Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Effluent“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Effluent" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Effluent"
Adam, Abdeljalil, Nabil Saffaj und Rachid Mamouni. „Classification of industrial wastewater discharged into effluent pits, an approach toward a sustainable recycling: case study of a water treatment facility in Morocco“. E3S Web of Conferences 364 (2023): 02001. http://dx.doi.org/10.1051/e3sconf/202336402001.
Der volle Inhalt der QuelleJibril Sani Mohammed, Yahaya Mustapha, Usman Abubakar, Eghobor Sunday, Bashir Mohammed Mayaki, Yahya Sadiq Abdulrahman, Mohammed Isa Auyo und Aisha Wada Abubakar. „Evaluation of Cyto-Genotoxicity of Pharmaceutical Industrial Effluent in Kano Metropolis, Kano State, Nigeria, Using Allium Cepa L. Assay“. UMYU Scientifica 2, Nr. 1 (30.03.2023): 106–14. http://dx.doi.org/10.56919/usci.2123.013.
Der volle Inhalt der QuelleNaidoo, V., M. du Preez, T. Rakgotho, B. Odhav und C. A. Buckley. „Toxicity and biodegradability of high strength/toxic organic liquid industrial effluents and hazardous landfill leachates“. Water Science and Technology 46, Nr. 9 (01.11.2002): 163–69. http://dx.doi.org/10.2166/wst.2002.0230.
Der volle Inhalt der QuelleRaj, Abhay, Sharad Kumar, Izharul Haq und Mahadeo Kumar. „Detection of Tannery Effluents Induced DNA Damage in Mung Bean by Use of Random Amplified Polymorphic DNA Markers“. ISRN Biotechnology 2014 (11.03.2014): 1–8. http://dx.doi.org/10.1155/2014/727623.
Der volle Inhalt der QuelleDewi, Ratna Stia, Rina Sri Kasiamdari, Erni Martani und Yekti Asih Purwestri. „Decolorization and detoxification of batik dye effluent containing Indigosol Blue-04B using fungi isolated from contaminated dye effluent“. Indonesian Journal of Biotechnology 23, Nr. 2 (24.12.2018): 54. http://dx.doi.org/10.22146/ijbiotech.32332.
Der volle Inhalt der QuelleRuas, D. B., A. H. Mounteer, A. C. Lopes, B. L. Gomes, F. D. Brandão und L. M. Girondoli. „Combined chemical biological treatment of bleached eucalypt kraft pulp mill effluent“. Water Science and Technology 55, Nr. 6 (01.03.2007): 143–50. http://dx.doi.org/10.2166/wst.2007.222.
Der volle Inhalt der QuelleFitamo, Temesgen, Olli Dahl, Emma Master und Torsten Meyer. „Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams“. February 2016 15, Nr. 2 (01.03.2016): 80–88. http://dx.doi.org/10.32964/tj15.2.80.
Der volle Inhalt der QuelleAgbekodo, K. M., P. M. Huck, S. A. Andrews und S. Peldszus. „Characterization of Treated Effluent from a Chemithermomechanical Pulping Process Using Macroporous Resins“. Water Quality Research Journal 32, Nr. 4 (01.11.1997): 795–814. http://dx.doi.org/10.2166/wqrj.1997.043.
Der volle Inhalt der QuelleKlein, Rodrigo Miguel, Éverton Hansen und Patrice Monteiro de Aquim. „Water reuse in the post-tanning process: minimizing environmental impact of leather production“. Water Science and Technology 85, Nr. 1 (13.12.2021): 474–84. http://dx.doi.org/10.2166/wst.2021.620.
Der volle Inhalt der QuelleAidar, Elizabeth, Teresa C. S. Sigaud-Kutner, Márcia C. Bicega, Katya P. Schinke, Sania M. F. Gianesella und Elisabete S. Braga. „Evaluation of produced water toxicity from an oil maritime terminal through Skeletonema costatum toxicity tests“. Revista Brasileira de Oceanografia 47, Nr. 2 (1999): 137–44. http://dx.doi.org/10.1590/s1413-77391999000200003.
Der volle Inhalt der QuelleDissertationen zum Thema "Effluent"
Silva, Marcos Erick Rodrigues da. „Post-Treatment for effluents of anaerobic reactors treating domestic effluent by natural and unnatural coagulants“. Universidade Federal do CearÃ, 2006. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=266.
Der volle Inhalt der QuelleThe current investigation aimed to study post-treatments for effluents of anaerobic sludge blanket reactors by using both natural (Moringa oleifera, Lam) and unnatural coagulants. For that, many jar-tests were conducted either using sewage or effluent of a lab-scale UASB (upflow anaerobic sludge blanket) reactor. Many dosages of natural (Moringa oleifera) and unnatural (ferric chloride) coagulants were tested with sewage. Afterwards, the coagulants effect associated to a polymer (FO 4140) was assessed in the physical-chemical and microbiological parameters of the UASB reactor effluent. The results indicated that the natural coagulant moringa provided low turbidity removal in comparison with the unnatural coagulant ferric chloride, for both sewage and UASB effluent, questioning the real application of moringa in the physical-chemical treatment of sewage. Additionally, a negative effect of the moringa seeds was verified after the detection of a considerably increase of the Chemical Oxygen Demand (COD) and turbidity, while testing the UASB effluent. The results show that, in general, the moringa seeds were inefficient on the removal of physical-chemical and microbiological contaminants present in sewage and anaerobic effluents.
O presente trabalho teve como objetivo estudar pÃs-tratamentos de efluentes provenientes de reatores anaerÃbios de manta de lodo pelo uso de coagulantes naturais (Moringa oleifera, Lam) e nÃo naturais. Para tanto, foram realizados vÃrios ensaios de jar-test utilizando tanto esgoto sanitÃrio bruto quanto efluente de um reator UASB (upflow anaerobic sludge blanket) em escala de laboratÃrio. Foram testadas vÃrias dosagens dos coagulantes natural (Moringa oleifera) e nÃo-natural (cloreto fÃrrico) utilizando esgotos brutos domÃsticos. Em seguida foram estudados os efeitos dos coagulantes associados ao auxiliar de coagulaÃÃo (FO 4140), nos parÃmetros fÃsico-quÃmicos e microbiolÃgicos do efluente do reator UASB. A partir dos resultados, verificou-se que o coagulante natural moringa forneceu baixas remoÃÃes de turbidez na comparaÃÃo com o coagulante nÃo-natural cloreto fÃrrico, tanto para o esgoto bruto como para o efluente do reator UASB, questionando-se a real aplicaÃÃo da moringa no tratamento fÃsico-quÃmico de esgoto sanitÃrio. Adicionalmente, verificou-se um efeito negativo do uso das sementes de moringa, mediante a detecÃÃo de um aumento considerÃvel nas concentraÃÃes finais de DQO e turbidez, quando o efluente anaerÃbio era testado. Os resultados mostraram que, de uma forma geral, a semente de moringa se mostrou ineficiente na remoÃÃo de contaminantes fÃsico-quÃmicos e microbiolÃgicos presentes em esgotos sanitÃrios brutos e efluentes anaerÃbios.
Peterson, Mark. „Electrodisinfection of Municipal Wastewater Effluent“. ScholarWorks@UNO, 2005. http://scholarworks.uno.edu/td/294.
Der volle Inhalt der QuelleSantos, Bruno Alexandre Quistorp. „Continuous bioremediation of electroplating effluent“. Thesis, Cape Peninsula University of Technology, 2013. http://hdl.handle.net/20.500.11838/865.
Der volle Inhalt der QuelleThere are significant quantities of free cyanide (F-CN) and heavy metal contaminated effluent being discharged from electroplating operations globally. However, there is an overwhelming tendency in the industry to use physical and/or chemical treatment methods for cyanides (CNs) and heavy metals in effluent. Although these methods may be effective for certain CNs and heavy metals, they produce toxic by-products and also involve high operational and capital investment costs when compared to bioremediation methods. In this study, the design of a two-stage membrane bioreactor (MBR) system was conceptualised for the bioremediation of CNs and heavy metals in the effluent which was collected from an electroplating facility located in the Western Cape, South Africa. The design included a primary inactive bioremediation stage, to reduce the impact of contaminate concentration fluctuations, and a secondary active bioremediation stage, to remove the residual contaminants, in the effluent under alkaline pH conditions which typify most industrial effluent containing these contaminants. An analysis of the electroplating effluent revealed that the effluent contained an average of 149.11 (± 9.31) mg/L, 5.25 (± 0.64) mg/L, 8.12 (± 4.78) mg/L, 9.05 (± 5.26) mg/L and 45.19 (± 25.89) mg/L of total cyanide (T-CN), F-CN, weak acid dissociable cyanides (WAD-CNs), nickel (Ni), zinc (Zn) and copper (Cu), respectively. An Aspergillus sp., which displayed the characteristic black conidiophores of the Aspergillus section Nigri, was isolated from the electroplating facilities’ effluent discharge using a selective pectin agar (PA) and subcultured on 2% (v/v) antibiotic (10,000 units/L penicillin and 10 mg streptomycin/mL) potato dextrose agar (PDA). The isolate was tolerant to F-CN up to 430 mg F-CN/L on F-CN PDA plates which were incubated at 37 ˚C for 5 days. However, a significant decline in microbial growth was observed after 200 mg F-CN/L, thus indicating that the isolate was suitable for the bioremediation of the electroplating effluent. The identification of the isolate as Aspergillus awamori (A. awamori) was definitively determined using a multi-gene phylogenetic analysis, utilising ITS (internal transcribed spacer), -tubulin and calmodulin gene regions. Although an anomaly in the morphology of the conidia of the isolate was observed during the morphological analysis, indicating a possible morphological mutation in the isolate. A comparative study between “sweet orange” (Citrus sinensis (C. sinensis)) pomace, “apple” (Malus domestica (M. domestica)) pomace, “sweetcorn” (Zea mays (Z. mays)) cob and “potato” (Solanum tuberosum (S. tuberosum)) peel, i.e. waste materials considered to be agricultural residues, was conducted in order to assess their potential and as a sole carbon source supplement for A. awamori biomass development for the bioremediation of CNs and heavy metals. The suitability of these agricultural residues for these activities were as follows: C. sinensis pomace ˃ M. domestica pomace ˃ Z. mays cob ˃ S. tuberosum peel. For purpose of the sensitivity analysis, a temperature range of 20 to 50 ˚C and an alkaline pH range of 7 to 12 showed that: (1) optimal conditions for the uptake of Ni, Zn and Cu occurred at pH 12 and a temperature of 37.91 and 39.78 ˚C using active and inactive A. awamori biomass and unhydrolysed and hydrolysed C. sinensis pomace, respectively; (2) F-CN conversion increased linearly with an increase in pH and temperature using unhydrolysed and hydrolysed C. sinensis pomace; and (3) optimal conditions for the F-CN conversion and the respective by-products and sugar metabolism using active A. awamori biomass occurred at 37.02 ˚C and pH 8.75 and at conditions inversely proportional to F-CN conversion, respectively. The heavy metal affinity was Ni > Zn > Cu for all the biomaterials used and with the heavy metal uptake capacity being inactive A. awamori biomass > active A. awamori biomass > hydrolysed C. sinensis pomace > unhydrolysed C. sinensis pomace, respectively. Hydrolysed C. sinensis pomace had a 3.86 fold higher conversion of F-CN compared to the unhydrolysed C. sinensis pomace. The use of C. sinensis pomace extract as a nutrient media, derived from the acid hydrolysis of C. sinensis pomace, showed potential as a rich carbon-based supplement and also that low concentrations, < 0.1% (v/v), were required for the bioremediation of CNs and heavy metals. The two-stage MBR system was operated at 40 ˚C since this temperature was conducive to the bioremediation of CN and heavy metals. The primary bioremediation stage contained hydrolysed C. sinensis pomace while the secondary bioremediation stage contained active A. awamori biomass, supplemented by the C. sinensis pomace extract. After the primary and secondary bioremediation stages, 76.37%, 95.37%, 93.26% and 94.76% (primary bioremediation stage) and 99.55%, 99.91%, 99.92% and 99.92% (secondary bioremediation stage) average bioremediation efficiencies for T-CN, Ni, Zn and Cu were achieved. Furthermore, the secondary bioremediation stage metabolised the CN conversion by-products with an efficiency of 99.81% and 99.75% for formate (CHOO-) and ammonium (NH4+), respectively. After the first, second and third acid regeneration cycles of the hydrolysed C. sinensis pomace, 99.13%, 99.12% and 99.04% (first regeneration cycle), 98.94%, 98.92% and 98.41% (second regeneration cycle) and 98.46%, 98.44% and 97.91% (third regeneration cycle) recovery efficiencies for Ni, Zn and Cu were achieved. However, the design only managed to treat the effluent for safe discharge and the use of a post-treatment stage, such as reverse osmosis, is recommended to remove the remainder of the trace contaminants and colour from the effluent to ensure that the effluent met the potable water standards for reuse. There was a relatively insignificant standard deviation (≤ 3.22%) detected in all the parameters measured in the continuous operation and this indicates the reproducibility of the bioremediation efficiency in this continuous system.
Uhlman, Kristine, Susanna Eden, Channah Rock, Erin Westfall und Terry Sprouse. „Effluent Dependent Streams of Arizona“. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2012. http://hdl.handle.net/10150/225865.
Der volle Inhalt der QuelleLong, Xiaoping. „Minimum effluent process for pulp mill“. Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/11825.
Der volle Inhalt der QuelleSantoyo-Gutierrez, Socrates. „Absorption heat pump assisted effluent purification“. Thesis, University of Salford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245055.
Der volle Inhalt der QuelleMcClure, P. J. „The biodegradation of pharmaceutical effluent constituents“. Thesis, Bucks New University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233071.
Der volle Inhalt der QuelleHariyadi, Hari Rom. „Microbiological treatment of prochloraz process effluent“. Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366913.
Der volle Inhalt der QuelleWrigley, Timothy John. „Water quality improvement of piggery effluent“. Thesis, Wrigley, Timothy John (1999) Water quality improvement of piggery effluent. PhD thesis, Murdoch University, 1999. https://researchrepository.murdoch.edu.au/id/eprint/52406/.
Der volle Inhalt der QuelleChan, Kwok Ho. „Potential Reuse of wastewater effluent in Macau“. Thesis, University of Macau, 2009. http://umaclib3.umac.mo/record=b1944060.
Der volle Inhalt der QuelleBücher zum Thema "Effluent"
Ogden, Graham. Zero effluent papermaking. Manchester: UMIST, 1997.
Den vollen Inhalt der Quelle findenKing County (Wash.). Dept. of Metropolitan Services., Hrsg. Effluent transfer system. Seattle, Wash: King County Dept. of Metropolitan Services, Water Pollution Control Dept., Technical Publications Section, 1994.
Den vollen Inhalt der Quelle findenCussion, Sylvia. N-nitrosodimethylamine in industrial effluents and sewage influent and effluent: Report. [Toronto]: Quality Management Unit, Ontario Ministry of the Environment, 1991.
Den vollen Inhalt der Quelle findenMunicipal Industrial Strategy for Abatement Program (Ontario), Hrsg. Draft effluent monitoring and effluent limits regulation, electric power generation sector. [Toronto, Ont.]: Queen's Printer for Ontario, 1994.
Den vollen Inhalt der Quelle findenChowdhury, M. D. H. Effluent-free yarn dyeing. Manchester: UMIST, 1992.
Den vollen Inhalt der Quelle findenPost, L. E. Effluent mixing zone studies. Toronto: Water Resources Branch, 1985.
Den vollen Inhalt der Quelle findenBaumgartner, D. J. Dilution models for effluent discharges. 2. Aufl. [Washington, D.C.]: Standards and Applied Science Division, Office of Science and Technology, U.S. Environmental Protection Agency, 1993.
Den vollen Inhalt der Quelle findenPerry, Maria. The handbook of brewery effluent. [South Africa]: Brewery Effluent Services, 1997.
Den vollen Inhalt der Quelle findenBaumgartner, D. J. Dilution models for effluent discharges. 3. Aufl. Newport, OR: U.S. Environmental Protection Agency, Pacific Ecosystems Branch, 1994.
Den vollen Inhalt der Quelle findenFeigin, Amos, Israela Ravina und Joseph Shalhevet. Irrigation with Treated Sewage Effluent. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-74480-8.
Der volle Inhalt der QuelleBuchteile zum Thema "Effluent"
Kaushik, Garima. „Bioremediation of Industrial Effluents: Distillery Effluent“. In Applied Environmental Biotechnology: Present Scenario and Future Trends, 19–32. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2123-4_2.
Der volle Inhalt der QuelleRawat, Shweta, und Sanjay Kumar. „The Feasibility Study of Green Microalgae Assisted Coal Mine Effluent Desalination“. In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 255–67. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_25.
Der volle Inhalt der QuelleWhitman, W. E. „Effluent Treatment“. In Handbook of Food Factory Design, 443–62. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7450-0_18.
Der volle Inhalt der QuelleGooch, Jan W. „Effluent Limitations“. In Encyclopedic Dictionary of Polymers, 254. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_4215.
Der volle Inhalt der QuelleDash, Sanjaya K., Pitam Chandra und Abhijit Kar. „Effluent Treatment“. In Food Engineering, 507–12. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003285076-39.
Der volle Inhalt der QuelleKusui, Takashi, Yasuyuki Itatsu und Jun Jin. „Whole Effluent Toxicity Assessment of Industrial Effluents“. In Methods in Pharmacology and Toxicology, 331–47. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7425-2_17.
Der volle Inhalt der QuelleMajozi, Thokozani. „Zero Effluent Methodologies“. In Batch Chemical Process Integration, 173–96. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2588-3_8.
Der volle Inhalt der QuelleGolwalkar, Kiran. „Effluent Treatment Plants“. In Process Equipment Procurement in the Chemical and Related Industries, 199–209. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12078-2_14.
Der volle Inhalt der QuelleHöhn, Wolfgang. „Textile Industry Effluent“. In Sustainable Textile and Fashion Value Chains, 123–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-22018-1_8.
Der volle Inhalt der QuelleAggarangsi, Pruk, Sirichai Koonaphapdeelert, Saoharit Nitayavardhana und James Moran. „Processing Biogas Effluent“. In Biogas Technology in Southeast Asia, 115–33. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8887-5_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Effluent"
Arhin-Andoh, C. „Assessing Existing Effluent Analysis Requirements to Improve Effluent Quality Reporting“. In SPE African Health, Safety, Security, Environment, and Social Responsibility Conference and Exhibition. Society of Petroleum Engineers, 2016. http://dx.doi.org/10.2118/183594-ms.
Der volle Inhalt der QuelleHamid, Shahul, und W. N. Yeo. „Effluent Water Quality Improvement“. In SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference. Society of Petroleum Engineers, 1994. http://dx.doi.org/10.2118/27316-ms.
Der volle Inhalt der QuelleWei, Liqiang, Feng Xie, Jian Zheng, Ling Liu und Chuangguo Hu. „Improvement of the Total Beta Monitoring Channel of the Radioactive Gaseous Effluent in HTR-10“. In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66652.
Der volle Inhalt der QuelleXie, Feng, Wenqian Li, Zhihui Li, Jianzhu Cao, Hong Li, Jiejuan Tong und Haitao Wang. „Design of the Process and Effluent Radiation Monitoring System of HTR-PM“. In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-61008.
Der volle Inhalt der QuelleMarcus N. Allhands. „Large Scale WWTP Effluent Reuse“. In 2005 Tampa, FL July 17-20, 2005. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2005. http://dx.doi.org/10.13031/2013.18898.
Der volle Inhalt der QuelleKacenjar, Steve T., Davina F. Gill, John A. Lelii, Jack Foreman und Cynthia B. Batroney. „Spectral effluent detection sensitivity study“. In Aerospace/Defense Sensing and Controls, herausgegeben von Sylvia S. Shen und Michael R. Descour. SPIE, 1998. http://dx.doi.org/10.1117/12.312599.
Der volle Inhalt der QuellePeir, Jinn-Jer, Chun-Kuan Shih, Bau-Shei Pei, Yuh-Ming Ferng und Wen-Sheng Hsu. „Power Uprate Impact Evaluations on Waste Heat of Nuclear Power Plants in Taiwan“. In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75885.
Der volle Inhalt der QuelleGowtham, M., S. Kamalakannan und L. Karthick. „Effluent treatment analysis using solar distiller“. In 2011 International Conference on Green Technology and Environmental Conservation (GTEC 2011). IEEE, 2011. http://dx.doi.org/10.1109/gtec.2011.6167682.
Der volle Inhalt der QuelleJuan Enciso, Naomi Assadian, George Di Giovanni und Jaime Iglesias. „Using filtered wastewater effluent with SDI“. In 2003, Las Vegas, NV July 27-30, 2003. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2003. http://dx.doi.org/10.13031/2013.13995.
Der volle Inhalt der QuelleCzerwinski, Richard N., Kristine E. Farrar, Michael K. Griffin und John P. Kerekes. „Spectral quality requirements for effluent quantification“. In Defense and Security, herausgegeben von Sylvia S. Shen und Paul E. Lewis. SPIE, 2004. http://dx.doi.org/10.1117/12.544011.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Effluent"
Graber, Ellen R., Linda S. Lee und M. Borisover. An Inquiry into the Phenomenon of Enhanced Transport of Pesticides Caused by Effluents. United States Department of Agriculture, Juli 1995. http://dx.doi.org/10.32747/1995.7570559.bard.
Der volle Inhalt der QuelleSimiele, G. A. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10189591.
Der volle Inhalt der QuelleGleckler, B. P. Facility effluent monitoring. Office of Scientific and Technical Information (OSTI), Juni 1995. http://dx.doi.org/10.2172/433022.
Der volle Inhalt der QuelleChou, C. J. ,. Westinghouse Hanford. Effluent variability study for the 200 area treated effluent disposal facility. Office of Scientific and Technical Information (OSTI), Juli 1996. http://dx.doi.org/10.2172/663162.
Der volle Inhalt der QuelleMajor, C. A. INEEL Liquid Effluent Inventory. Office of Scientific and Technical Information (OSTI), Juni 1997. http://dx.doi.org/10.2172/5731.
Der volle Inhalt der QuelleBROWN, M. J. 200 Area Treated Effluent Disposal Facility (TEDF) Effluent Sampling and Analysis Plan. Office of Scientific and Technical Information (OSTI), Mai 2000. http://dx.doi.org/10.2172/803701.
Der volle Inhalt der QuelleBolling, Stacey D. Effluent Treatment Facility Catalyst Testing. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1482798.
Der volle Inhalt der QuelleSommer, D. J., D. L. Flyckt, V. G. Johnson, A. G. Law und J. C. Sonnichsen. Liquid effluent study project plan. Office of Scientific and Technical Information (OSTI), Juni 1989. http://dx.doi.org/10.2172/6110566.
Der volle Inhalt der QuelleTaylor, R. W. Effluent Treatment Facility emissions monitoring. Office of Scientific and Technical Information (OSTI), Februar 1989. http://dx.doi.org/10.2172/6131931.
Der volle Inhalt der QuelleChou, Charissa J., und Vernon G. Johnson. Statistical Evaluation of Effluent Monitoring Data for the 200 Area Treated Effluent Disposal Facility. Office of Scientific and Technical Information (OSTI), März 2000. http://dx.doi.org/10.2172/782071.
Der volle Inhalt der Quelle