Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Electric discharges – Computer simulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Electric discharges – Computer simulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Electric discharges – Computer simulation"
Rodríguez-Serna, Johnatan M., Ricardo Albarracín-Sánchez, Ming Dong und Ming Ren. „Computer Simulation of Partial Discharges in Voids inside Epoxy Resins Using Three-Capacitance and Analytical Models“. Polymers 12, Nr. 1 (02.01.2020): 77. http://dx.doi.org/10.3390/polym12010077.
Der volle Inhalt der QuelleRocha, Gabriel Vianna Soares, Raphael Pablo de Souza Barradas, João Rodrigo Silva Muniz, Ubiratan Holanda Bezerra, Igor Meireles de Araújo, Daniel de Souza Avelar da Costa, Abner Cardoso da Silva, Marcus Vinícius Alves Nunes und Jucileno Silva e. Silva. „Optimized Surge Arrester Allocation Based on Genetic Algorithm and ATP Simulation in Electric Distribution Systems“. Energies 12, Nr. 21 (28.10.2019): 4110. http://dx.doi.org/10.3390/en12214110.
Der volle Inhalt der QuelleBarradas, Raphael Pablo de Souza, Gabriel Vianna Soares Rocha, João Rodrigo Silva Muniz, Ubiratan Holanda Bezerra, Marcus Vinícius Alves Nunes und Jucileno Silva e. Silva. „Methodology for Analysis of Electric Distribution Network Criticality Due to Direct Lightning Discharges“. Energies 13, Nr. 7 (01.04.2020): 1580. http://dx.doi.org/10.3390/en13071580.
Der volle Inhalt der QuelleSETTAOUTI, A., und L. SETTAOUTI. „NUMERICAL SIMULATION OF THE FORMATION AND PROPAGATION OF STREAMER“. International Journal of Modern Physics C 18, Nr. 06 (Juni 2007): 957–71. http://dx.doi.org/10.1142/s0129183107011066.
Der volle Inhalt der QuellePu, Ziheng, Chenqu Zhou, Yuyao Xiong, Tian Wu, Guowei Zhao, Baodong Yang und Peng Li. „Two Dimensional Axisymmetric Simulation Analysis of Vegetation Combustion Particles Movement in Flame Gap under DC Voltage“. Energies 12, Nr. 19 (20.09.2019): 3596. http://dx.doi.org/10.3390/en12193596.
Der volle Inhalt der QuelleSkiba, Andrzej J. „Simulation of Atmospheric Discharge at Power Line“. AUTOMATYKA, ELEKTRYKA, ZAKLOCENIA 11 (30.09.2020): 8–14. http://dx.doi.org/10.17274/aez.2020.41.01.
Der volle Inhalt der QuelleHe, He und Cui. „Charge-Simulation-Based Electric Field Analysis and Electrical Tree Propagation Model with Defects in 10 kV XLPE Cable Joint“. Energies 12, Nr. 23 (27.11.2019): 4519. http://dx.doi.org/10.3390/en12234519.
Der volle Inhalt der QuelleHe, Miao, Miao Hao, George Chen, Xin Chen, Wenpeng Li, Chong Zhang, Haitian Wang, Mingyu Zhou und Xianzhang Lei. „Numerical modelling on partial discharge in HVDC XLPE cable“. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 37, Nr. 2 (05.03.2018): 986–99. http://dx.doi.org/10.1108/compel-07-2017-0297.
Der volle Inhalt der QuelleFujiwara, T., T. Shimada und K. Sugita. „Computer simulation of discharge development under an induced toroidal electric field“. Journal of Physics D: Applied Physics 18, Nr. 6 (14.06.1985): 1101–11. http://dx.doi.org/10.1088/0022-3727/18/6/013.
Der volle Inhalt der QuelleAndrade, Arthur F., Edson G. Costa, Filipe L. M. Andrade, Clarice S. H. Soares und George R. S. Lira. „Design of Cable Termination for AC Breakdown Voltage Tests“. Energies 12, Nr. 16 (09.08.2019): 3075. http://dx.doi.org/10.3390/en12163075.
Der volle Inhalt der QuelleDissertationen zum Thema "Electric discharges – Computer simulation"
Illias, Hazlee Azil. „Measurement and simulation of partial discharges within a spherical cavity in a solid dielectric material“. Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/194921/.
Der volle Inhalt der QuelleTran, Trung Nam. „Surface discharge dynamics : theory, experiment and simulation“. Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/165509/.
Der volle Inhalt der QuelleVieira, Marcos Stefanelli. „Influência das edificações na propagação de ondas eletromagnéticas geradas por descargas atmosféricas“. Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-15072016-150045/.
Der volle Inhalt der QuelleAtmospheric discharges represent one of the main causes of interruption in power supply to consumers, and although they have more intense effects when direct impact on energy lines, are the case of indirect discharges that draws more attention, since they occur more frequently. Both the first discharges, occurring generally with greater intensity of current, as subsequent discharges that have shorter front time associated, radiate electromagnetic fields which engage with the electrical networks generating surges that can cause so much disruption of power supply as damage to the equipment. The presence of buildings in the lightning incident area affects the propagation of the radiated waves, creating different patterns of resultant fields, which are responsible for induced overvoltages. Although both the lightning itself and characterization of the surrounding environment are of a complex nature for its representation, structured computational tools can represent satisfactorily the phenomenon, such as the software tool developed here using the finite difference time domain method. This work presents two studies to verify the influence of buildings in the propagation of lightning irradiated field. The first study assessed the behavior of the components of the electric field and magnetic field irradiated, by comparing results obtained with and without the presence of buildings in a small region. Both the geometric parameters of the three buildings considered in this study, as the permittivity and electrical conductivity of the soil and buildings, were changed to identify their influence on radiated fields. The results showed different behaviors of the components of the resulting field due to the variation of these parameters, observing polarity inversion, oscillations in the waveform and either a reduction or increase of the field value. The second study evaluated a more general case where the vertical component of the electric field was taken at nine different points of a typical urban area, in the presence of 102 buildings. The field values evaluated at each point, ten meters above the ground, considered the effect of 28 different random lightning, which hit the top of a given building. The results of this second study showed that except in cases where atmospheric discharge occurs near the analyzed point, there are significant reductions of the vertical electric field. Thus it can be seen that not only the existence of buildings, but its concentration with different electrical and geometrical characteristics, can significantly influence the propagation of irradiated field. The values calculated from the developed tool can be used in conjunction with coupling models for calculating induced overvoltages on power lines, in realistic situations with complex configurations.
Yourkowski, Joel. „Computer simulation of an unmanned aerial vehicle electric propulsion system“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA307294.
Der volle Inhalt der Quelle林霙芝 und Ying-chi Lam. „Agent-based simulation of electricity markets“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31222882.
Der volle Inhalt der QuelleZaag, Nader. „Fast simulation of cascading outages with islanding“. Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112588.
Der volle Inhalt der QuelleThe results demonstrate the ability of the simulator to quickly and efficiently predict a system's response to contingencies leading to cascading outages and islanding. Simulations were conducted on a 10-bus 13-line network, a 24-bus 38-line network, and a 72-bus 119-line network.
This thesis also examined the highly complex mixed-integer linear problem of identifying the optimum initial outage in the sense that it would cause the maximum amount of load shedding through islanding. The results on a three-line, three-bus test properly identified the line whose initial outage caused overflows leading to system separation and maximum loss of load.
Lai, Tsz-ming Terence, und 黎子明. „Harmonic simulation of traction system“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B3122281X.
Der volle Inhalt der QuelleArès, Jean-Michel. „A knowledge-based model and simulator for alarm and protection systems of power networks /“. Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63921.
Der volle Inhalt der QuelleMiyake, Yohei. „Computer Experiments on Electric Antenna Characteristics in Space Plasma Environment“. 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/77978.
Der volle Inhalt der Quelle0048
新制・課程博士
博士(工学)
甲第14623号
工博第3091号
新制||工||1460(附属図書館)
26975
UT51-2009-D335
京都大学大学院工学研究科電気工学専攻
(主査)教授 大村 善治, 准教授 松尾 哲司, 准教授 酒井 道
学位規則第4条第1項該当
Liao, Jen-Chyi. „Computer simulation of multiple coupled transmission lines in electronic packaging application“. Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184659.
Der volle Inhalt der QuelleBücher zum Thema "Electric discharges – Computer simulation"
1945-, Kang Sung-Mo, und Duvvury Charvaka 1944-, Hrsg. Modeling of electrical overstress in integrated circuits. Boston: Kluwer Academic Publishers, 1995.
Den vollen Inhalt der Quelle findenEsmark, Kai. Device simulation of ESD protection elements. Konstanz: Hartung-Gorre, 2002.
Den vollen Inhalt der Quelle findenBaumgartner, D. J. Dilution models for effluent discharges. 2. Aufl. [Washington, D.C.]: Standards and Applied Science Division, Office of Science and Technology, U.S. Environmental Protection Agency, 1993.
Den vollen Inhalt der Quelle findenBaumgartner, D. J. Dilution models for effluent discharges. 3. Aufl. Newport, OR: U.S. Environmental Protection Agency, Pacific Ecosystems Branch, 1994.
Den vollen Inhalt der Quelle findenOscillator design and computer simulation. 2. Aufl. New York: McGraw-Hill, 1997.
Den vollen Inhalt der Quelle findenRhea, Randall W. Oscillator design and computer simulation. 2. Aufl. Atlanta, Ga: Noble Pub. Corp., 2000.
Den vollen Inhalt der Quelle findenOscillator design and computer simulation. Englewood Cliffs, N.J: Prentice Hall, 1990.
Den vollen Inhalt der Quelle finden1963-, Chen Meng-Jen, Hrsg. Three-phase electrical machine systems: Computer simulation. Taunton, Somerset, England: Research Studies Press, 1993.
Den vollen Inhalt der Quelle findenRhea, Randall W. HF filter design and computer simulation. Atlanta: Noble Pub., 1994.
Den vollen Inhalt der Quelle findenHF filter design and computer simulation. New York: McGraw-Hill, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Electric discharges – Computer simulation"
Govinda Raju, G. R., und M. S. Dincer. „Computer Simulation of a Discharge in Crossed Electric and Magnetic Fields“. In Nonequilibrium Effects in Ion and Electron Transport, 375. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0661-0_37.
Der volle Inhalt der QuelleKozak, Jerzy, und Zbigniew GulbinowiczGulbinowicz. „The Computer Simulation of Shaping in Rotating Electrical Discharge Machining“. In Lecture Notes in Electrical Engineering, 183–95. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9419-3_15.
Der volle Inhalt der QuelleLok, Edwin, Eric T. Wong und Erno Sajo. „Computer Simulation of Tumor Treating Fields“. In Alternating Electric Fields Therapy in Oncology, 41–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30576-9_4.
Der volle Inhalt der QuelleJackson, K. „Electric Fields in Electronic Structure Calculations: Electric Polarizabilities and IR and Raman Spectra from First Principles“. In Computer Simulation of Materials at Atomic Level, 293–310. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603107.ch12.
Der volle Inhalt der QuelleZhu, Wenbing, Jingjing Shi, Zhongming Huang, Pei Yu und Enlong Yang. „Electric Field Simulation of Electrospinning with Auxiliary Electrode“. In Communications in Computer and Information Science, 346–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23223-7_44.
Der volle Inhalt der QuelleBo, Liang, und Yuren Li. „Research on Simulation of Aircraft Electric Braking System“. In Recent Advances in Computer Science and Information Engineering, 301–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25766-7_40.
Der volle Inhalt der QuelleYufei, Wang, Hua Xue und Yu Xiao. „Assess of the Flicker Caused by Electric Arc Furnace Using Simulation Method“. In Communications in Computer and Information Science, 128–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24282-3_18.
Der volle Inhalt der QuelleHutterer, Stephan, Michael Affenzeller und Franz Auinger. „Heuristic Power Scheduling of Electric Vehicle Battery Charging Based on Discrete Event Simulation“. In Computer Aided Systems Theory – EUROCAST 2011, 311–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27549-4_40.
Der volle Inhalt der QuelleGanghai, Liu, und Yang Qihua. „Modeling and Simulation for Electric Field of Electrorotation Microchip with Ring Electrode“. In Recent Advances in Computer Science and Information Engineering, 617–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25789-6_82.
Der volle Inhalt der QuelleNishimura, Yasutaka, Taichi Shimura, Kiyoshi Izumi und Kiyohito Yoshihara. „Design and Evaluations of Multi-agent Simulation Model for Electric Power Sharing Among Households“. In Lecture Notes in Computer Science, 41–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66888-4_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Electric discharges – Computer simulation"
Suwarno und H. Fajarsyah. „Computer simulation of partial discharges in liquid insulation“. In 2009 International Conference on Electrical Engineering and Informatics (ICEEI). IEEE, 2009. http://dx.doi.org/10.1109/iceei.2009.5254785.
Der volle Inhalt der QuelleLitovko, I. V. „Computer Simulation of Beam Extraction and Transport for Vacuum Arc Based Ion and Electron Sources“. In 2006 International Symposium on Discharges and Electrical Insulation in Vacuum. IEEE, 2006. http://dx.doi.org/10.1109/deiv.2006.357390.
Der volle Inhalt der QuelleChaly, A., V. Dmitriev, M. Pavleino und O. Pavleino. „Experimental research and computer simulation process of pulse heating high current contacts of vacuum interrupters“. In 2010 24th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). IEEE, 2010. http://dx.doi.org/10.1109/deiv.2010.5625778.
Der volle Inhalt der QuelleIyoda, Mitsuhiro, Shunichi Sato, Hideaki Saito, Tomoo Fujioka, Tomoya Murota und Mamoru Akiyama. „Computer Simulation For The Efficient Operation Of A CW CO Electric Discharge Laser“. In 7th Intl Symp on Gas Flow and Chemical Lasers, herausgegeben von Dieter Schuoecker. SPIE, 1989. http://dx.doi.org/10.1117/12.950509.
Der volle Inhalt der QuelleTrotsenko, Yevgeniy, Volodymyr Brzhezitsky, Olexandr Protsenko und Vladislav Mykhailenko. „Application of Three-Capacitance Models for Simulation of Partial Discharges in Solid Dielectric Containing Several Cavities“. In 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE, 2019. http://dx.doi.org/10.1109/ukrcon.2019.8879931.
Der volle Inhalt der QuelleWang, Zhenlong, und Jingzhi Cui. „Study of Molecular Dynamics Simulation of Deposition in Air in Micro EDM“. In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21239.
Der volle Inhalt der QuelleSerdyuk, Y. V., und S. M. Gubanski. „Computer simulations of discharges along insulator surfaces“. In 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP). IEEE, 2017. http://dx.doi.org/10.1109/ceidp.2017.8257604.
Der volle Inhalt der QuelleHore, Sambit, Souryadeep Basak, Nasirul Haque, Sovan Dalai und Monish Mukherjee. „Studies on the effect of void geometry and location on electric field distribution and partial discharge in XLPE insulated power cable by finite element analysis using COMSOL multiphysics simulation“. In 2017 6th International Conference on Computer Applications in Electrical Engineering-Recent Advances (CERA). IEEE, 2017. http://dx.doi.org/10.1109/cera.2017.8343330.
Der volle Inhalt der QuelleTanaka, M., Y. Murooka und K. Hidaka. „Nanosecond surface discharge study using computer simulation method“. In Conference on Electrical Insulation & Dielectric Phenomena - Annual Report 1986. IEEE, 1986. http://dx.doi.org/10.1109/ceidp.1986.7726429.
Der volle Inhalt der QuelleNazari, Ashkan, Roja Esmaeeli, Seyed Reza Hashemi, Haniph Aliniagerdroudbari und Siamak Farhad. „The Effect of Temperature on Lithium-Ion Battery Energy Efficiency With Graphite/LiFePO4 Electrodes at Different Nominal Capacities“. In ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/power2018-7375.
Der volle Inhalt der Quelle