Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electro-optical sampling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electro-optical sampling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electro-optical sampling"
Li, Yuelin. „Electro-optical sampling at near-zero optical bias“. Applied Physics Letters 88, Nr. 25 (19.06.2006): 251108. http://dx.doi.org/10.1063/1.2214143.
Der volle Inhalt der QuelleShiktorov, P., E. Starikov, V. Gružinskis, L. Varani und L. Reggiani. „Modeling of THz - Electro-Optical Sampling Measurements“. Acta Physica Polonica A 113, Nr. 3 (März 2008): 913–16. http://dx.doi.org/10.12693/aphyspola.113.913.
Der volle Inhalt der QuelleNikles, Marc. „Optical sampling using wideband electro-optic modulators“. Optical Engineering 34, Nr. 7 (01.07.1995): 2078. http://dx.doi.org/10.1117/12.204801.
Der volle Inhalt der QuelleShields, Taylor, Adetunmise C. Dada, Lennart Hirsch, Seungjin Yoon, Jonathan M. R. Weaver, Daniele Faccio, Lucia Caspani, Marco Peccianti und Matteo Clerici. „Electro-Optical Sampling of Single-Cycle THz Fields with Single-Photon Detectors“. Sensors 22, Nr. 23 (02.12.2022): 9432. http://dx.doi.org/10.3390/s22239432.
Der volle Inhalt der QuelleFuji, Takao, Yutaka Nomura, Hideto Shirai und Noriaki Tsurumachi. „Frequency-resolved optical gating with electro-optic sampling“. EPJ Web of Conferences 41 (2013): 12001. http://dx.doi.org/10.1051/epjconf/20134112001.
Der volle Inhalt der QuelleJiang, Zhiping, F. G. Sun, Q. Chen und X. C. Zhang. „Electro-optic sampling near zero optical transmission point“. Applied Physics Letters 74, Nr. 9 (März 1999): 1191–93. http://dx.doi.org/10.1063/1.123495.
Der volle Inhalt der QuelleKrotkus, A., D. Hoffmann, R. Ludwig und S. Diez. „Optical sampling technique for fast electro-optic devices“. Electronics Letters 34, Nr. 19 (1998): 1877. http://dx.doi.org/10.1049/el:19981286.
Der volle Inhalt der QuelleJong, Kuo-Chin, Hen-Wai Tsao und San-Liang Lee. „Novel optical performance monitoring techniques using jittered electro-optical sampling pulses“. Microwave and Optical Technology Letters 50, Nr. 7 (2008): 1831–34. http://dx.doi.org/10.1002/mop.23504.
Der volle Inhalt der QuelleLi, Jian Wei, Nan Xu, Jian Li und Zhi Xin Zhang. „Ultrafast Electrical Signal Electro-Optic Sampling Test Theory and Test System“. Advanced Materials Research 571 (September 2012): 471–75. http://dx.doi.org/10.4028/www.scientific.net/amr.571.471.
Der volle Inhalt der QuelleZhukova, M. O., E. A. Makarov, S. E. Putilin, A. N. Tsypkin, V. P. Chegnov, O. I. Chegnova und V. G. Bespalov. „Two-photon absorption in THz electro-optical sampling crystals“. Journal of Physics: Conference Series 1062 (Juli 2018): 012009. http://dx.doi.org/10.1088/1742-6596/1062/1/012009.
Der volle Inhalt der QuelleDissertationen zum Thema "Electro-optical sampling"
Koseoglu, Devrim. „Material Characterization With Terahertz Time-domain Spectroscopy“. Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/2/12611648/index.pdf.
Der volle Inhalt der Quelle110>
crystals of various thicknesses to test the applicability of this algorithm. We have shown that the algorithm developed provides a quick way of eliminating the &ldquo
etalon&rdquo
reflections from the data. In addition, it is also shown that these &ldquo
etalon&rdquo
effects can be used for the frequency calibration of terahertz time-domain spectrometers.
Abdul, Hadi Zeinab. „Terahertz emission spectroscopy of multiferroic bismuth ferrite : insights into ultrafast currents and phonon dynamics“. Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA1030.
Der volle Inhalt der QuelleTerahertz (THz) technologies have attracted significant interest in the scientific community due to their unique position in the electromagnetic spectrum, bridging the gap between the microwave and infrared regions. This radiation is non-ionizing and can penetrate various materials without causing damage, making it highly attractive for numerous potential applications. Recent advances in ultrafast laser technology have expanded the exploration of THz radiation into a wide range of exciting technologies. It’s now being used in fields like medicine for new imaging techniques, in spectroscopy for analyzing materials, in information and communication technology for faster data transfer, and even in security, agriculture, quality control and fundamental material science. Consequently, the development of efficient and tunable THz sources has become a major focus within the THz community to expand these applications further, motivating the exploration of new materials and emission mechanisms. In my PhD project, I have explored a promising new THz emitter: the well-known multiferroic material ‘Bismuth Ferrite’ (BiFeO3). This multiferroic material is particularly interesting due to its distinctive multiferroic properties. BiFeO3 exhibits both a large ferroelectric polarization and a antiferromagnetic order at room temperature offering a unique interplay of ferroelectric and magnetic orders and making this material a promising candidate for THz generation. Using a THz emission spectroscopy setup that I constructed, with its electro-optical sampling detection, I examine THz emission from three distinct BiFeO3 samples. First one with in-plane polarization, another with out-of-plane polarization, and a third presenting striped domains with two orientations of polarization. This technique allows for the direct observation and analysis of THz radiation emitted by these samples upon above gap laser excitation. The experimental investigation involves a detailed study of the THz transient signals emitted from the BiFeO3 samples under varying experimental conditions. By varying the pump wavelengths, sample orientations, directions of pump light polarization, and pump power levels, we can explore how these factors influence the THz emission. Following this, we extract the carrier dynamics (ultrafast current) and lattice vibrations (optical phonons) contributions to this THz transient. And finally, by analyzing their response to experimental parameters changes, we can have a deeper understanding of the physical mechanisms contributing to these ultrafast dynamics and THz emission in BiFeO3
Clark, Tad Dee. „An Analysis of Microstructure and Corrosion Resistance in Underwater Friction Stir Welded 304L Stainless Steel“. Diss., BYU ScholarsArchive, 2005. http://contentdm.lib.byu.edu/ETD/image/etd872.pdf.
Der volle Inhalt der QuelleBuchteile zum Thema "Electro-optical sampling"
Kim, Jungwon, und Changmin Ahn. „Electro-optic sampling-based timing and synchronisation with optical frequency combs“. In Optical Frequency Combs, 267–84. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003427605-14.
Der volle Inhalt der QuelleLindholm, Julie Mapes. „Perceptual Effects of Spatiotemporal Sampling“. In Electro-Optical Displays, 787–808. CRC Press, 2020. http://dx.doi.org/10.1201/9781003066910-19.
Der volle Inhalt der QuelleHolst, Gerald C. „Sampling“. In Electro-Optical Imaging System Performance, Sixth Edition. SPIE, 2017. http://dx.doi.org/10.1117/3.2588947.ch8.
Der volle Inhalt der QuelleBerrettini, Gianluca, Antonella Bogoni, Francesco Fresi, Gianluca Meloni und Luca Poti. „Evolution of Optical Sampling“. In Advances in Lasers and Electro Optics. InTech, 2010. http://dx.doi.org/10.5772/8643.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electro-optical sampling"
Heyrich, Matthew, Alexander Lind und Scott Diddams. „Improving the Signal-to-Noise Ratio in Dual-Comb Electro-Optic Sampling“. In Frontiers in Optics, JTu5A.34. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jtu5a.34.
Der volle Inhalt der QuelleNishikawa, D., K. Maezawa, R. Shibata und S. Watanabe. „Photo-Induced Surface Vibration Movie with 23,000 Frames Using Dual-Comb Based Asynchronous Optical Sampling System“. In 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/cleo-pr60912.2024.10676749.
Der volle Inhalt der QuelleOchi, Seiga, Shuto Tsurugai, Kohei Noda, Heeyoung Lee und Yosuke Mizuno. „Demonstration of Single-End-Access Brillouin Sensing Using Plastic Optical Fibers with 1 kHz Sampling Rate“. In 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/cleo-pr60912.2024.10676484.
Der volle Inhalt der QuelleNagatsuma, Tadao, Makoto Yaita und Katsumi Iwatsuki. „Optical Signal Measurement Using Electro-Absorption Sampling“. In Ultrafast Electronics and Optoelectronics. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/ueo.1997.ue4.
Der volle Inhalt der QuelleEndo, Inoue und Honda. „Single Optical Pulse Measurement Based on Electro-Optic Sampling“. In Conference on Precision Electromagnetic Measurements. IEEE, 1988. http://dx.doi.org/10.1109/cpem.1988.671361.
Der volle Inhalt der QuelleAmano, Michiyuki, Makoto Hikita, Yoshito Shuto, Toshio Watanabe, Satoru Tomaru, Makoto Yaita und Tadao Nagatsuma. „Diazo dye attached electro-optical polymer and its applications to waveguide devices and electro-optical sampling“. In OE/LASE '94, herausgegeben von Seth R. Marder und Joseph W. Perry. SPIE, 1994. http://dx.doi.org/10.1117/12.173835.
Der volle Inhalt der QuelleGöhler, Benjamin, und Peter Lutzmann. „Super-resolution depth information from a shortwave infrared laser-gated viewing system by using correlated double sampling“. In Electro-Optical Remote Sensing, herausgegeben von Gary Kamerman und Ove Steinvall. SPIE, 2017. http://dx.doi.org/10.1117/12.2278431.
Der volle Inhalt der QuelleOeri, Milan, Sami Wittmann, Ole Peters und Ronald Holzwarth. „30 kHz THz Pulse Detection based on Electro-Optical Sampling“. In 2020 45th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2020. http://dx.doi.org/10.1109/irmmw-thz46771.2020.9370410.
Der volle Inhalt der QuelleGöhler, Benjamin, und Peter Lutzmann. „Extending the 3D range of a short-wave infrared laser-gated viewing system capable of correlated double sampling“. In Electro-Optical Remote Sensing, herausgegeben von Gary Kamerman und Ove Steinvall. SPIE, 2018. http://dx.doi.org/10.1117/12.2326916.
Der volle Inhalt der QuelleRuan, J., H. Edwards, Cheng-Yang Tan, R. Thurman-Keup, V. Scarpine, Y. Li, John Power und Tim Maxwell. „Design of an electro-optical sampling experiment at the AWA facility“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440029.
Der volle Inhalt der Quelle