doi.org/10.1080/00945718608055924.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wang, Xiaoping, Nancy Kariuki, Suhas Niyogi, Matt C. Smith, Deborah J. Myers, Timo Hofmann, Yufeng Zhang, Marcus Bär und Clemens Heske. „Bimetallic Palladium-Base Metal Nanoparticle Oxygen Reduction Electrocatalysts“. ECS Transactions 16, Nr. 2 (18.12.2019): 109–19. http://dx.doi.org/10.1149/1.2981848.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

R., Dileep, und Badekai Ramachandra Bhat. „Palladium-Schiff base-triphenylphosphine catalyzed oxidation of alcohols“. Applied Organometallic Chemistry 24, Nr. 9 (26.08.2010): 663–66. http://dx.doi.org/10.1002/aoc.1683.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kumar, Rajnish, und Ganesan Mani. „Exhibition of the Brønsted acid–base character of a Schiff base in palladium(ii) complex formation: lithium complexation, fluxional properties and catalysis of Suzuki reactions in water“. Dalton Transactions 44, Nr. 15 (2015): 6896–908. http://dx.doi.org/10.1039/c5dt00438a.

Der volle Inhalt der Quelle
Annotation:
The Brønsted acid–base character of bis(iminopyrrolylmethyl)amine was shown through the X-ray structures of palladium complexes. The bischelated palladium complex is fluxional as studied by the VT 1H NMR method and effectively catalyzes Suzuki reactions in water.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mitin, Anton V., Alexander N. Kashin und Irina P. Beletskaya. „Role of base in palladium-catalyzed arylation of carbanions“. Journal of Organometallic Chemistry 689, Nr. 6 (März 2004): 1085–90. http://dx.doi.org/10.1016/j.jorganchem.2003.12.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Le Bras, Jean, und Jacques Muzart. „Base-free palladium-mediated cycloalkenylations of olefinic enolic systems“. Tetrahedron 71, Nr. 48 (Dezember 2015): 9035–59. http://dx.doi.org/10.1016/j.tet.2015.09.060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Burke, L. D., und J. K. Casey. „The electrocatalytic behaviour of palladium in acid and base“. Journal of Applied Electrochemistry 23, Nr. 6 (Juni 1993): 573–82. http://dx.doi.org/10.1007/bf00721948.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pankajakshan, Sreekumar, und Teck-Peng Loh. „Base-Free Palladium-Catalyzed Sonogashira Coupling Using Organogold Complexes“. Chemistry - An Asian Journal 6, Nr. 9 (30.06.2011): 2291–95. http://dx.doi.org/10.1002/asia.201100263.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Chen, Bo, und Xiao-Feng Wu. „Palladium-Catalyzed Carbonylative Synthesis of Benzogerminones“. Synlett 30, Nr. 13 (03.07.2019): 1592–96. http://dx.doi.org/10.1055/s-0037-1611880.

Der volle Inhalt der Quelle
Annotation:
A novel and practical procedure for the synthesis of benzogerminones by carbonylative cyclization has been developed. With Pd(PPh3)4 as the catalyst and DABCO as the base, the desired benzogerminones were isolated in moderate to good yields with good functional group tolerance. To the best of our knowledge, this is the first procedure for benzogerminones synthesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Che Soh, Siti Kamilah, und Mustaffa Shamsuddin. „Tetradentate N2O2Chelated Palladium(II) Complexes: Synthesis, Characterization, and Catalytic Activity towards Mizoroki-Heck Reaction of Aryl Bromides“. Journal of Chemistry 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/632315.

Der volle Inhalt der Quelle
Annotation:
Four air and moisture-stable palladium(II)-Schiff base complexes,N,N′-bis(α-methylsalicylidene)propane-1,3-diamine palladium(II) (2a),N,N′-bis(4-methyl-α-methylsalicylidene)propane-1,3-diamine palladium(II) (2b),N,N′-bis(3,5-di-tert-butylsalicylidene)propane-1,3-diamine palladium(II) (2c), andN,N′-bis(4-methoxy-salicylidene)propane-1,3-diamine palladium(II) (2d), have been successfully synthesised and characterised by CHN elemental analyses and conventional spectroscopic methods. These complexes were investigated as catalysts in the phosphine-free Mizoroki-Heck cross-coupling reactions of aryl bromides with methyl acrylate.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Hong, Seok Jun, Jae Woong Choi, Gil Ho Hwang, Won Kyu Han, Joon Shik Park und Sung Goon Kang. „Effect of the Palladium Mid-Layer on the Cyclic Oxidation of Platinum Aluminide Bond Coating“. Materials Science Forum 510-511 (März 2006): 1058–61. http://dx.doi.org/10.4028/www.scientific.net/msf.510-511.1058.

Der volle Inhalt der Quelle
Annotation:
Platinum/Palladium modified aluminide coatings prepared by aluminide pack cementation on the nickel base superalloy Inconnel 738. The platinum/palladium modified aluminide coating of cyclic oxidation behavior at 1200°C was investigated by TGA, XRD and SEM/EDS. Platinum/Palladium modified aluminide coatings showed better cyclic oxidation resistance than Platinum modified aluminide coating and palladium modified aluminide coating compared. Pt and Pd alloy played an enough role in alumina stabilization and in delaying the degradation of β-phase.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Khanna, P. K., und Deepti Kulkarni. „Reduction of PdCl2 by Emeraldine Base; Synthesis of Palladium Nanoparticles“. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 38, Nr. 7 (05.09.2008): 629–33. http://dx.doi.org/10.1080/15533170802293402.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Tyulyaeva, E. Yu, O. V. Kosareva, M. E. Klyueva und T. N. Lomova. „Acid-base and coordination properties of some palladium(II)porphyrins“. Russian Journal of Inorganic Chemistry 53, Nr. 9 (September 2008): 1405–10. http://dx.doi.org/10.1134/s0036023608090106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Cuevas, JoséV, und Gabriel García-Herbosa. „Base-catalyzed dehydrogenation of palladium(II) amino to imino complexes“. Inorganic Chemistry Communications 1, Nr. 10 (Oktober 1998): 372–74. http://dx.doi.org/10.1016/s1387-7003(98)00095-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Cima, M., und L. Brewer. „The generalized lewis acid-base titration of palladium and niobium“. Metallurgical Transactions B 19, Nr. 6 (Dezember 1988): 893–917. http://dx.doi.org/10.1007/bf02651413.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Burke, L. D., und J. K. Casey. „An Examination of the Electrochemical Behavior of Palladium in Base“. Journal of The Electrochemical Society 140, Nr. 5 (01.05.1993): 1292–98. http://dx.doi.org/10.1149/1.2220973.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Keith, Jason M., und William A. Goddard. „Chelating Base Effects in Palladium-Mediated Activation of Molecular Oxygen“. Organometallics 31, Nr. 2 (11.01.2012): 545–52. http://dx.doi.org/10.1021/om200809u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Coombs, Robin R., Melissa K. Ringer, Johanna M. Blacquiere, Joshua C. Smith, J. Scott Neilsen, Yoon-Seo Uh, J. Bryson Gilbert et al. „Palladium(II) Schiff base complexes derived from sulfanilamides and aminobenzothiazoles“. Transition Metal Chemistry 30, Nr. 4 (Mai 2005): 411–18. http://dx.doi.org/10.1007/s11243-004-7625-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Noor, Asif, Daniel L. Maloney, James E. M. Lewis, Warrick K. C. Lo und James D. Crowley. „Acid-Base Driven Ligand Exchange with Palladium(II) “Click” Complexes“. Asian Journal of Organic Chemistry 4, Nr. 3 (24.10.2014): 208–11. http://dx.doi.org/10.1002/ajoc.201402197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Dileep R., Dileep R., und Badekai Ramachandra Bhat. „ChemInform Abstract: Palladium -Schiff Base - Triphenylphosphine Catalyzed Oxidation of Alcohols.“ ChemInform 42, Nr. 3 (23.12.2010): no. http://dx.doi.org/10.1002/chin.201103036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Yamamoto, Yutaro, Hiroshi Matsubara, Hideki Yorimitsu und Atsuhiro Osuka. „Base-Free Palladium-Catalyzed Borylation of Aryl Chlorides with Diborons“. ChemCatChem 8, Nr. 14 (27.06.2016): 2317–20. http://dx.doi.org/10.1002/cctc.201600456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Sathya, M., und G. Venkatachalam. „Synthesis, Spectral and Catalytic Properties of Palladium(II) Complexes Containing Hydrazone Schiff Base Ligands“. Asian Journal of Chemistry 34, Nr. 11 (2022): 2922–28. http://dx.doi.org/10.14233/ajchem.2022.23979.

Der volle Inhalt der Quelle
Annotation:
Palladium(II) complexes of bidentate hydrazone Schiff bases were synthesized and characterized by means of physico-chemical and spectroscopic (FT-IR, UV-vis and NMR) techniques. All the palladium(II) complexes were tested as catalyst for Suzuki-Miyaura and Sonogashira coupling reactions and exhibits moderate to good catalytic activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Tardiff, Bennett J., Joshua C. Smith, Stephen J. Duffy, Christopher M. Vogels, Andreas Decken und Stephen A. Westcott. „Synthesis, characterization, and reactivity of Pd(II) salicylaldimine complexes derived from aminophenols“. Canadian Journal of Chemistry 85, Nr. 5 (01.05.2007): 392–99. http://dx.doi.org/10.1139/v07-036.

Der volle Inhalt der Quelle
Annotation:
Schiff bases, derived from the condensation of salicylaldehydes with 3- and 4-aminophenol, reacted with palladium(II) acetate to give the corresponding bis(N-arylsalicylaldiminato)palladium(II) complexes. These complexes have been found to be active catalysts for the Suzuki–Miyaura cross-coupling of aryl bromides and iodides with aryl boronic acids, using water as a solvent.Key words: cross-coupling, green chemistry, palladium, salicylaldimines, Schiff base, Suzuki–Miyaura.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Parunov, Vitaliy Anatol’evich, M. A. Kareva, S. D. Tykochinskiy und I. Yu Lebedenko. „THE DEVELOPMENT OF A NEW METAL ALLOY BASED ON PALLADIUM WITHIN THE FRAMEWORK OF PRACTICAL IMPLEMENTATION OF THE CONCEPT OF DEVELOPMENT OF THE DOMESTIC DENTAL MATERIALS SCIENCE“. Russian Journal of Dentistry 21, Nr. 3 (15.06.2017): 126–28. http://dx.doi.org/10.18821/1728-2802-2017-21-3-126-128.

Der volle Inhalt der Quelle
Annotation:
The article shows the creation of a new Russian base alloy of palladium for metal-ceramic dental prostheses “Palladini UNI” puteam comprehensive analysis of the influence of alloying elements on the phase structure of the palladium alloys, physical and mechanical properties and coefficient of thermal linear expansion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Jaksic, Ljiljana, und Radmila Dzudovic. „Coulometric-potentiometric determination of pKA of several organic bases in propylene carbonate“. Journal of the Serbian Chemical Society 73, Nr. 6 (2008): 655–59. http://dx.doi.org/10.2298/jsc0806655j.

Der volle Inhalt der Quelle
Annotation:
The pKA values of protonated triethylamine, pyridine and 2,2'-dipyridyl in propylene carbonate (PC) were determined by applying the coulometric-potentiometric method and a hydrogen/palladium generator anode (H2/Pd). The investigated and reference base were titrated to 50 % with protons electro-generated from hydrogen-saturated palladium, in the presence of sodium perchlorate as the supporting electrolyte. The half-neutralization potentials E1/2(x) and E1/2(st.) of the investigated and standard base, respectively, were measured using a glass-SCE pair. The obtained pKA values were compared with those reported in the literature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Veltri, Lucia, Bartolo Gabriele, Raffaella Mancuso, Patrizio Russo, Giuseppe Grasso, Corrado Cuocci und Roberto Romeo. „Palladium-Catalyzed Carbonylative Synthesis of Functionalized Benzimidazopyrimidinones“. Synthesis 50, Nr. 02 (23.11.2017): 267–77. http://dx.doi.org/10.1055/s-0036-1591835.

Der volle Inhalt der Quelle
Annotation:
A new and convenient approach to functionalized benzimidazopyrimidinones is reported. It is based on a two-step procedure starting from readily available 1-(prop-2-yn-1-yl)-1H-benzo[d]imidazol-2-amines, consisting of a multicomponent palladium-catalyzed oxidative cyclocarbonylation–alkoxycarbonylation process, followed by base-promoted isomerization of the initially formed mixture of isomeric carbonylated products. Fair to good overall yields of the final alkyl 2-(2-oxo-1,2-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3-yl)acetates are obtained, using different alcohols as solvent and nucleophile in the carbonylation step (carried out in the presence of 0.33–1 mol% PdI2 in conjunction with 17–50 mol% KI, at 100 °C and under 20 atm of a 4:1 mixture of CO–air) and the corresponding sodium alkoxide as base in the subsequent isomerization step (carried out in the alcoholic solvent at room temperature). The structures of a representative substrate [N-benzyl-1-(prop-2-yn-1-yl)-1H-benzo[d]imidazol-2-amine] and a representative product [methyl 2-(1-isopentyl-2-oxo-1,2-dihydrobenzo-[4,5]imidazo[1,2-a]pyrimidin-3-yl)acetate] were confirmed by X-ray diffraction analysis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ren, Li, Austin C. Chen, Andreas Decken und Cathleen M. Crudden. „Chiral bidentate N-heterocyclic carbene complexes of Rh and Pd“. Canadian Journal of Chemistry 82, Nr. 12 (01.12.2004): 1781–87. http://dx.doi.org/10.1139/v04-165.

Der volle Inhalt der Quelle
Annotation:
The synthesis of a new chiral, bidentate oxazoline/imidazolidene carbene precursor is described. This species is reacted with various metal salts in the presence of a base to generate rhodium and palladium complexes, which are characterized spectroscopically and crystallographically.Key words: chiral N-heterocyclic carbene, rhodium, palladium, oxazolidine, asymmetric catalysis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Celedón, Salvador, Thierry Roisnel, Vania Artigas, Mauricio Fuentealba, David Carrillo, Isabelle Ledoux-Rak, Jean-René Hamon und Carolina Manzur. „Palladium(ii) complexes of tetradentate donor–acceptor Schiff base ligands: synthesis and spectral, structural, thermal and NLO properties“. New Journal of Chemistry 44, Nr. 22 (2020): 9190–201. http://dx.doi.org/10.1039/d0nj01982h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

M. Sathya und G. Venkatachalam. „Synthesis, Structural Characterization and Catalytic Activities of Palladium(II) Schiff base Complexes Containing Tetradentate N2O2 & N2S2 Donor Ligands“. International Journal For Multidisciplinary Research 04, Nr. 04 (2022): 417–28. http://dx.doi.org/10.36948/ijfmr.2022.v04i04.045.

Der volle Inhalt der Quelle
Annotation:
New family of palladium(II) tetradentate complexes of the general formula [Pd(L1-4)] (L1-L3; tetradentate N2O2 donors & L4; tetradentate N2S2 donors) have been synthesized by the reaction of Pd(OAc)2 with tetradentate Schiff base ligands. The palladium(II) complexes were fully characterized by analytical, spectral (FT-IR, UV-Vis, 1H-NMR & 13C-NMR) methods. Further, the new palladium(II) complexes were tested as catalyst for Suzuki-Miyaura and Sonogashira coupling reactions and exhibits very good catalytic activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Alia, Shaun M., und Yushan Yan. „Palladium Coated Copper Nanowires as a Hydrogen Oxidation Electrocatalyst in Base“. Journal of The Electrochemical Society 162, Nr. 8 (2015): F849—F853. http://dx.doi.org/10.1149/2.0211508jes.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Khanna, P. K., und Deepti Kulkarni. „Reduction of PdCl2 by Emeraldine Base; Synthesis of Palladium Nano-Particles“. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 38, Nr. 5 (05.08.2008): 459–63. http://dx.doi.org/10.1080/15533170802255443.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Hu, Yanhe, Jing Liu, Zhixin Lü, Xiancai Luo, Heng Zhang, Yu Lan und Aiwen Lei. „Base-Induced Mechanistic Variation in Palladium-Catalyzed Carbonylation of Aryl Iodides“. Journal of the American Chemical Society 132, Nr. 9 (10.03.2010): 3153–58. http://dx.doi.org/10.1021/ja909962f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Strelow, Franz W. E., und André Victor. „Improved separation of palladium from base metals by cation-exchange chromatography“. Analytica Chimica Acta 248, Nr. 2 (August 1991): 535–40. http://dx.doi.org/10.1016/s0003-2670(00)84672-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Hisatsune, Kunihiro, Masayuki Hasaka, Bambang Irawan Sosrosoedirdjo und Koichi Udoh. „Age-hardening behavior in a palladium-base dental porcelain-fused alloy“. Materials Characterization 25, Nr. 2 (September 1990): 177–84. http://dx.doi.org/10.1016/1044-5803(90)90008-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Kumagai, N., A. Kawashima, K. Asami und K. Hashimoto. „Anodic characteristics of amorphorous palladium-base alloys in sodium chloride solutions“. Journal of Applied Electrochemistry 16, Nr. 4 (Juli 1986): 565–74. http://dx.doi.org/10.1007/bf01006851.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Alexander, S., V. Udayakumar und V. Gayathri. „Hydrogenation of olefins by polymer-bound palladium(II) Schiff base catalyst“. Journal of Molecular Catalysis A: Chemical 314, Nr. 1-2 (Dezember 2009): 21–27. http://dx.doi.org/10.1016/j.molcata.2009.08.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Alperine, S., P. Steinmetz, P. Josso und A. Costantini. „High temperature-resistant palladium-modified aluminide coatings for nickel-base superalloys“. Materials Science and Engineering: A 120-121 (Dezember 1989): 367–72. http://dx.doi.org/10.1016/0921-5093(89)90789-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Pankajakshan, Sreekumar, und Teck-Peng Loh. „ChemInform Abstract: Base-Free Palladium-Catalyzed Sonogashira Coupling Using Organogold Complexes.“ ChemInform 42, Nr. 51 (24.11.2011): no. http://dx.doi.org/10.1002/chin.201151081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Yamamoto, Yutaro, Keisuke Nogi, Hideki Yorimitsu und Atsuhiro Osuka. „Base-Free Palladium-Catalyzed Hydrodechlorination of Aryl Chlorides with Pinacol Borane“. ChemistrySelect 2, Nr. 4 (01.02.2017): 1723–27. http://dx.doi.org/10.1002/slct.201700189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Gogoi, Ankur, Anindita Dewan, Geetika Borah und Utpal Bora. „A palladium salen complex: an efficient catalyst for the Sonogashira reaction at room temperature“. New Journal of Chemistry 39, Nr. 5 (2015): 3341–44. http://dx.doi.org/10.1039/c4nj01822b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Gaube, Gregory, Nahiane Pipaon Fernandez und David C. Leitch. „An evaluation of palladium-based catalysts for the base-free borylation of alkenyl carboxylates“. New Journal of Chemistry 45, Nr. 43 (2021): 20095–98. http://dx.doi.org/10.1039/d1nj04008a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Ding, Dong, Gang Liu, Guangyang Xu, Jian Li, Guoping Wang und Jiangtao Sun. „Palladium catalyzed N–H bond insertion and intramolecular cyclization cascade: the divergent synthesis of heterocyclics“. Org. Biomol. Chem. 12, Nr. 16 (2014): 2533–37. http://dx.doi.org/10.1039/c4ob00001c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Stogniy, Marina Yu, Svetlana A. Erokhina, Kirill Yu Suponitsky, Vitaliy Yu Markov und Igor B. Sivaev. „Synthesis and crystal structures of nickel(ii) and palladium(ii) complexes with o-carboranyl amidine ligands“. Dalton Transactions 50, Nr. 14 (2021): 4967–75. http://dx.doi.org/10.1039/d1dt00373a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Ning, Yuantao, Zhengfen Yang und Huaizhi Zhao. „Platinum Recovery by Palladium Alloy Catchment Gauzes in Nitric Acid Plants“. Platinum Metals Review 40, Nr. 2 (01.04.1996): 80–87. http://dx.doi.org/10.1595/003214096x4028087.

Der volle Inhalt der Quelle
Annotation:
Since the introduction of palladium-gold catchment gauzes for the recovery of the platinum lost from the catalyst gauzes used in the manufacture of nitric acid, the mechanism by which these high palladium content alloys catch and recover the platinum has been of interest to both researchers and manufacturers, alike. Using analyses of the surface chemical species which form on palladium, both in flowing oxygen and during the ammonia oxidation reaction, this paper describes how the surface of the palladium, at temperatures above 800°C, is a multilayer structure with the bright palladium metal surface being covered by a thin layer of palladium metal vapour and then by a layer of palladium oxide vapour. The mechanism of the platinum recovery is related to the surface state of the palladium, and the high recovery rate by the palladium alloy catchment gauze is attributed to this unique multilayer structure and to the ability of palladium to reduce platinum oxide. Damage to either the surface multilayer structure or the oxidation characteristics of palladium decreases the platinum recovery rate. Thus, catchment gauzes made from palladium alloys containing high concentrations of base metal solutes, such as nickel, cannot be expected to have such a high platinum recovery rate.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Kratochvíl, Bohumil, Jan Ondráček, Jaroslav Maixner, Josef Macíček und Václav Haber. „Structure of a palladium(II) complex with a non-symmetrical tetradentate Schiff base, [Pd(C14H20N3O)]NCS“. Collection of Czechoslovak Chemical Communications 56, Nr. 9 (1991): 1900–1907. http://dx.doi.org/10.1135/cccc19911900.

Der volle Inhalt der Quelle
Annotation:
The structure of (1-phenyl-3-{2-[(2-aminoethyl)amino]ethylimino}-1-buten-1-olato-O,N,N’,N”) palladium(II) thiocyanate, [Pd(baden)]NCS, was solved by heavy-atom method and refined anisotropically ro R = 0.026 for 2 851 unique observed reflections. The title complex crystallizes in the Pc21b space group with a = 11.919(2), b = 14.061(2), c = 19.769(3)Å, Z = 8. The structure contains two symmetrical-independent molecules, each includes the palladium complex cation and thiocyanate anion. The cation formed by the baden ligand consists of one six-membered and two five-membered chelate rings and the phenyl ring. The coordination polyhedron around palladium is slightly distorted and puckered N3O square. The structure is held predominantly by electrostatic forces, but besides there are weak intermolecular hydrogen bonds among baden and thiocyanate nitrogens.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Xu, Zhaotao, Jinting Ai und Mingzhong Cai. „An Efficient Heterogeneous Palladium(0)-Catalysed Cross-Coupling between 1-Bromoalkynes and Terminal Alkynes Leading to Unsymmetrical 1,3-Diynes“. Journal of Chemical Research 42, Nr. 3 (März 2018): 133–37. http://dx.doi.org/10.3184/174751918x15208574638459.

Der volle Inhalt der Quelle
Annotation:
An efficient heterogeneous palladium(0)-catalysed cross-coupling of 1-bromoalkynes with terminal alkynes was achieved in DMF at room temperature in the presence of 5 mol% of MCM-41-immobilised bidentate phosphine palladium(0) complex [MCM-41-2P-Pd(0)] and 2 mol% of CuI with Et3N as base, yielding a variety of unsymmetrical 1,3-diynes in moderate to good yields. This heterogeneous palladium(0) complex could be easily recovered by a simple filtration of the reaction solution and recycled at least seven times without significant decrease in activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Amadio, Emanuele, Zoraida Freixa, Piet W. N. M. van Leeuwen und Luigi Toniolo. „Palladium catalyzed oxidative carbonylation of alcohols: effects of diphosphine ligands“. Catalysis Science & Technology 5, Nr. 5 (2015): 2856–64. http://dx.doi.org/10.1039/c4cy01588f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Chuc, Le Thi Ngoc, Thi Anh Hong Nguyen und Duen-Ren Hou. „Acid–base-sensitive allylic oxidation of 2-allylbenzoic acids to form phthalides“. Organic & Biomolecular Chemistry 18, Nr. 14 (2020): 2758–68. http://dx.doi.org/10.1039/d0ob00303d.

Der volle Inhalt der Quelle
Annotation:
Allylic oxidation of 2-allylbenzoic acids to phthalides, instead of Wacker-type isocoumarins, was achieved with 1,2-bis(phenylsulfinyl)ethane palladium(ii) acetate (White catalyst) and oxygen in DMSO.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie