Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electrical power unit“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electrical power unit" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electrical power unit"
Hnatov, Andrii, Shchasiana Arhun, Ruslan Bagach, Andrii Nechaus, Valentina Tarasova, Oleksandr Ruchka, Alla Don und Antons Patlins. „ELECTRICAL POWER UNIT OF THE TRANSFORMER OIL CENTRIFUGAL CLEANING UNIT“. Automobile transport, Nr. 48 (29.05.2021): 101–12. http://dx.doi.org/10.30977/at.2219-8342.2021.48.0.101.
Der volle Inhalt der QuelleKhitrov, Alexander, Andrei Khitrov, Sergey Loginov, Yuliya Domracheva und Evgeniy Veselkov. „POWER UNIT FOR POWER SUPPLY OF AN AUTONOMOUS FACILITY HAVING ABILITY TO CONNECT TO GENERAL INDUSTRIAL POWER SUPPLY IN RECUPERATIVE MICROGENERATION MODE“. ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 3 (16.06.2021): 142–47. http://dx.doi.org/10.17770/etr2021vol3.6517.
Der volle Inhalt der QuelleIsakov, Andrei N., Andrei V. Andrusich und Igor E. Savraev. „Device for Reduction Sparking of Slip Ring of Turbo Generator“. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 2 (08.08.2015): 116. http://dx.doi.org/10.17770/etr2013vol2.851.
Der volle Inhalt der QuelleBizhaev, A. V. „Research of Tractor Power Unit with Electric Drive Parameters“. Agricultural Machinery and Technologies 14, Nr. 4 (18.12.2020): 33–42. http://dx.doi.org/10.22314/2073-7599-2020-14-4-33-42.
Der volle Inhalt der QuelleSorokin, Ilya V., Dmitrii S. Semenov und Sergei V. Sharashkin. „CONCEPT STUDIES OF VESSEL ELECTRICAL POWER TRANSMISSION UNIT“. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 13, Nr. 2 (28.04.2021): 278–89. http://dx.doi.org/10.21821/2309-5180-2021-13-2-278-289.
Der volle Inhalt der QuelleShin, Kyoo-Jae, und Hyun-Rok Cha. „Design of Embedded Electrical Power Control Unit for Personal Electrical Vehicle“. Journal of IKEEE 18, Nr. 2 (30.06.2014): 282–90. http://dx.doi.org/10.7471/ikeee.2014.18.2.282.
Der volle Inhalt der QuellePletin, Sergey Aleksandrovich, und Alexander Nikolaevich Petrenko. „INFORMATION-MEASURING SYSTEMS FOR ELECTRICAL PROPULSION UNIT“. Journal of Rocket-Space Technology 27, Nr. 4 (30.12.2019): 62–66. http://dx.doi.org/10.15421/451910.
Der volle Inhalt der QuelleRashid, Mofeed. „Design and Implementation of Smart Electrical Power Meter System“. Iraqi Journal for Electrical and Electronic Engineering 10, Nr. 1 (01.06.2014): 1–14. http://dx.doi.org/10.37917/ijeee.10.1.1.
Der volle Inhalt der QuelleKobernik, V. S. „Fuel consumption of thermal power technologies under maneuvering modes“. Problems of General Energy 2020, Nr. 4 (22.12.2020): 45–49. http://dx.doi.org/10.15407/pge2020.04.045.
Der volle Inhalt der QuelleDani Ali, Nurhalim, und Azriyenni Azhari Zakri. „Identifying Characteristic of Power Quality Problems on Solar Electric Power Generation“. International Journal of Electrical, Energy and Power System Engineering 1, Nr. 2 (05.11.2018): 6–8. http://dx.doi.org/10.31258/ijeepse.1.2.6-8.
Der volle Inhalt der QuelleDissertationen zum Thema "Electrical power unit"
Machuca, Julían, und Thomas Tuvesson. „PCB design of Power Distributor Unit (PDU)“. Thesis, Uppsala universitet, Institutionen för elektroteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415474.
Der volle Inhalt der QuelleJain, Sheetal A. 1980. „Low-power single-precision IEEE Floating-point unit“. Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/87426.
Der volle Inhalt der QuelleZhuang, Fulin 1956. „Optimal generation unit commitment in thermal electric power systems“. Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75896.
Der volle Inhalt der QuelleTwo optimization approaches, Lagrangian relaxation and simulated annealing, are explored in this thesis for efficient and near-optimal unit commitment.
Lagrangian relaxation combines the solution of the dual of the unit commitment problem with feasibility search to obtain primal feasible solutions. The feasibility search is necessary because a solution to the dual seldom solves the primal, and because little theory is available to bridge the optimal dual and primal solutions. In this thesis, several new feasibility search procedures to find a near-optimal primal feasible solution from the dual solution are developed and tested. These procedures are independent of the data constituting different problem instances, and are more rigorous and systematic than the existing ones. With these procedures, Lagrangian relaxation is successfully and efficiently applied to both single and multiple area unit commitment.
Simulated annealing exploits the resemblance between a minimization process and the cooling of a molten metal. The method generates feasible solution points randomly and moves among these points following a strategy which leads to a global minimum in a statistical sense. Simulated annealing is very flexible for handling diverse and complicated constraints, such as those typical of the unit commitment problem. Simulated annealing is analyzed, evaluated and implemented for unit commitment in this thesis.
Five major algorithms, proposed in this thesis for unit commitment and reserve-constrained economic dispatch, are extensively tested and compared by numerical simulation on sample power systems of 10 to 100 units. The simulation results show the efficiency of the tested algorithms for large-scale unit commitment and demonstrate the general applicability of simulated annealing. A comparison with the priority list method and a study of the convergence rates of the subgradient type algorithms are also included in the simulation.
Kandil, Nahi A. „Unit Response Modeling and Forecasting for a Large Electric Power System“. Ohio University / OhioLINK, 1989. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1239730577.
Der volle Inhalt der QuelleRahmqvist, Elin. „On stochastic unit commitment for thermal power plants“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285519.
Der volle Inhalt der QuelleKlimatförändringarna är ett faktum, en kris som hotar varje land, ekonomi och människa.För att förebygga denna kris måste utsläppen av växthusgaser minska dramatiskt. 72 % av de globala utsläppen av växthusgaser år 2016 kom från energiproduktion där värme och elektricitet stod för 42 % av dessa utsläpp. Trots detta växte kolkraften med 28% år 2018 för att kunna möta den ökande efterfrågan på elektricitet. Det är därför av yttersta vikt att dessa resurser används på ett så e↵ektivt sätt som möjligt. En bra och exakt korttidsplanering av kraftsystem kan minska utsläppen och kostnaderna.Målet med denna studie är att implementera stokastisk last i korttidsplaneringen för ett mindre elkraftsystem med 11 enheter. Detta kräver en robust metod som begränsar beräkningstiden för att säkerställa kontinuerlig och säker drift av elkraftsystemet. Analysen måste utvärdera tillförlitligheten, ekonomiska e↵ekterna och beräkningstiden för att lösa det stokastiska korttidsplaneringsproblemet.Ett testsystem har skapats i MATLAB för att utvärdera den stokastiska kontra deterministiska korttidsplaneringsproblemet. Scenarier för det stokastiska korttidsplaneringen har genererats genom att använda en stationär Markov-kedja för att generera felen i lastprognosen och sedan använda Fast Forward Selection metoden för att minska antalet scenarier för att minimera beräkningsinsatsen. Stokastisk korttidsplanering har sedan utvärderats med värdet av den stokastiska lösningen för ekonomisk analys. Sannolikheten för bortkoppling av last samt icke levererad energi har beräknats för att utvärdera tillförlitligheten.En stokastisk metod ger en mer robust lösning men kan vara dyrare vad gäller kostnader. Fem scenarier var det optimala valet för den stokastiska korttidsplaneringsformuleringen. Ö kande av antal scenarier förbättrade inte tillförlitligheten och resulterade i en dyrare lösning. Slutsatsen i detta arbete kan kännas motsägelsefullt då den deterministiska metoden visar på lägre kostnader medans den stokastiska är mer robust. Detta belyser en av utmaningarna i elkraftsystem. Ett mer robust system är vanligtvis dyrare och därför måste aktörerna i systemet bestämma vad som är mest önskvärt i det specifika systemet. Ett mer tillförlitligt men dyrare system eller ett mindre pålitligt och billigaresystem.
Restrepo, Jose Fernando. „Unit commitment with primary frequency regulation constraints in electric power systems“. Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18210.
Der volle Inhalt der QuelleLe problème de la planification de l’opération des unités de production d’électricité comprenant des spécifications des niveaux de régulation secondaire et tertiaire (celles-ci agissant sur un horizon de temps compris entre deux et trente minutes) a été amplement étudié. Le problème de planification de la production comprenant les aspects relatifs à la régulation primaire, agissant en fonction des variations de fréquence du réseau dans un horizon de temps de quelques secondes, n’a cependant reçu que peu d’attention jusqu’à maintenant. Dans ce mémoire, nous développons et solutionnons le problème de la planification de la production d’électricité en incluant la notion de la régulation primaire. On démontre que celle-ci est gouvernée explicitement et uniquement par la variation de la fréquence du réseau. Ensuite, la planification simultanée de la production d’énergie et de la fourniture des services de régulation primaire et tertiaire est étudiée via des études de cas sur des systèmes types possédant jusqu’à 34 unités de production.
Ofori-Tenkorang, John. „A microprocessor-controlled household power monitoring unit by John Ofori-Tenkorang“. Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14288.
Der volle Inhalt der QuelleUong, Hoang. „The application of the ordered list method and the dynamic programming to the unit commitment“. PDXScholar, 1989. https://pdxscholar.library.pdx.edu/open_access_etds/3948.
Der volle Inhalt der QuelleWu, Zhi. „Transmission expansion planning and unit commitment with large-scale integration of wind power“. Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6738/.
Der volle Inhalt der QuelleGhassempour, Aghamolki Hossein. „Phasor Measurement Unit Data-based States and Parameters Estimation in Power System“. Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6505.
Der volle Inhalt der QuelleBücher zum Thema "Electrical power unit"
Huang, Yuping, Panos M. Pardalos und Qipeng P. Zheng. Electrical Power Unit Commitment. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4939-6768-1.
Der volle Inhalt der QuelleZuev, Sergey, Ruslan Maleev und Aleksandr Chernov. Energy efficiency of electrical equipment systems of autonomous objects. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1740252.
Der volle Inhalt der QuelleHobbs, B. F. The next generation of electric power unit commitment models. Herausgegeben von ebrary Inc. New York: Kluwer Academic, 2002.
Den vollen Inhalt der Quelle findenHobbs, Benjamin F., Michael H. Rothkopf, Richard P. O’Neill und Hung-po Chao, Hrsg. The Next Generation of Electric Power Unit Commitment Models. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/b108628.
Der volle Inhalt der QuelleAlberta. Energy Resources Conservation Board. Review of the commissioning date of Genesee unit no. 1. Calgary: ERCB, 1992.
Den vollen Inhalt der Quelle findenGirgis, George K. Hungry Horse Unit 4 excitation system commissioning test. Denver, Colo: U.S. Bureau of Reclamation, 1992.
Den vollen Inhalt der Quelle findenRegulation, U. S. Nuclear Regulatory Commission Office of Nuclear Reactor. Draft environmental statement for decommissioning Humboldt Bay Power Plant, Unit no. 3, docket no. 50-133: Pacific Gas and Electric Company. Washington, D.C: U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, 1986.
Den vollen Inhalt der Quelle findenU.S. Nuclear Regulatory Commission. Office of Nuclear Reactor Regulation. Safety evaluation report related to the license renewal of Callaway Plant, Unit 1: Docket Number 50-483 : Union Electric Company (Ameren Missouri). Washington, DC: U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, 2015.
Den vollen Inhalt der Quelle findenU.S. Nuclear Regulatory Commission. Office of Nuclear Reactor Regulation. Technical specifications, Waterford Steam Electric Station, Unit no. 3, docket no. 50-382: Appendix "A" to license no. NPF-38. Washington, D.C: The Commission, 1985.
Den vollen Inhalt der Quelle findenU.S. Nuclear Regulatory Commission. Office of Nuclear Reactor Regulation. Technical specifications: Comanche Peak Steam Electric Station, unit 1 : docket no. 50-445, appendix "A" to license no. NPF-87. [Washington, DC]: The Office, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Electrical power unit"
Chanda, Pradip, und Suparna Mukhopaddhyay. „Chemical Health of Thermal Power Unit“. In Energy Systems in Electrical Engineering, 59–96. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2722-9_6.
Der volle Inhalt der QuelleRam, Kalyan B., Panchaksharayya S. Hiremath, M. S. Prajval, B. Karthick, Prasanth Sai Meda, M. B. Vijayalakshmi und Priyanka Paliwal. „Remote Labs for Electrical Power Transmission Lines Simulation Unit“. In Smart Industry & Smart Education, 186–96. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95678-7_21.
Der volle Inhalt der QuelleYin, Yong, Jihong Wang, Xing Luo und Shen Guo. „Development of a Battery Charging Management Unit for Renewable Power Generation“. In Lecture Notes in Electrical Engineering, 33–46. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2311-7_4.
Der volle Inhalt der QuelleMary Anita, J., und I. Jacob Raglend. „Power Flow Constrained Unit Commitment Problem Using Improved Shuffled Frog Leaping Algorithm“. In Lecture Notes in Electrical Engineering, 1545–55. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2119-7_151.
Der volle Inhalt der QuelleBoonseng, Chongrag, Rapeepornpat Boonseng, Nutthaphan Boonsaner, Vijit Kinnares, Promsak Apiratikul und Kunyanuth Kularbphettong. „Partial Discharge Phenomena in Power Capacitor Unit Insulation Under Harmonic Resonance Effects“. In Lecture Notes in Electrical Engineering, 534–48. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31676-1_51.
Der volle Inhalt der QuelleHong, Munan, Zhenhui Yao, Ling Su, Bo Liu und Wei Liang. „Lyapunov-Based Feedback Control of Auxiliary Power Unit for Series Hybrid Electric Vehicles“. In Lecture Notes in Electrical Engineering, 909–24. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8506-2_61.
Der volle Inhalt der QuelleHuang, Shize, Lingyu Yang, Ji Xue und Kai Yu. „Urban Rail Transit Power Monitoring System Techniques Based on Synchronous Phasor Measurement Unit“. In Lecture Notes in Electrical Engineering, 251–68. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2914-6_25.
Der volle Inhalt der QuelleDeshpande, Anagh, und T. Vigneswaran. „Design of Arithmetic and Logic Unit (ALU) Using Subthreshold Adiabatic Logic for Low-Power Application“. In Lecture Notes in Electrical Engineering, 201–9. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7251-2_22.
Der volle Inhalt der QuelleXi, Wang, Wei Liu, Tao Bai und Ji Shi. „A Study About Unit Testing for Embedded Software of Control System in Nuclear Power Plant“. In Lecture Notes in Electrical Engineering, 157–63. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3456-7_17.
Der volle Inhalt der QuelleGao, Zhenjun, Jianrui Liu, Chenxu Guo, Wei Fu und Xiaoke He. „The Strength Study of Thermal Power Unit Absorption Tower Desulphurization Pump Impeller Based on Fluid-Structure Interaction Calculation“. In Lecture Notes in Electrical Engineering, 237–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48224-7_29.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electrical power unit"
Khan, Muhammad Bilal, und Muhammad Owais. „Automatic power factor correction unit“. In 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube). IEEE, 2016. http://dx.doi.org/10.1109/icecube.2016.7495239.
Der volle Inhalt der QuelleRaade, Justin W., Kurt R. Amundson und H. Kazerooni. „Development of Hydraulic-Electric Power Unit for Mobile Robots“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80138.
Der volle Inhalt der QuelleLee, Jong-Mu, Seung-Wook Hyun und Chung-Yuen Won. „High efficiency power supply unit for server power application“. In 2015 18th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2015. http://dx.doi.org/10.1109/icems.2015.7385080.
Der volle Inhalt der QuelleVaradi, A. Sz, und J. Takacs. „Experimental Wind Energy Unit in Northern Hungary“. In 2007 International Conference on Clean Electrical Power. IEEE, 2007. http://dx.doi.org/10.1109/iccep.2007.384279.
Der volle Inhalt der QuelleBhardwaj, Amit, Vikram Kumar Kamboj, Vijay Kumar Shukla, Bhupinder Singh und Preeti Khurana. „Unit commitment in electrical power system-a literature review“. In 2012 IEEE International Power Engineering and Optimization Conference (PEOCO). IEEE, 2012. http://dx.doi.org/10.1109/peoco.2012.6230874.
Der volle Inhalt der QuelleZhou, Xiang, Shangyan Zou, Wayne W. Weaver und Ossama Abdelkhalik. „Control of Wave Energy Converter With Losses in Electrical Power Take-Off System“. In ASME 2021 Power Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/power2021-64938.
Der volle Inhalt der QuelleLi, Ran, Mingqiang Wang und Weilun Wang. „Robust Unit Commitment with CVaR of Wind Power“. In 2021 3rd Asia Energy and Electrical Engineering Symposium (AEEES). IEEE, 2021. http://dx.doi.org/10.1109/aeees51875.2021.9402994.
Der volle Inhalt der QuelleBelsky, Aleksey A., und Vasiliy S. Dobush. „Oil wellbore electrical heating station with wind-driven power unit“. In 2016 Electric Power Quality and Supply Reliability (PQ). IEEE, 2016. http://dx.doi.org/10.1109/pq.2016.7724120.
Der volle Inhalt der QuelleKabisch, M., M. Heuer, G. Heideck und Z. A. Styczynski. „Energy management of vehicle electrical system with auxiliary power unit“. In 2009 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2009. http://dx.doi.org/10.1109/vppc.2009.5289826.
Der volle Inhalt der QuelleHusted, Harry L. „Dual-Voltage Electrical System with a Fuel Cell Power Unit“. In Future Transportation Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-3067.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Electrical power unit"
Carl R. Bozzuto, Nsakala ya Nsakala, Gregory N. Liljedahl, Mark Palkes und John L. Marion. AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY. Office of Scientific and Technical Information (OSTI), Juni 2001. http://dx.doi.org/10.2172/891318.
Der volle Inhalt der QuelleMcBroom, Scott T., Julian Garza und Pat Wildemann. Development of an Auxiliary Power Unit Specification for Medium Duty Series Hybrid Electric Vehicles. Fort Belvoir, VA: Defense Technical Information Center, Juni 1998. http://dx.doi.org/10.21236/ada346303.
Der volle Inhalt der QuelleAuthor, Not Given. Tampa Electric Company, Polk Power Station Unit No. 1. Annual report, January--December 1992. Office of Scientific and Technical Information (OSTI), Oktober 1993. http://dx.doi.org/10.2172/10124963.
Der volle Inhalt der QuelleTampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report. Office of Scientific and Technical Information (OSTI), Juni 1994. http://dx.doi.org/10.2172/78571.
Der volle Inhalt der QuelleTampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10115164.
Der volle Inhalt der Quelle