Zeitschriftenartikel zum Thema „Electroactive scaffold“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Electroactive scaffold" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Gupta, Kriti, Ruchi Patel, Madara Dias, Hina Ishaque, Kristopher White und Ronke Olabisi. „Development of an Electroactive Hydrogel as a Scaffold for Excitable Tissues“. International Journal of Biomaterials 2021 (30.01.2021): 1–9. http://dx.doi.org/10.1155/2021/6669504.
Der volle Inhalt der QuelleAngulo-Pineda, Carolina, Kasama Srirussamee, Patricia Palma, Victor M. Fuenzalida, Sarah H. Cartmell und Humberto Palza. „Electroactive 3D Printed Scaffolds Based on Percolated Composites of Polycaprolactone with Thermally Reduced Graphene Oxide for Antibacterial and Tissue Engineering Applications“. Nanomaterials 10, Nr. 3 (28.02.2020): 428. http://dx.doi.org/10.3390/nano10030428.
Der volle Inhalt der QuelleSun, Baojun, Yajie Sun, Shuwei Han, Ruitong Zhang, Xiujuan Wang, Chunxia Meng, Tuo Ji et al. „Electroactive Hydroxyapatite/Carbon Nanofiber Scaffolds for Osteogenic Differentiation of Human Adipose-Derived Stem Cells“. International Journal of Molecular Sciences 24, Nr. 1 (28.12.2022): 530. http://dx.doi.org/10.3390/ijms24010530.
Der volle Inhalt der QuelleWibowo, Arie, Gusti U. N. Tajalla, Maradhana A. Marsudi, Glen Cooper, Lia A. T. W. Asri, Fengyuan Liu, Husaini Ardy und Paulo J. D. S. Bartolo. „Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes (Ipomoea batatas L var. Rancing) as Potential Filler for 3D Printed Electroactive and Anti-Infection Scaffolds“. Molecules 26, Nr. 7 (02.04.2021): 2042. http://dx.doi.org/10.3390/molecules26072042.
Der volle Inhalt der QuelleZaszczyńska, Angelika, Arkadiusz Gradys, Anna Ziemiecka, Piotr K. Szewczyk, Ryszard Tymkiewicz, Małgorzata Lewandowska-Szumieł, Urszula Stachewicz und Paweł Ł. Sajkiewicz. „Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications“. International Journal of Molecular Sciences 25, Nr. 9 (02.05.2024): 4980. http://dx.doi.org/10.3390/ijms25094980.
Der volle Inhalt der QuelleChen, Jing, Juan Ge, Baolin Guo, Kun Gao und Peter X. Ma. „Nanofibrous polylactide composite scaffolds with electroactivity and sustained release capacity for tissue engineering“. Journal of Materials Chemistry B 4, Nr. 14 (2016): 2477–85. http://dx.doi.org/10.1039/c5tb02703a.
Der volle Inhalt der QuelleWibowo, Arie, Cian Vyas, Glen Cooper, Fitriyatul Qulub, Rochim Suratman, Andi Isra Mahyuddin, Tatacipta Dirgantara und Paulo Bartolo. „3D Printing of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering“. Materials 13, Nr. 3 (22.01.2020): 512. http://dx.doi.org/10.3390/ma13030512.
Der volle Inhalt der QuelleCastro, Nelson, Margarida M. Fernandes, Clarisse Ribeiro, Vítor Correia, Rikardo Minguez und Senentxu Lanceros-Méndez. „Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategies“. Sensors 20, Nr. 12 (12.06.2020): 3340. http://dx.doi.org/10.3390/s20123340.
Der volle Inhalt der QuelleSanchez, Jérémie-Luc, und Christel Laberty-Robert. „A novel microbial fuel cell electrode design: prototyping a self-standing one-step bacteria-encapsulating bioanode with electrospinning“. Journal of Materials Chemistry B 9, Nr. 21 (2021): 4309–18. http://dx.doi.org/10.1039/d1tb00680k.
Der volle Inhalt der QuelleBarbosa, Frederico, Fábio F. F. Garrudo, Ana C. Marques, Joaquim M. S. Cabral, Jorge Morgado, Frederico Castelo Ferreira und João C. Silva. „Novel Electroactive Mineralized Polyacrylonitrile/PEDOT:PSS Electrospun Nanofibers for Bone Repair Applications“. International Journal of Molecular Sciences 24, Nr. 17 (25.08.2023): 13203. http://dx.doi.org/10.3390/ijms241713203.
Der volle Inhalt der QuelleAmiryaghoubi, Nazanin, und Marziyeh Fathi. „Bioscaffolds of graphene based-polymeric hybrid materials for myocardial tissue engineering“. BioImpacts 14, Nr. 1 (12.08.2023): 27684. http://dx.doi.org/10.34172/bi.2023.27684.
Der volle Inhalt der QuelleYow, Soh-Zeom, Tze Han Lim, Evelyn K. F. Yim, Chwee Teck Lim und Kam W. Leong. „A 3D Electroactive Polypyrrole-Collagen Fibrous Scaffold for Tissue Engineering“. Polymers 3, Nr. 1 (28.02.2011): 527–44. http://dx.doi.org/10.3390/polym3010527.
Der volle Inhalt der QuelleGuan, Shui, Yangbin Wang, Feng Xie, Shuping Wang, Weiping Xu, Jianqiang Xu und Changkai Sun. „Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation“. Molecules 27, Nr. 23 (29.11.2022): 8326. http://dx.doi.org/10.3390/molecules27238326.
Der volle Inhalt der QuelleVandghanooni, Somayeh, Hadi Samadian, Sattar Akbari-Nakhjavani, Balal Khalilzadeh, Morteza Eskandani, Bakhshali Massoumi und Mehdi Jaymand. „Electroactive nanofibrous scaffold based on polythiophene for bone tissue engineering application“. Journal of Materials Research 37, Nr. 3 (06.01.2022): 796–806. http://dx.doi.org/10.1557/s43578-021-00482-1.
Der volle Inhalt der QuelleWu, Yehong, Sheng Feng, Xingjie Zan, Yuan Lin und Qian Wang. „Aligned Electroactive TMV Nanofibers as Enabling Scaffold for Neural Tissue Engineering“. Biomacromolecules 16, Nr. 11 (07.10.2015): 3466–72. http://dx.doi.org/10.1021/acs.biomac.5b00884.
Der volle Inhalt der QuelleRibeiro, Sylvie, Teresa Marques-Almeida, Vanessa F. Cardoso, Clarisse Ribeiro und Senentxu Lanceros-Méndez. „Modulation of myoblast differentiation by electroactive scaffold morphology and biochemical stimuli“. Biomaterials Advances 151 (August 2023): 213438. http://dx.doi.org/10.1016/j.bioadv.2023.213438.
Der volle Inhalt der QuelleMa, Chunyang, Le Jiang, Yingjin Wang, Fangli Gang, Nan Xu, Ting Li, Zhongqun Liu et al. „3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations“. Materials 12, Nr. 15 (06.08.2019): 2491. http://dx.doi.org/10.3390/ma12152491.
Der volle Inhalt der QuelleWang, Liu, Changfeng Lu, Shuhui Yang, Pengcheng Sun, Yu Wang, Yanjun Guan, Shuang Liu et al. „A fully biodegradable and self-electrified device for neuroregenerative medicine“. Science Advances 6, Nr. 50 (Dezember 2020): eabc6686. http://dx.doi.org/10.1126/sciadv.abc6686.
Der volle Inhalt der QuelleBarbosa, Frederico, Frederico Castelo Ferreira und João Carlos Silva. „Piezoelectric Electrospun Fibrous Scaffolds for Bone, Articular Cartilage and Osteochondral Tissue Engineering“. International Journal of Molecular Sciences 23, Nr. 6 (08.03.2022): 2907. http://dx.doi.org/10.3390/ijms23062907.
Der volle Inhalt der QuelleLi, Meng-yan, Paul Bidez, Elizabeth Guterman-Tretter, Yi Guo, Alan G. MacDiarmid, Peter I. Lelkes, Xu-bo Yuan et al. „ELECTROACTIVE AND NANOSTRUCTURED POLYMERS AS SCAFFOLD MATERIALS FOR NEURONAL AND CARDIAC TISSUE ENGINEERING“. Chinese Journal of Polymer Science 25, Nr. 04 (2007): 331. http://dx.doi.org/10.1142/s0256767907002199.
Der volle Inhalt der QuelleArnaboldi, Serena, Tiziana Benincori, Andrea Penoni, Luca Vaghi, Roberto Cirilli, Sergio Abbate, Giovanna Longhi et al. „Highly enantioselective “inherently chiral” electroactive materials based on a 2,2′-biindole atropisomeric scaffold“. Chemical Science 10, Nr. 9 (2019): 2708–17. http://dx.doi.org/10.1039/c8sc04862b.
Der volle Inhalt der QuelleShafei, Sajjad, Javad Foroughi, Leo Stevens, Cynthia S. Wong, Omid Zabihi und Minoo Naebe. „Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres“. Research on Chemical Intermediates 43, Nr. 2 (17.08.2016): 1235–51. http://dx.doi.org/10.1007/s11164-016-2695-4.
Der volle Inhalt der QuelleMackle, Joseph N., David J. P. Blond, Emma Mooney, Caitlin McDonnell, Werner J. Blau, Georgina Shaw, Frank P. Barry, J. Mary Murphy und Valerie Barron. „In vitro Characterization of an Electroactive Carbon-Nanotube-Based Nanofiber Scaffold for Tissue Engineering“. Macromolecular Bioscience 11, Nr. 9 (04.07.2011): 1272–82. http://dx.doi.org/10.1002/mabi.201100029.
Der volle Inhalt der QuelleLi, Liao und Tjong. „Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering“. Nanomaterials 9, Nr. 7 (30.06.2019): 952. http://dx.doi.org/10.3390/nano9070952.
Der volle Inhalt der QuelleChhatwal, Megha, Anup Kumar, Satish K. Awasthi, Michael Zharnikov und Rinkoo D. Gupta. „An Electroactive Metallo–Polypyrene Film As A Molecular Scaffold For Multi-State Volatile Memory Devices“. Journal of Physical Chemistry C 120, Nr. 4 (26.01.2016): 2335–42. http://dx.doi.org/10.1021/acs.jpcc.5b12597.
Der volle Inhalt der QuelleCui, Liguo, Jin Zhang, Jun Zou, Xianrui Yang, Hui Guo, Huayu Tian, Peibiao Zhang et al. „Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation“. Biomaterials 230 (Februar 2020): 119617. http://dx.doi.org/10.1016/j.biomaterials.2019.119617.
Der volle Inhalt der QuelleHuang, Peng, Yang Wu, Xinxin Wang, Peng Chen, Shuigen Li und Yuan-Li Ding. „Engineering edge-exposed MoS2 nanoflakes anchored on the 3D cross-linked carbon frameworks for enhanced lithium storage“. Functional Materials Letters 13, Nr. 08 (November 2020): 2051050. http://dx.doi.org/10.1142/s1793604720510509.
Der volle Inhalt der QuelleMawad, Damia, Catherine Mansfield, Antonio Lauto, Filippo Perbellini, Geoffrey W. Nelson, Joanne Tonkin, Sean O. Bello et al. „A conducting polymer with enhanced electronic stability applied in cardiac models“. Science Advances 2, Nr. 11 (November 2016): e1601007. http://dx.doi.org/10.1126/sciadv.1601007.
Der volle Inhalt der QuelleMarsudi, Maradhana Agung, Ridhola Tri Ariski, Arie Wibowo, Glen Cooper, Anggraini Barlian, Riska Rachmantyo und Paulo J. D. S. Bartolo. „Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives“. International Journal of Molecular Sciences 22, Nr. 21 (26.10.2021): 11543. http://dx.doi.org/10.3390/ijms222111543.
Der volle Inhalt der QuelleChen, Yutong, Yan Xu und Seeram Ramakrishna. „Electromagnetic-responsive targeted delivery scaffold technology has better potential to repair injured peripheral nerves: a narrative review“. Advanced Technology in Neuroscience 1, Nr. 1 (September 2024): 51–71. http://dx.doi.org/10.4103/atn.atn-d-24-00002.
Der volle Inhalt der QuelleTajalla, Gusti Umindya Nur, Mukhammad Arif Fakhruddin, Adinda Asmoro, Arif Basuki und Arie Wibowo. „The Influence of Ph on Green Synthesis of Honey-Mediated Silver Nanoparticles“. Key Engineering Materials 891 (06.07.2021): 83–88. http://dx.doi.org/10.4028/www.scientific.net/kem.891.83.
Der volle Inhalt der QuelleAliwarga, Bryan S., Khalid Muhammad, Lia A. T. W. Asri und Arie Wibowo. „Microwave-assisted synthesis of silver nanoparticles using extract of unbaked cilembu sweet potato“. Journal of Physics: Conference Series 2866, Nr. 1 (01.10.2024): 012002. http://dx.doi.org/10.1088/1742-6596/2866/1/012002.
Der volle Inhalt der QuelleAleemardani, Mina, Pariya Zare, Amelia Seifalian, Zohreh Bagher und Alexander M. Seifalian. „Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury“. Biomedicines 10, Nr. 1 (30.12.2021): 73. http://dx.doi.org/10.3390/biomedicines10010073.
Der volle Inhalt der QuelleZhou, Ting, Liwei Yan, Chaoming Xie, Pengfei Li, Lili Jiang, Ju Fang, Cancan Zhao et al. „A Mussel‐Inspired Persistent ROS‐Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemical‐Driven In Situ Nanoassembly“. Small 15, Nr. 25 (20.05.2019): 1805440. http://dx.doi.org/10.1002/smll.201805440.
Der volle Inhalt der QuelleLiang, Zheng, Kai Yan, Guangmin Zhou, Allen Pei, Jie Zhao, Yongming Sun, Jin Xie et al. „Composite lithium electrode with mesoscale skeleton via simple mechanical deformation“. Science Advances 5, Nr. 3 (März 2019): eaau5655. http://dx.doi.org/10.1126/sciadv.aau5655.
Der volle Inhalt der QuelleGolbaten-Mofrad, Hooman, Alireza Seyfi Sahzabi, Saba Seyfikar, Mohammad Hadi Salehi, Vahabodin Goodarzi, Frederik R. Wurm und Seyed Hassan Jafari. „Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applications“. European Polymer Journal 159 (Oktober 2021): 110749. http://dx.doi.org/10.1016/j.eurpolymj.2021.110749.
Der volle Inhalt der QuelleMiguel, Álvaro, Francisco González, Víctor Gregorio, Nuria García und Pilar Tiemblo. „Solvent-Free Procedure for the Preparation under Controlled Atmosphere Conditions of Phase-Segregated Thermoplastic Polymer Electrolytes“. Polymers 11, Nr. 3 (01.03.2019): 406. http://dx.doi.org/10.3390/polym11030406.
Der volle Inhalt der QuelleBarbosa, F., F. F. F. Garrudo, P. S. Alberte, M. S. Carvalho, F. C. Ferreira und J. C. Silva. „NOVEL PIEZOELECTRIC AND OSTEOCONDUCTIVE NANOFIBRES FOR BONE TISSUE ENGINEERING“. Orthopaedic Proceedings 106-B, SUPP_1 (02.01.2024): 111. http://dx.doi.org/10.1302/1358-992x.2024.1.111.
Der volle Inhalt der QuelleFan, Bo, Zheng Guo, Xiaokang Li, Songkai Li, Peng Gao, Xin Xiao, Jie Wu, Chao Shen, Yilai Jiao und Wentao Hou. „Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone defects“. Bioactive Materials 5, Nr. 4 (Dezember 2020): 1087–101. http://dx.doi.org/10.1016/j.bioactmat.2020.07.001.
Der volle Inhalt der QuelleAlves, Thais, Juliana Souza, Venancio Amaral, Danilo Almeida, Denise Grotto, Renata Lima, Norberto Aranha et al. „Biomimetic dense lamellar scaffold based on a colloidal complex of the polyaniline (PANi) and biopolymers for electroactive and physiomechanical stimulation of the myocardial“. Colloids and Surfaces A: Physicochemical and Engineering Aspects 579 (Oktober 2019): 123650. http://dx.doi.org/10.1016/j.colsurfa.2019.123650.
Der volle Inhalt der QuelleHamzah, Mohd Syahir Anwar, Azhan Austad, Saiful Izwan Abd Razak und Nadirul Hasraf Mat Nayan. „Tensile and wettability properties of electrospun polycaprolactone coated with pectin/polyaniline composite for drug delivery application“. International Journal of Structural Integrity 10, Nr. 5 (07.10.2019): 704–13. http://dx.doi.org/10.1108/ijsi-04-2019-0033.
Der volle Inhalt der QuelleMarques-Almeida, Teresa, Vanessa F. Cardoso, Miguel Gama, Senentxu Lanceros-Mendez und Clarisse Ribeiro. „Patterned Piezoelectric Scaffolds for Osteogenic Differentiation“. International Journal of Molecular Sciences 21, Nr. 21 (07.11.2020): 8352. http://dx.doi.org/10.3390/ijms21218352.
Der volle Inhalt der QuellePlanellas, Marc, Maria M. Pérez-Madrigal, Luís J. del Valle, Sophio Kobauri, Ramaz Katsarava, Carlos Alemán und Jordi Puiggalí. „Microfibres of conducting polythiophene and biodegradable poly(ester urea) for scaffolds“. Polymer Chemistry 6, Nr. 6 (2015): 925–37. http://dx.doi.org/10.1039/c4py01243g.
Der volle Inhalt der QuelleMassaglia, Giulia, Adriano Sacco, Angelica Chiodoni, Candido Fabrizio Pirri und Marzia Quaglio. „Living Bacteria Directly Embedded into Electrospun Nanofibers: Design of New Anode for Bio-Electrochemical Systems“. Nanomaterials 11, Nr. 11 (16.11.2021): 3088. http://dx.doi.org/10.3390/nano11113088.
Der volle Inhalt der QuelleIvanoska-Dacikj, Aleksandra, Petre Makreski, Nikola Geskovski, Joanna Karbowniczek, Urszula Stachewicz, Nenad Novkovski, Jelena Tanasić, Ivan Ristić und Gordana Bogoeva-Gaceva. „Electrospun PEO/rGO Scaffolds: The Influence of the Concentration of rGO on Overall Properties and Cytotoxicity“. International Journal of Molecular Sciences 23, Nr. 2 (17.01.2022): 988. http://dx.doi.org/10.3390/ijms23020988.
Der volle Inhalt der QuelleWickham, Abeni, Mikhail Vagin, Hazem Khalaf, Sergio Bertazzo, Peter Hodder, Staffan Dånmark, Torbjörn Bengtsson, Jordi Altimiras und Daniel Aili. „Electroactive biomimetic collagen-silver nanowire composite scaffolds“. Nanoscale 8, Nr. 29 (2016): 14146–55. http://dx.doi.org/10.1039/c6nr02027e.
Der volle Inhalt der QuelleMejias, Sara H., Zahra Bahrami-Dizicheh, Mantas Liutkus, Dayn Joshep Sommer, Andrei Astashkin, Gerdenis Kodis, Giovanna Ghirlanda und Aitziber L. Cortajarena. „Repeat proteins as versatile scaffolds for arrays of redox-active FeS clusters“. Chemical Communications 55, Nr. 23 (2019): 3319–22. http://dx.doi.org/10.1039/c8cc06827e.
Der volle Inhalt der QuelleHitscherich, Pamela, Ashish Aphale, Richard Gordan, Ricardo Whitaker, Prabhakar Singh, Lai-hua Xie, Prabir Patra und Eun Jung Lee. „Electroactive graphene composite scaffolds for cardiac tissue engineering“. Journal of Biomedical Materials Research Part A 106, Nr. 11 (16.10.2018): 2923–33. http://dx.doi.org/10.1002/jbm.a.36481.
Der volle Inhalt der QuellePor Hajrezaei, Sana, Masoumeh Haghbin Nazarpak, Shahriar Hojjati Emami und Elham Shahryari. „Biocompatible and Electroconductive Nanocomposite Scaffolds with Improved Piezoelectric Response for Bone Tissue Engineering“. International Journal of Polymer Science 2022 (25.04.2022): 1–10. http://dx.doi.org/10.1155/2022/4521937.
Der volle Inhalt der QuelleFarooqi, Abdul Razzaq, Julius Zimmermann, Rainer Bader und Ursula van Rienen. „Numerical Simulation of Electroactive Hydrogels for Cartilage–Tissue Engineering“. Materials 12, Nr. 18 (09.09.2019): 2913. http://dx.doi.org/10.3390/ma12182913.
Der volle Inhalt der Quelle