Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Elastic boundary condition“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Elastic boundary condition" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Elastic boundary condition"
Randall, C. J. „Absorbing boundary condition for the elastic wave equation“. GEOPHYSICS 53, Nr. 5 (Mai 1988): 611–24. http://dx.doi.org/10.1190/1.1442496.
Der volle Inhalt der QuelleZhao, Zhencong, Jingyi Chen, Xiaobo Liu und Baorui Chen. „Frequency-domain elastic wavefield simulation with hybrid absorbing boundary conditions“. Journal of Geophysics and Engineering 16, Nr. 4 (01.08.2019): 690–706. http://dx.doi.org/10.1093/jge/gxz038.
Der volle Inhalt der QuelleKeller, Joseph B., und Marcus J. Grote. „Exact Nonreflecting Boundary Condition For Elastic Waves“. SIAM Journal on Applied Mathematics 60, Nr. 3 (Januar 2000): 803–19. http://dx.doi.org/10.1137/s0036139998344222.
Der volle Inhalt der QuelleTaylor, Adam G., und Jae H. Chung. „Analysis of tangential contact boundary value problems using potential functions“. Royal Society Open Science 6, Nr. 3 (März 2019): 182106. http://dx.doi.org/10.1098/rsos.182106.
Der volle Inhalt der QuelleLANGE, A., J. ZHOU und N. SAFFARI. „OPTIMISED ABSORBING BOUNDARY CONDITIONS FOR ELASTIC-WAVE PROPAGATION“. Journal of Computational Acoustics 09, Nr. 03 (September 2001): 1005–14. http://dx.doi.org/10.1142/s0218396x01001091.
Der volle Inhalt der QuellePeng, Chengbin, und M. Nafi Toksöz. „An optimal absorbing boundary condition for elastic wave modeling“. GEOPHYSICS 60, Nr. 1 (Januar 1995): 296–301. http://dx.doi.org/10.1190/1.1443758.
Der volle Inhalt der QuelleYin, Yuhan, und Juan Liu. „Hybrid Method for Inverse Elastic Obstacle Scattering Problems“. Mathematics 11, Nr. 8 (20.04.2023): 1939. http://dx.doi.org/10.3390/math11081939.
Der volle Inhalt der QuelleBen-Haim, Yakov, und H. G. Natke. „Sequential Adaptation in Estimating Elastic Boundary-Condition Influence Matrices“. Journal of Dynamic Systems, Measurement, and Control 115, Nr. 3 (01.09.1993): 370–78. http://dx.doi.org/10.1115/1.2899112.
Der volle Inhalt der QuelleMittet, Rune. „Implementation of the Kirchhoff integral for elastic waves in staggered‐grid modeling schemes“. GEOPHYSICS 59, Nr. 12 (Dezember 1994): 1894–901. http://dx.doi.org/10.1190/1.1443576.
Der volle Inhalt der QuelleYurchuk, V. M., und S. V. Sinchilo. „Torsional elastic waves. Some aspects of nonlinear analysis“. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, Nr. 2 (2023): 172–75. http://dx.doi.org/10.17721/1812-5409.2023/2.31.
Der volle Inhalt der QuelleDissertationen zum Thema "Elastic boundary condition"
Khatla, Wissem-Eddine. „Écoulements modèles de films minces géo-inspirés : étalement et coalescence de cloques visqueuses“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS060.
Der volle Inhalt der QuelleIn this project, we propose a series of laboratory-scale model experiments to explore the dynamics and instabilities of geophysically inspired thin liquid films.We are studying phenomena similar to laccoliths, where magma flow deforms the surrounding rock layers. In the limit where their height is very small compared to their horizontal size, these dynamic formations can be reasonably compared to thin liquid blisters covered by an elastic film. We thus propose to revisit classical experiments on free-surface drop dynamics by modifying the boundary condition imposed by the nature of the interface.What is the shape and dynamics of a fluid pocket trapped beneath an elastic membrane? How does the coalescence of two adjacent pockets proceed under this new boundary condition? How are dynamic spreading regimes affected?To answer these questions, we set up an experimental device to observe and characterize this spreading phenomenon, using demodulation techniques that we adapted to our configuration.We inject vegetable oil, at a controlled flow rate, through a PMMA plate onto which we deposit an elastic film of millimetric thickness. We are studying three main configurations:1 Spreading of a single viscous blister.2 The coalescence of two identical blisters.3 A Rayleigh-Taylor instability in the presence of an elastic membrane.For each configuration studied, we begin by reconstructing the general shape of the blisters obtained and map their height field over time. We show the presence of several expansion regimes that evolve according to precise power laws, which we verify both theoretically and experimentally. For the first two studies, we systematically attempt to fit the shape of each regime to an associated self-similar behavior.To complement this dual approach, a numerical analysis was also developed for comparison with the experimental data obtained for the different configurations tested
Braun, Michael Rainer. „Characterization of nonlinearity parameters in an elastic material with quadratic nonlinearity with a complex wave field“. Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26566.
Der volle Inhalt der QuelleCommittee Chair: Jacobs, Laurence; Committee Co-Chair: Qu, Jianmin; Committee Member: DesRoches, Reginald. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Tjandrawidjaja, Yohanes. „Some contributions to the analysis of the Half-Space Matching Method for scattering problems and extension to 3D elastic plates“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLY012.
Der volle Inhalt der QuelleThis thesis focuses on the Half-Space Matching Method which was developed to treat some scattering problems in complex infinite domains, when usual numerical methods are not applicable. In 2D, it consists in coupling several plane-wave representations in half-spaces surrounding the obstacle(s) with a Finite Element computation of the solution in a bounded domain. To ensure the matching of all these representations, the traces of the solution are linked by Fourier-integral equations set on the infinite boundaries of the half-spaces. In the case of a dissipative medium, this system of integral equations was proved to be coercive plus compact in an L² framework.In the present thesis, we derive error estimates with respect to the discretization parameters (both in space and Fourier variables). To handle the non-dissipative case, we propose a modified version of the Half-Space Matching Method, which is obtained by applying a complex-scaling to the unknowns, in order to recover the L² framework.We then extend the Half-Space Matching Method to scattering problems in infinite 3D elastic plates for applications to Non-Destructive Testing. The additional complexity compared to the 2D case comes from the decomposition on Lamb modes used in the half-plate representations. Due to the bi-orthogonality relation of Lamb modes, we have to consider as unknowns not only the displacement, but also the normal stress on the infinite bands limiting the half-plates. Some theoretical questions concerning this multi-unknown formulation involving the trace and the normal trace are studied in a 2D scalar case. Connections with integral methods are also addressed in the case where the Green's function is known, at least partially in each subdomain.The different versions of the method have been implemented in the library XLiFE++ and numerical results are presented for both 2D and 3D cases
Schmidt, Andreas [Verfasser], Reinhard [Akademischer Betreuer] Farwig und Mads [Akademischer Betreuer] Kyed. „The Navier-Stokes Equations with Elastic Boundary and Boundary Conditions of Friction Type / Andreas Schmidt ; Reinhard Farwig, Mads Kyed“. Darmstadt : Universitäts- und Landesbibliothek, 2021. http://d-nb.info/1236344863/34.
Der volle Inhalt der QuelleDydo, James R. „Development of efficient solutions to elastic contact problems with various non-infinite boundary conditions /“. The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487844948076341.
Der volle Inhalt der QuelleVenter, Gerhardus. „Sensitivity analysis with respect to elastic boundary conditions and laser spatial variables within experimental spatial dynamic modeling“. Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-01102009-063257/.
Der volle Inhalt der QuelleCrooks, Matthew Stuart. „Application of an elasto-plastic continuum model to problems in geophysics“. Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/application-of-an-elastoplastic-continuum-model-to-problems-in-geophysics(56bc2269-3eb2-47f9-8482-b62e8e053b76).html.
Der volle Inhalt der QuelleCroënne, C., J. O. Vasseur, Matar O. Bou, M. F. Ponge, P. A. Deymier, A. C. Hladky-Hennion und B. Dubus. „Brillouin scattering-like effect and non-reciprocal propagation of elastic waves due to spatio-temporal modulation of electrical boundary conditions in piezoelectric media“. AMER INST PHYSICS, 2017. http://hdl.handle.net/10150/623049.
Der volle Inhalt der QuelleBouzaher, Abdallah. „Réseau bipériodique de dislocations d'hétéro-interface en élasticité anisotrope“. Grenoble INPG, 1993. http://www.theses.fr/1993INPG0089.
Der volle Inhalt der QuelleBrenot, Dominique. „Transmission du son à l'intérieur d'une structure axisymétrique“. Paris 6, 1986. http://www.theses.fr/1986PA066022.
Der volle Inhalt der QuelleBücher zum Thema "Elastic boundary condition"
United States. National Aeronautics and Space Administration., Hrsg. The Schwinger variational method. [Washington, DC: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenSerikov, Sergey. Impact on impact strength. ru: INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/2161513.
Der volle Inhalt der QuelleBuchteile zum Thema "Elastic boundary condition"
Arnold, Anton, und Matthias Ehrhardt. „A Transparent Boundary Condition for an Elastic Bottom in Underwater Acoustics“. In Finite Difference Methods,Theory and Applications, 15–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20239-6_2.
Der volle Inhalt der QuelleLu, Guo Yun, und Shan Yuan Zhang. „Elastic-Plastic Dynamic Response of the Tube with Free Boundary Condition Subjected to Impact“. In Engineering Plasticity and Its Applications, 263–68. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-433-2.263.
Der volle Inhalt der QuelleBare, Z., J. Orlik und G. Panasenko. „Asymptotic Approximations of a Thin Elastic Beam with Auxiliary Coupled 1D System due to Robin Boundary Condition“. In Trends in Mathematics, 637–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12577-0_69.
Der volle Inhalt der QuelleBracamonte, Johane, John S. Wilson und Joao S. Soares. „Modeling Patient-Specific Periaortic Interactions with Static and Dynamic Structures Using a Moving Heterogeneous Elastic Foundation Boundary Condition“. In Functional Imaging and Modeling of the Heart, 315–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78710-3_31.
Der volle Inhalt der QuelleFridman, Vladimir. „Discontinuous Functions. Complicated Boundary Conditions“. In Theory of Elastic Oscillations, 123–39. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4786-2_6.
Der volle Inhalt der QuelleThomson, Gavin R., und Christian Constanda. „Problems with Robin Boundary Conditions“. In Stationary Oscillations of Elastic Plates, 153–75. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8241-5_9.
Der volle Inhalt der QuelleSantos, Juan Enrique, und Patricia Mercedes Gauzellino. „Absorbing boundary conditions in elastic and poroelastic media“. In Numerical Simulation in Applied Geophysics, 97–119. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48457-0_5.
Der volle Inhalt der QuelleBarishpolsky, B. M. „Analysis of Generalized Elastic Problems with Superfluous Boundary Conditions“. In Computational Mechanics ’88, 1359–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61381-4_360.
Der volle Inhalt der QuelleJiang, Zhongyu, Yajun Zhang, Huaqing Liu und Xuanxuan Li. „Symplectic Elastic Solution of Multi-layer Thick-Walled Cylinder Under Different Interlayer Constraints“. In Lecture Notes in Civil Engineering, 238–53. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_21.
Der volle Inhalt der QuelleSofronov, I. L., und N. A. Zaitsev. „Transparent Boundary Conditions for the Elastic Waves in Anisotropic Media“. In Hyperbolic Problems: Theory, Numerics, Applications, 997–1004. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75712-2_105.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Elastic boundary condition"
Kimura, K., K. Sawada und H. Kushima. „Long-Term Creep Strength Property of Advanced Ferritic Creep Resistant Steels“. In AM-EPRI 2010, herausgegeben von D. Gandy, J. Shingledecker und R. Viswanathan, 732–51. ASM International, 2010. http://dx.doi.org/10.31399/asm.cp.am-epri-2010p0732.
Der volle Inhalt der QuellePeng, Chengbin, und M. Nafi Toksöz. „An optimal absorbing boundary condition for elastic wave modeling“. In SEG Technical Program Expanded Abstracts 1993. Society of Exploration Geophysicists, 1993. http://dx.doi.org/10.1190/1.1822294.
Der volle Inhalt der QuelleMin, D. J., C. Shin, H. S. Yoo, J. K. Hong und M. K. Park. „Free Surface Boundary Condition in Finite-Difference Elastic Wave Modeling“. In 64th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2002. http://dx.doi.org/10.3997/2214-4609-pdb.5.p264.
Der volle Inhalt der QuelleKim, Minsu, Yongjun Lee, Woo Kyoung Han und Kyong Hwan Jin. „Learning Residual Elastic Warps for Image Stitching under Dirichlet Boundary Condition“. In 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2024. http://dx.doi.org/10.1109/wacv57701.2024.00397.
Der volle Inhalt der QuelleDu*, Qizhen, Mingqiang Zhang, Gang Fang, Xufei Gong und Chengfeng Guo. „Relatively amplitude-preserved ADCIGs based on elastic RTM by modifying the initial condition as the boundary condition“. In SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014. http://dx.doi.org/10.1190/segam2014-0448.1.
Der volle Inhalt der QuellePonce‐Correa, Gustavo J., und John C. Mutter. „A free boundary condition for the elastic wave equation in the pseudospectral method“. In SEG Technical Program Expanded Abstracts 1997. Society of Exploration Geophysicists, 1997. http://dx.doi.org/10.1190/1.1885693.
Der volle Inhalt der QuelleSadasivam, Balaji, Alpay Hizal und Dwayne Arola. „Abrasive Waterjet Peening With Elastic Prestress: Effect of Boundary Conditions“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67547.
Der volle Inhalt der QuelleXu, Tian, und Yong Lei. „Identification of Young’s Modulus and Equivalent Spring Constraint Boundary Conditions of the Object With Incomplete Displacement Boundary Conditions“. In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8396.
Der volle Inhalt der QuelleXie, Xiao‐Bi, und Ru‐Shan Wu. „Free surface boundary condition and the source term for one‐way elastic wave method“. In SEG Technical Program Expanded Abstracts 1997. Society of Exploration Geophysicists, 1997. http://dx.doi.org/10.1190/1.1885799.
Der volle Inhalt der QuelleLiu, Yang, und Mrinal K. Sen. „A hybrid absorbing boundary condition for elastic wave modeling with staggered‐grid finite difference“. In SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 2010. http://dx.doi.org/10.1190/1.3513458.
Der volle Inhalt der Quelle