Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electrical machine calculation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electrical machine calculation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electrical machine calculation"
Podgornovs, Andrejs, und Antons Sipovichs. „Electromechanical Battery EMB Mass Minimization taking into Account its Electrical Machines Rotor Energy“. Electrical, Control and Communication Engineering 7, Nr. 1 (01.12.2014): 5–10. http://dx.doi.org/10.1515/ecce-2014-0017.
Der volle Inhalt der QuelleFroidurot, B., L. L. Rouve, A. Foggia, G. Meunier und J. P. Bongiraud. „Calculation of electrical machine magnetic stray fields“. IEE Proceedings - Science, Measurement and Technology 149, Nr. 5 (01.09.2002): 190–93. http://dx.doi.org/10.1049/ip-smt:20020623.
Der volle Inhalt der QuelleHatziathanassiou, V., J. Xypteras und G. Archontoulakis. „Electrical-thermal coupled calculation of an asynchronous machine“. Archiv für Elektrotechnik 77, Nr. 2 (Januar 1994): 117–22. http://dx.doi.org/10.1007/bf01578534.
Der volle Inhalt der QuelleJumayev, Sultan, Aleksandar Borisavljevic, Konstantin Boynov, Juha Pyrhönen und Elena A. Lomonova. „Inductance calculation of high-speed slotless permanent magnet machines“. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 34, Nr. 2 (02.03.2015): 413–27. http://dx.doi.org/10.1108/compel-08-2014-0207.
Der volle Inhalt der QuelleGinzarly, Riham, Ghaleb Hoblos und Nazih Moubayed. „From Modeling to Failure Prognosis of Permanent Magnet Synchronous Machine“. Applied Sciences 10, Nr. 2 (19.01.2020): 691. http://dx.doi.org/10.3390/app10020691.
Der volle Inhalt der QuelleStepanov, Anatoly N., und Irina P. Stepanova. „CALCULATION OF THE EXTERNAL MAGNETIC FIELD OF AN ELECTRICAL MACHINE“. Scholarly Notes of Komsomolsk-na-Amure State Technical University 1, Nr. 10 (30.06.2012): 31–37. http://dx.doi.org/10.17084/2012.ii-1(10).5.
Der volle Inhalt der QuelleKOVALEV, Konstantin. „Methodic of calculation of fully HTS silent-pole electrical machine“. PRZEGLĄD ELEKTROTECHNICZNY 1, Nr. 1 (05.01.2019): 215–20. http://dx.doi.org/10.15199/48.2019.01.51.
Der volle Inhalt der QuellePatsios, Charalampos, Minos E. Beniakar, Antonios G. Kladas und John Prousalidis. „A Simple and Efficient Parametric Design Approach for Marine Electrical Machines“. Materials Science Forum 792 (August 2014): 367–72. http://dx.doi.org/10.4028/www.scientific.net/msf.792.367.
Der volle Inhalt der QuelleLoginov, Sergei, Yulia Domracheva, Vadim Smirnov und Dmitriy Fedorov. „Research of Radial Forces and Torque of Bearingless Synchronous Machine“. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (16.06.2015): 128. http://dx.doi.org/10.17770/etr2015vol1.217.
Der volle Inhalt der QuelleRens, Jan, Lode Vandenbossche und Ophélie Dorez. „Iron Loss Modelling of Electrical Traction Motors for Improved Prediction of Higher Harmonic Losses“. World Electric Vehicle Journal 11, Nr. 1 (11.03.2020): 24. http://dx.doi.org/10.3390/wevj11010024.
Der volle Inhalt der QuelleDissertationen zum Thema "Electrical machine calculation"
Papini, Luca. „Performance calculation of high speed solid rotor induction machine“. Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/52180/.
Der volle Inhalt der QuelleRandewijk, Peter-Jan. „Analysis of a radial flux-air-cored permanent magnet machine with a double-sided rotor and non overlapping windings“. Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20246.
Der volle Inhalt der QuelleENGLISH ABSTRACT: In this dissertation a new type of electrical machine, a Radial Flux Air-Cored Permanent Magnet machine with a Double-sided Rotor and utilising concentrated, non-overlapping windings, is proposed. The concept of the Double-sided Rotor Radial Flux Air-Cored Permanent Magnet machine, or RFAPM machine for short, was derived from the Double-sided Rotor Axial Flux Air-Cored Permanent Magnet (AFAPM) machine. One of the problems that AFAPM machines experience, is the deflection of the rotor discs due to the strong magnetic pull of the permanent magnets, especially with double-sided rotor machines. The main advantage of a RFAPM machine over a AFAPM machine is that the rotor back-iron is cylindrically shaped instead of disk shaped. Due to the structural integrity of a cylinder, the attraction force between the two rotors does not come into play any more. The focus of this dissertation is on a thorough analytical analysis of the Double-Sided Rotor RFAPM machine. With the RFAPM being an air-cored machine, the feasibility to develop a linear, analytical model, to accurately predict the radial flux-density and hence the induced EMF in the stator windings, as well as the accurate calculation of the developed torque of the machine, needed to be investigated. The need for a thorough analytical examination of the Double-Sided Rotor RFAPM machine stemmed from the need to reduce the blind reliance on Finite Element Modelling (FEM) software to calculate the back-EMF and torque produced by these machines. Another problem experienced with the FEM software was to obtain accurate torque results. Excessive ripple torque oscillations were sometimes experienced which took a considerable amount of time to minimise with constant refinement to the meshing of the machine parts. Reduction in the mesh element size unfortunately also added to the simulation time. The requirement for an accurate analytical model of the RFAPM machine was also necessary in order to reduce the amount of time spent on successive FEM simulation to obtain the optimum pole arc width of the permanent magnet in order to minimise the harmonic content of the radial flux-density distribution in the the stator windings. In this dissertation, the use of single-layer and double-layer, non-overlapping, concentrated winding for the RFAPM machine is also investigated. It was decided to include a comparison of these two non-overlapping winding configurations with a “hypothetical” concentrated, overlapping winding configuration. This would allow us to gauge the effectiveness of using nonoverlapping winding with respect to the reduction in copper losses as well as in the reduction in copper volume. It would also allow us to investigate the extent of how much the developed torque is affected by using non-overlapping windings instead of overlapping windings.
AFRIKAANSE OPSOMMING: In hierdie proefskrif word ’n nuwe tipe elektriese masjien, ’n Radiale-vloed Lugkern Permanent Magneet Masjien met ’n dubbelkantige rotor en nie-oorvleuelende Windings voorgestel. Die konsep vir die Radiale-vloed Lugkern Permanent Magneet Masjien, of RVLPM vir kort, is afgelei vanaf die Dubbelkantige Rotor, Aksiale-vloed Lugkern (AVLPM) masjien. Een van die probleme wat met AVLPM masjiene ondervind word, is die defleksie van die rotorjukke as gevolg van die sterk aantrekkingskragte van die permanente magnete, veral in dubbelkantige rotor masjiene. Die hoof voordeel wat die RVLPM masjien inhou bo die AVLPM masjien, is die feit dat die RVLPM se rotorjukke silindries is in plaas van ronde skywe. As gevolg van die strukturele integriteit van ’n silinders, speel die aantrekkingskrag van die permanente magnete nie meer ’n rol nie. Die fokus van die proefskrif gaan oor die deeglike analitiese analise van die dubbelkantige RVLPM masjien. Weens die feit dat die RVLPM masjien ’n lugkern masjien is, is daar besluit om ondersoek in te stel na die moontlikheid om ’n lineêre, analitiese model vir die masjien op te stel waarmee die radiale-vloeddigtheid, teen-EMK asook die ontwikkelde draaimoment vir die masjien akkuraat bereken kan word. Die behoefde aan ’n akkurate analitiese model vir die dubbelkantige rotor RVLPM masjien is om die blinde vertroue te elimineer wat daar in Eindige-Element Modellering (EEM) sagteware gestel word om die teen-EMK en ontwikkelde draaimoment van die RVLPM masjien uit te werk. ’n Verdere probleem wat daar met EEM sagteware ondervind is, is die akkurate berekening van die ontwikkelde draaimoment. Oormatige rimpel draaimoment ossillasies is soms ondervind wat heelwat tyd geverg het om te minimeer, deur voortdurende verfyning van die EEM maas in die verskillende dele van die masjien. Soos die maas egter kleiner word, verleng dit die simulasie tyd van die EEM aansienlik. Nog ’n rede vir ’n akkurate analitiese model van die RVLPM masjien, is om vinnige metode te verkry om die optimale permanente magneet pool hoekwydte te verkry, wat die minste Totale Harmoniese Vervorming (THV) in die radiale-vloeddigtheidsdistribusie in die statorgebied sal veroorsaak, sonder om herhaaldelike EEM simulasies te loop. In die proefskrif word die gebruik van enkellaag en dubbellaag, nie- oorvleuelende, gekonsentreerde wikkelings vir die RVLPM masjien ook ondersoek. Daar is besluit om hierdie twee nie-oorvleuelende windingskonfigurasies met ’n “hipotetiese” gekonsentreerde, oorvleuelende windingskonfigurasie te vergelyk. Dit behoort ons in staat te stel om die doeltreffendheid van nie-oorvleuelende windings te bepaal, met betrekking tot die afname in koperverliese asook die afname in kopervolume. Verder sal dit ons in staat stel om ook mate waartoe die ontwikkelde draaimoment deur nie-oorvleuelende windings beïnvloed word, te ondersoek.
Šatava, Patrik. „Výpočet synchronního motoru s permanentními magnety o výkonu 50kW“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-443091.
Der volle Inhalt der QuelleAti, Modafar K. „Calculation of electromagnetic field problems in large electrical machines using the finite element method“. Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238937.
Der volle Inhalt der QuelleDorrell, David George. „Calculation of unbalanced magnetic pull in cage induction machines“. Thesis, University of Cambridge, 1993. https://www.repository.cam.ac.uk/handle/1810/244801.
Der volle Inhalt der QuelleBílek, Vladimír. „Elektromagnetická analýza a modelování asynchronního stroje s plným rotorem“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442791.
Der volle Inhalt der QuelleIrenji, Neamat Taghizadeh. „Calculation of electromagnetic rotor losses in high-speed permanent magnet machines“. Thesis, University of Southampton, 1998. https://eprints.soton.ac.uk/47948/.
Der volle Inhalt der QuelleHaratek, Jiří. „Výpočet rozložení teplotního pole v elektrickém stroji“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-318865.
Der volle Inhalt der QuellePetrarca, Ivan. „Unified analysis and operating point calculation of AC drives“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Den vollen Inhalt der Quelle findenGoby, Frédéric. „Utilisation d'une methode couplee : "elements finis-elements integrales de frontiere" pour le calcul des forces dans des dispositifs electromagnetiques : application au calcul du couple d'une machine a reluctance variable“. Paris 6, 1987. http://www.theses.fr/1987PA066401.
Der volle Inhalt der QuelleBücher zum Thema "Electrical machine calculation"
Smirnov, Aleksandr. Electric drive with contactless synchronous motors. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1192105.
Der volle Inhalt der QuelleHuppunen, Jussi. High-speed solid-rotor induction machine: Electromagnetic calculation and design. Lappeenranta: Lappeenranta University of Technology, 2004.
Den vollen Inhalt der Quelle findenZuev, Sergey, Ruslan Maleev und Aleksandr Chernov. Energy efficiency of electrical equipment systems of autonomous objects. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1740252.
Der volle Inhalt der QuelleSneakier uses for everyday things: How to turn a calculator into a metal detector, carry a survival kit in a shoestring, make a gas mask with a balloon, turn dishwashing liquid into a copy machine, convert a styrofoam cup into a speaker, and make a spy gadget jacket with everyday things. Kansas City, MO: Andrews McMeel, 2005.
Den vollen Inhalt der Quelle findenMerz, Hermann. Electric Machines and Drives. Fundamentals and Calculation Examples for Beginners. VDE-Verlag, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Electrical machine calculation"
Drubel, Oliver. „Calculation-Methods for Converter Fed Electrical Machines“. In Converter Applications and their Influence on Large Electrical Machines, 27–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36282-8_3.
Der volle Inhalt der QuelleNysveen, A., R. Nilssen und G. Sande. „A Hybrid FE-BE Method for Accurate Field and Torque Calculation in Electrical Machines“. In Electric and Magnetic Fields, 221–24. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1961-4_50.
Der volle Inhalt der QuellePan, Zhiyi, Shunde Gao, Xin Wang und Xuyang Cao. „An Integrated Conceptual Design Calculation Method for Logistics Machinery Based on Working Condition and Load Combination“. In Lecture Notes in Electrical Engineering, 385–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44674-4_36.
Der volle Inhalt der QuelleRehfeldt, Alexander, Torben Fricke, Babette Schwarz, Amir Ebrahimi und Bernd Ponick. „Semi-analytical Calculation of Field and Loss Distribution in the Tooth Tips of Electrical Machines“. In Springer Proceedings in Energy, 395–403. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69799-0_27.
Der volle Inhalt der QuelleDaisy, Anjali. „Knowledge Graph Generation“. In Advances in Computer and Electrical Engineering, 115–21. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1159-6.ch007.
Der volle Inhalt der QuelleDasgupta, Subrata. „A Tangled Web of Inventions“. In It Began with Babbage. Oxford University Press, 2014. http://dx.doi.org/10.1093/oso/9780199309412.003.0011.
Der volle Inhalt der QuelleGaurav, Kumar Abhishek, und Ladly Patel. „Machine Learning With R“. In Applications of Artificial Intelligence in Electrical Engineering, 291–331. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2718-4.ch015.
Der volle Inhalt der QuelleG. Mohammed, Khalid. „Mechanical and Electrical Design Calculations of Hybrid Vehicles“. In Applied Electromechanical Devices and Machines for Electric Mobility Solutions. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91059.
Der volle Inhalt der QuelleNedelcu, Otilia, und Corneliu Ioan. „Calculation Methods for Heating and Ventilation System of Electrical Machines“. In Heat Transfer Phenomena and Applications. InTech, 2012. http://dx.doi.org/10.5772/51962.
Der volle Inhalt der Quelle„Armature Reaction“. In Advances in Computer and Electrical Engineering, 57–83. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8441-6.ch003.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electrical machine calculation"
Froidurot, B. „Calculation of electrical machine magnetic stray fields“. In Proceedings of CEM 2002 - 4th International Conference on Computation in Electromagnetics. IEE, 2002. http://dx.doi.org/10.1049/ic:20020188.
Der volle Inhalt der QuelleFranc, J., und R. Pechanek. „Ventilation - Thermal Calculation of 40 MW Synchronous Machine“. In 2018 XIII International Conference on Electrical Machines (ICEM). IEEE, 2018. http://dx.doi.org/10.1109/icelmach.2018.8506874.
Der volle Inhalt der QuelleRabenstein, L., A. Dietz, A. Kremser und N. Parspour. „Semi-Analytical Calculation of a Laminated Transverse Flux Machine“. In 2020 International Conference on Electrical Machines (ICEM). IEEE, 2020. http://dx.doi.org/10.1109/icem49940.2020.9271065.
Der volle Inhalt der QuelleGerling, D., G. Dajaku, F. Bachheibl und A. Patzak. „Analytical calculation of the novel Stator Cage Machine“. In 2015 18th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2015. http://dx.doi.org/10.1109/icems.2015.7385248.
Der volle Inhalt der QuelleYu, Shenbo, Shi Jiao, Jing Yuan und Yonghui Zhao. „Calculation of Rotor Critical Speeds from Permanent Magnet Synchronous Machine“. In 2010 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2010. http://dx.doi.org/10.1109/icece.2010.838.
Der volle Inhalt der QuelleSheng, Gong, Yang Xiangyu und Ji Liangzhou. „Inductance Calculation for Stator Winding of Brushless Doubly-Fed Machine“. In 2010 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2010. http://dx.doi.org/10.1109/icece.2010.936.
Der volle Inhalt der QuelleKremers, M. F. J., J. J. H. Paulides, J. L. G. Janssen und E. A. Lomonova. „Analytical flux linkage and EMF calculation of a Transverse Flux Machine“. In 2014 XXI International Conference on Electrical Machines (ICEM). IEEE, 2014. http://dx.doi.org/10.1109/icelmach.2014.6960565.
Der volle Inhalt der QuelleXinzhen Wu und Xiangheng Wang. „Parameter calculation for induction machine rotor bar with non-sinusoidal current“. In Proceedings of the Eighth International Conference on Electrical Machines and Systems. IEEE, 2005. http://dx.doi.org/10.1109/icems.2005.202484.
Der volle Inhalt der QuelleErtan, H. Bulent, und L. Burak Yalciner. „Performance calculation of SR motors for optimum design and a washing machine application“. In 2008 International Conference on Electrical Machines (ICEM'08). IEEE, 2008. http://dx.doi.org/10.1109/icelmach.2008.4800203.
Der volle Inhalt der QuelleFang, Jie, Carsten Heising, Volker Staudt und Andreas Steimel. „Modelling of anisotropic synchronous machine in stator-reference frame including torque calculation“. In 2010 Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS). IEEE, 2010. http://dx.doi.org/10.1109/esars.2010.5665225.
Der volle Inhalt der Quelle