Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electric vehicle integration“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electric vehicle integration" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electric vehicle integration"
Simarro-García, Ana, Raquel Villena-Ruiz, Andrés Honrubia-Escribano und Emilio Gómez-Lázaro. „Effect of Penetration Levels for Vehicle-to-Grid Integration on a Power Distribution Network“. Machines 11, Nr. 4 (23.03.2023): 416. http://dx.doi.org/10.3390/machines11040416.
Der volle Inhalt der QuelleZainuri, Fuad, Danardono A. S. Danardono A.S, M. Adhitya, R. Subarkah, Rahman Filzi, Tia Rahmiati, M. Hidayat Tullah et al. „Analytical Conversion of Conventional Car to Electric Vehicle Using 5KW BLDC Electric Motor“. Jurnal Penelitian Pendidikan IPA 10, Nr. 9 (25.09.2024): 6703–8. http://dx.doi.org/10.29303/jppipa.v10i9.8599.
Der volle Inhalt der QuelleFang, Tingke, Annette von Jouanne, Emmanuel Agamloh und Alex Yokochi. „Opportunities and Challenges of Fuel Cell Electric Vehicle-to-Grid (V2G) Integration“. Energies 17, Nr. 22 (12.11.2024): 5646. http://dx.doi.org/10.3390/en17225646.
Der volle Inhalt der QuelleShrishail Hatti. „A Study on Latest trends in Automobile Industries with Reference to Electric Vehicles and Smart Grids“. International Research Journal on Advanced Engineering and Management (IRJAEM) 2, Nr. 08 (29.08.2024): 2779–85. http://dx.doi.org/10.47392/irjaem.2024.0404.
Der volle Inhalt der QuelleZaman, Shah, Nouman Ashraf, Zeeshan Rashid, Munira Batool und Javed Hanif. „Integration of EVs through RES with Controlled Interfacing“. Electrical, Control and Communication Engineering 19, Nr. 1 (01.06.2023): 1–9. http://dx.doi.org/10.2478/ecce-2023-0001.
Der volle Inhalt der QuelleOta, Yutaka. „Electric Vehicle Integration into Power Systems“. IEEJ Transactions on Power and Energy 138, Nr. 9 (01.09.2018): 753–56. http://dx.doi.org/10.1541/ieejpes.138.753.
Der volle Inhalt der QuelleOta, Yutaka. „Electric vehicle integration into power systems“. Electrical Engineering in Japan 207, Nr. 4 (Juni 2019): 3–7. http://dx.doi.org/10.1002/eej.23168.
Der volle Inhalt der QuelleHao, Ceng Ceng, Yue Jin Tang und Jing Shi. „Study on the Harmonic Impact of Large Scale Electric Vehicles to Grid“. Applied Mechanics and Materials 443 (Oktober 2013): 273–78. http://dx.doi.org/10.4028/www.scientific.net/amm.443.273.
Der volle Inhalt der QuelleHariprasad, Besta, Goturu Sreenivasan, Sambugari Anil Kumar und Bestha Mallikarjuna. „Vehicle-to-Grid Power Transfer Method for Electric Vehicles using off-board charger“. International Journal of Electrical and Electronics Research 12, Nr. 4 (30.11.2024): 1203–10. https://doi.org/10.37391/ijeer.120411.
Der volle Inhalt der QuelleRay, Richik. „Series-Parallel Hybrid Electric Vehicle Parameter Analysis using MATLAB“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. 10 (31.10.2021): 421–28. http://dx.doi.org/10.22214/ijraset.2021.38433.
Der volle Inhalt der QuelleDissertationen zum Thema "Electric vehicle integration"
Xi, Xiaomin. „Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration“. The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366106454.
Der volle Inhalt der QuelleWagner, David. „Sustaining Uber: Opportunities for Electric Vehicle Integration“. Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/pomona_theses/168.
Der volle Inhalt der QuelleLi, Mengyu. „GIS-BASED MODELING OF ELECTRIC VEHICLES AND THE AUSTRALIAN ELECTRICTY GRID“. Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21880.
Der volle Inhalt der QuelleFLAMMINI, MARCO GIACOMO. „Reference electric distribution network modelling and integration of electric vehicle charging stations“. Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2827703.
Der volle Inhalt der QuelleBerthold, Florence. „Integration of Plug-in Hybrid Electric Vehicle using Vehicle-to-home and Home-to-Vehicle Capabilities“. Thesis, Belfort-Montbéliard, 2014. http://www.theses.fr/2014BELF0241/document.
Der volle Inhalt der QuelleThe challenge for the next few years is to reduce CO2 emissions, which are the cause of global climate warming. CO2 emissions are mainly due to thermal engines used in transportation. To decrease this emission, a viable solution lies in using non-polluting electric vehicles recharged by low CO2 emission energy sources. New transportation penetration has effected on energy production. Energy production has already reached peaks. At the same time, load demand has drastically increased. Hence, it has become imperative to increase daily energy production. It is well-known that world energy production is mainly produced thermal pollutant power plants, except in Québec, where energy is produced by hydro power plants.The more recent electricity utility trend is that electric, and plug-in hybrid electric vehicles (EV, PHEV) could allow storage and/or production of energy. EV/PHEV batteries can supply the electric motor of the vehicle, and act as an energy storage that assists the grid to supply household loads. This power flow is called vehicle-to-grid, V2G. In this dissertation, the V2G power flow is specifically called vehicle-to-home, V2H. That is battery is used during peak. Moreover, the EV battery is charged during the night, when energy production is low and cheap. This important aspect of V2H is that the vehicle battery is not connected to the grid, but is a part of a house micro-grid.This dissertation presents an offline optimization technique, which includes different energy flows, between the home, EV/PHEV, and a renewable energy source (such as photovoltaic - PV and/or wind) which forms the micro-grid. This optimization has been realized through the dynamic programming algorithm. The optimization objective is to minimize energy cost, including fuel cost, electricity cost, and renewable energy cost.Two fuzzy logic controllers, one located in the vehicle and the second one in the house, have been designed, tested by simulation (online simulation) and validated by experiments.The research analyses two seasonal case studies: one in winter and the other one in summer. In the winter case, a cost reduction of 40% for the offline simulation, 27% for the online simulation and 29% for the experiment is realized whereas in the summer case a cost reduction of 62% for the offline simulation, 60% for the online simulation and 64% for the experiment is presented
GUERCIONI, GUIDO RICARDO. „Integration of dual-clutch transmissions in hybrid electric vehicle powertrains“. Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2706035.
Der volle Inhalt der QuelleCooke, David William. „Powertrain Modeling, Design, and Integration for the World’s Fastest Electric Vehicle“. The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1431081117.
Der volle Inhalt der QuelleMowry, Andrew Maxwell. „Integration challenges for fast-charging infrastructure to support electric vehicle adoption“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129127.
Der volle Inhalt der QuelleCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 59-64).
Highway fast-charging stations located between major population centers are necessary to address consumer charging concerns and thus to support the continued adoption of electric vehicles to meet decarbonization policy targets. Yet such stations, if sized to support anticipated demand, may cause operational difficulties on the power grid. Using a spatially resolved model of the power transmission network and a detailed market simulator, we characterize the effects of large-scale EV fast-charging on the Texas ERCOT system. We further explore three strategies to mitigate these effects -- energy storage colocation, network reinforcement, and demand flexibility --
and quantify their costs. This analysis is unique in its focus on highway fast-charging, in its nodal representation of the power grid, and in its measurement of transmission-level impacts. We find that highway fast-charging stations do have the potential to cause transmissionlevel impacts, especially by exacerbating local transmission constraints. Inter-zonal transfer constraints and increased costs due to the dispatching of more expensive generation also contribute to system costs. We develop a general method to identify the most impactful charging stations, but we find that the determination of cost-effective mitigation strategies for each station requires a more tailored approach. Our analysis indicates that transmission reinforcement and battery co-location are relatively competitive mitigation strategies, but that demand flexibility is not.
When considering policies to promote fast-charger development, policymakers should focus on involving multiple stakeholders who can contribute different expertise to identify costefficient solutions. Specifically, we suggest a central role for power utilities due to their experience planning transmission reinforcement, but we also highlight an important role for private developers, especially in the United States, for political feasibility and overall cost controls.
by Andrew Maxwell Mowry.
S.M. in Technology and Policy
S.M.inTechnologyandPolicy Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, Technology and Policy Program
Kang, Xueying. „Vehicle-infrastructure integration (VII) enabled plug-in hybrid electric vehicles (PHEVS) for traffic and energy management“. Connect to this title online, 2009.
Den vollen Inhalt der Quelle findenMohamed, Ahmed A. S. Mr. „Bidirectional Electric Vehicles Service Integration in Smart Power Grid with Renewable Energy Resources“. FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3529.
Der volle Inhalt der QuelleBücher zum Thema "Electric vehicle integration"
Vahidinasab, Vahid, und Behnam Mohammadi-Ivatloo, Hrsg. Electric Vehicle Integration via Smart Charging. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4.
Der volle Inhalt der QuelleBayram, İslam Şafak. Plug-in electric vehicle grid integration. Norwood, MA: Artech House, 2017.
Den vollen Inhalt der Quelle findenGarcia-Valle, Rodrigo, und João A. Peças Lopes, Hrsg. Electric Vehicle Integration into Modern Power Networks. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-0134-6.
Der volle Inhalt der QuelleGarcia-Valle, Rodrigo. Electric Vehicle Integration into Modern Power Networks. New York, NY: Springer New York, 2013.
Den vollen Inhalt der Quelle findenAlam, Mohammad Saad, und Mahesh Krishnamurthy. Electric Vehicle Integration in a Smart Microgrid Environment. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367423926.
Der volle Inhalt der QuelleNational Renewable Energy Laboratory (U.S.), Hrsg. Electric vehicle grid integration for sustainable military installations. Golden, Colo.]: National Renewable Energy Laboratory, 2011.
Den vollen Inhalt der Quelle findenQiuwei Wu. Grid Integration of Electric Vehicles in Open Electricity Markets. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118568040.
Der volle Inhalt der QuelleOvalle, Andrés, Ahmad Hably und Seddik Bacha. Grid Optimal Integration of Electric Vehicles: Examples with Matlab Implementation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73177-3.
Der volle Inhalt der QuelleLi, Kang, Yusheng Xue, Shumei Cui, Qun Niu, Zhile Yang und Patrick Luk, Hrsg. Advanced Computational Methods in Energy, Power, Electric Vehicles, and Their Integration. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6364-0.
Der volle Inhalt der QuelleArmstrong, Lee R. Electronic system integration and systems engineering. Warrendale, PA: Society of Automotive Engineers, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Electric vehicle integration"
Patel, Arpit J., Chaitali Mehta, Ojaswini A. Sharma, Amit V. Sant und V. S. K. V. Harish. „Electric vehicle technology“. In Renewable Energy Integration with Building Energy Systems, 113–28. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003211587-6.
Der volle Inhalt der QuelleYoung, Kwo, Caisheng Wang, Le Yi Wang und Kai Strunz. „Electric Vehicle Battery Technologies“. In Electric Vehicle Integration into Modern Power Networks, 15–56. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0134-6_2.
Der volle Inhalt der QuelleNikowitz, Michael, Steven Boyd, Andrea Vezzini, Irene Kunz, Michael Duoba, Kevin Gallagher, Peter Drage et al. „System Optimization and Vehicle Integration“. In Advanced Hybrid and Electric Vehicles, 87–204. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26305-2_5.
Der volle Inhalt der QuelleAbdi, Hamdi, Maryam Shahbazitabar und Mansour Moradi. „Operational Challenges of Electric Vehicle Smart Charging“. In Electric Vehicle Integration via Smart Charging, 223–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_10.
Der volle Inhalt der QuelleAlmeida, P. M. Rocha, F. J. Soares und João A. Peças Lopes. „Impacts of Large-Scale Deployment of Electric Vehicles in the Electric Power System“. In Electric Vehicle Integration into Modern Power Networks, 203–49. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0134-6_7.
Der volle Inhalt der QuelleAghajan-Eshkevari, Saleh, Mohammad Taghi Ameli und Sasan Azad. „Electric Vehicle Services to Support the Power Grid“. In Electric Vehicle Integration via Smart Charging, 129–48. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_6.
Der volle Inhalt der QuelleBordons, Carlos, Félix Garcia-Torres und Miguel A. Ridao. „Demand-Side Management and Electric Vehicle Integration“. In Model Predictive Control of Microgrids, 147–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24570-2_6.
Der volle Inhalt der QuelleShekari, Mohammadreza, Hamidreza Arasteh und Vahid Vahidinasab. „Recognition of Electric Vehicles Charging Patterns with Machine Learning Techniques“. In Electric Vehicle Integration via Smart Charging, 49–83. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_3.
Der volle Inhalt der QuelleGandoman, Foad H., Vahid Nasiriyan, Behnam Mohammadi-Ivatloo und Davood Ahmadian. „The Concept of Li-Ion Battery Control Strategies to Improve Reliability in Electric Vehicle (EV) Applications“. In Electric Vehicle Integration via Smart Charging, 35–48. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_2.
Der volle Inhalt der QuelleRabiee, Abbas, Andrew Keane und Alireza Soroudi. „Smart Charging of EVs to Harvest Flexibility for PVs“. In Electric Vehicle Integration via Smart Charging, 149–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electric vehicle integration"
Karthick, S., M. Ramesh Babu, R. Leena Rose und Deepak Arumugam. „Battery Management In Grid Into Vehicle Integration For Smart Electric Vehicles“. In 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), 1–5. IEEE, 2024. https://doi.org/10.1109/icpects62210.2024.10780214.
Der volle Inhalt der QuelleSingh, Aditi Ranjan, Anuj Chauhan, Karunesh Srivastava und Akash Gupta. „Solar Wireless Electric Vehicle Charger with Cooling Fan Integration“. In 2024 International Conference on Electrical Electronics and Computing Technologies (ICEECT), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/iceect61758.2024.10739090.
Der volle Inhalt der QuelleSolis, Dario, und Chris Schwarz. „Multirate Integration in Hybrid Electric Vehicle Virtual Proving Grounds“. In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/dac-5634.
Der volle Inhalt der QuelleDias, Fábio Gaiotto, Carlos José Minutti und Fabricio Oliveira Menezes. „Vehicle System Integration (Electric Parking Brake)“. In 15th SAE Brasil International Brake and Motion Control Colloquium & Engineering Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2022. http://dx.doi.org/10.4271/2021-36-0414.
Der volle Inhalt der QuelleDiaz-Londono, Cesar, Giambattista Gruosso, Paolo Maffezzoni und Luca Daniel. „Coordination Strategies for Electric Vehicle Chargers Integration in Electrical Grids“. In 2022 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2022. http://dx.doi.org/10.1109/vppc55846.2022.10003274.
Der volle Inhalt der QuelleQuigley, C. „Electronic system integration for hybrid and electric vehicles“. In IET Hybrid Vehicle Conference 2006. IEE, 2006. http://dx.doi.org/10.1049/cp:20060604.
Der volle Inhalt der QuelleLedinger, Stephan, David Reihs, Daniel Stahleder und Felix Lehfuss. „Test Device for Electric Vehicle Grid Integration“. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2018. http://dx.doi.org/10.1109/eeeic.2018.8493902.
Der volle Inhalt der QuelleAziz, Muhammad, Muhammad Huda, Bentang Arief Budiman, Erwin Sutanto und Poetro Lebdo Sambegoro. „Implementation of Electric Vehicle and Grid Integration“. In 2018 5th International Conference on Electric Vehicular Technology (ICEVT). IEEE, 2018. http://dx.doi.org/10.1109/icevt.2018.8628317.
Der volle Inhalt der QuelleBach Andersen, Peter, Rodrigo Garcia-Valle und Willett Kempton. „A comparison of electric vehicle integration projects“. In 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). IEEE, 2012. http://dx.doi.org/10.1109/isgteurope.2012.6465780.
Der volle Inhalt der QuelleAndersen, Peter Bach, Mattia Marinelli, Ole Jan Olesen, Claus Amtrup Andersen, Gregory Poilasne, Bjoern Christensen und Ole Alm. „The Nikola project intelligent electric vehicle integration“. In 2014 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, 2014. http://dx.doi.org/10.1109/isgteurope.2014.7028765.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Electric vehicle integration"
Rolufs, Angela, Amelia Trout, Kevin Palmer, Clark Boriack, Bryan Brilhart und Annette Stumpf. Integration of autonomous electric transport vehicles into a tactical microgrid : final report. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42007.
Der volle Inhalt der QuelleRolufs, Angela, Amelia Trout, Kevin Palmer, Clark Boriack, Bryan Brilhart und Annette Stumpf. Autonomous Transport Innovation (ATI) : integration of autonomous electric vehicles into a tactical microgrid. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42160.
Der volle Inhalt der QuelleAbdul Hamid, Umar Zakir. Privacy for Software-defined Battery Electric Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, Juni 2024. http://dx.doi.org/10.4271/epr2024012.
Der volle Inhalt der QuelleKisacikoglu, Mithat, Jason Harper, Rajendra Kandula, Alastair Thurlbeck, Akram Ali, Emin Ucer, Edward Watt, Md Shafquat Khan und Rasel Mahmud. High-Power Electric Vehicle Charging Hub Integration Platform (eCHIP): Design Guidelines and Specifications for DC Distribution-Based Charging Hub. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2335495.
Der volle Inhalt der QuelleZhang, Yangjun. Unsettled Topics Concerning Flying Cars for Urban Air Mobility. SAE International, Mai 2021. http://dx.doi.org/10.4271/epr2021011.
Der volle Inhalt der QuelleMonahan, Joseph F. Life-Cycle Cost Modeling to Determine whether Vehicle-to-Grid (V2G) Integration and Ancillary Service Revenue can Generate a Viable Case for Plug-in Electric Drive Vehicles. Fort Belvoir, VA: Defense Technical Information Center, Juni 2013. http://dx.doi.org/10.21236/ada586076.
Der volle Inhalt der QuelleMoncada, Oscar, Zainab Imran, Connor Vickers, Konstantina Gkritza, Steven Pekarek, Dionysios Aliprantis, Aaron Brovont, Behnam Jahangiri und John E. Haddock. Full-Scale Dynamic Wireless Power Transfer and Pilot Project Implementation. Purdue University, 2024. http://dx.doi.org/10.5703/1288284317744.
Der volle Inhalt der QuelleCoyner, Kelley, und Jason Bittner. Infrastructure Enablers and Automated Vehicles: Trucking. SAE International, Juli 2022. http://dx.doi.org/10.4271/epr2022017.
Der volle Inhalt der QuelleAbdul Hamid, Umar Zakir. Product Governance and Management for Software-defined Battery Electric Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, Oktober 2024. http://dx.doi.org/10.4271/epr2024025.
Der volle Inhalt der QuelleTuffner, Francis K., Michael CW Kintner-Meyer und Krishnan Gowri. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1060681.
Der volle Inhalt der Quelle