Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Effet Autler-Townes.

Zeitschriftenartikel zum Thema „Effet Autler-Townes“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Effet Autler-Townes" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Zhang, Yan, Yuanyuan Li, Minru Hao und Yunzhe Zhang. „Controllable A-T Splitting and Spatial Splitting Inside a Cascade Three-Level Atomic System“. Journal of Nanoelectronics and Optoelectronics 16, Nr. 5 (01.05.2021): 786–90. http://dx.doi.org/10.1166/jno.2021.2991.

Der volle Inhalt der Quelle
Annotation:
We illustrate the experimental observations of Autler-Townes splitting and the spatial splitting in an electromagnetically induced transparency window in a atomic vapor system of D1 line. As the power of the dressing laser beam changes, we study first-order and secondary Autler-Townes splitting. The influences of these dressing beams, which lead to the larger spatial splitting of four-wave mixing and the shift of probe transmission signal with by changing frequency detuning. Studies on such controllable Autler-Townes splitting and spatial splitting effect can be very useful in applications of spatial signal processing and optical communication.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lyyra, A. M., J. Qi und F. C. Spano. „Autler–Townes splitting and the AC Stark effect in nonpolar molecules: Prospects for all-optical alignment“. Canadian Journal of Physics 79, Nr. 2-3 (01.02.2001): 547–59. http://dx.doi.org/10.1139/p01-016.

Der volle Inhalt der Quelle
Annotation:
This paper describes an extension of the familiar coherence effects from atomic systems to the molecular regime. Such effects are inherent in the interaction of multiple laser fields with molecular systems. We have observed Autler–Townes splitting and the AC Stark shift in diatomic Lithium using the continuous wave all-optical triple resonance (AOTR) techniques. By using the Autler–Townes effect, we have partially resolved the magnetic sublevels of a molecular rovibrational level in a Doppler broadened sample, allowing all-optical alignment of the angular momentum in excited states of nonpolar molecules. The Autler–Townes effect in a molecular system extends the rovibrational state selectivity of the AOTR excitation technique to magnetic sublevels. PACS Nos.: 33.40tf, 42.50Hz
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bhattacharyya, Dipankar. „The pump induced Autler–Townes effect and Autler–Townes mixing in four-level atoms“. Journal of Optics B: Quantum and Semiclassical Optics 6, Nr. 12 (06.11.2004): 563–67. http://dx.doi.org/10.1088/1464-4266/6/12/012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Guo, Wei, Xingqiang Lu, Xinlin Wang und Hongbin Yao. „The effect of pump-2 laser on Autler–Townes splitting in photoelectron spectra of K2 molecule“. Phys. Chem. Chem. Phys. 16, Nr. 38 (2014): 20755–62. http://dx.doi.org/10.1039/c4cp02258k.

Der volle Inhalt der Quelle
Annotation:
Autler–Townes (AT) splitting was theoretically investigated in the photoelectron spectra of the four-level ladder K2 molecule driven by pump1–pump2–probe pulses using the time-dependent wave packet approach.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nad'kin L. Yu., Korovai O. V. und Markov D. A. „Triexcitons and their effect on absorption in the exciton region of the spectrum“. Physics of the Solid State 64, Nr. 11 (2022): 1649. http://dx.doi.org/10.21883/pss.2022.11.54186.403.

Der volle Inhalt der Quelle
Annotation:
The effect of the triexciton state on the absorption of exciton-polaritons is studied under conditions when two high-power laser radiation pulses interacting with biexcitons and triexcitons and a probe pulse at the frequency of the exciton transition are incident on the medium. It is shown that even at low triexciton binding energies under the action of two high-power pulses, the exciton state splits into three quasi-levels, and the Autler--Townes effect (optical Stark effect) is observed. It turned out that the position of the quasi-levels depends on the detuning of the resonance of the pump pulses and their intensities, which makes it possible to identify them. These circumstances make it possible to diagnose the triexciton state in semiconductors with a higher degree of probability not by studying the absorption spectral line of the biexciton--triexciton transition, but by the effect of the triexciton state on absorption in the region of the exciton transition. Keywords: excitons, biexcitons, triexcitons, Autler--Townes effect.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tiaz, Gul, Fazal Ghafoor, Rashid Nazmitdinov und Ehtiram Shahalyev. „Interplay between electromagnetically induced transparency and Autler-Townes effect in fivelevel atomic systems“. EPJ Web of Conferences 204 (2019): 03013. http://dx.doi.org/10.1051/epjconf/201920403013.

Der volle Inhalt der Quelle
Annotation:
We analyse the evolution of a weak probe optical field propagation through a five-level atomic medium cyclically driven by two strong optical and microwave fields. It is shown that the competition between the electromagnetically induced transparency and the Autler-Townes effect can be controlled by altering the relative phase of the coupling fields in the presence of the atomic dephasing reservoir.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lau, A. M. F. „The Autler-Townes effect in hydrogen at low pressure“. Journal of Physics B: Atomic and Molecular Physics 20, Nr. 15 (14.08.1987): L469—L473. http://dx.doi.org/10.1088/0022-3700/20/15/002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bechtel, H., und D. Fick. „The Autler-Townes effect in an optical pumping experiment“. Journal of Physics B: Atomic and Molecular Physics 20, Nr. 9 (14.05.1987): 1909–18. http://dx.doi.org/10.1088/0022-3700/20/9/007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lau, Albert M. F. „The Autler-Townes effect in hydrogen at low pressure“. Journal of Physics B: Atomic, Molecular and Optical Physics 21, Nr. 5 (14.03.1988): 925–26. http://dx.doi.org/10.1088/0953-4075/21/5/519.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhi-Jing, Du, Zhang Shou-Gang, Wu Chang-Jiang, Guan Yong, Zhao Wen-Yu und Chang Hong. „Observation of Autler-Townes Effect in Electromagnetically Induced Transparency“. Chinese Physics Letters 27, Nr. 10 (Oktober 2010): 104202. http://dx.doi.org/10.1088/0256-307x/27/10/104202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Greenland, P. T. „Transitional Approximations and the Autler-Townes Effect for Pulsed Lasers“. Optica Acta: International Journal of Optics 33, Nr. 6 (Juni 1986): 723–32. http://dx.doi.org/10.1080/713822016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Nazari, Fakhroddin, und Misagh Izadi. „Tunable Autler–Townes splitting using graphene-based electro-optic effect“. Physics Letters A 382, Nr. 27 (Juli 2018): 1829–34. http://dx.doi.org/10.1016/j.physleta.2018.04.045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Nandi, Saikat, Edvin Olofsson, Mattias Bertolino, Stefanos Carlström, Felipe Zapata, David Busto, Carlo Callegari et al. „Observation of Rabi dynamics with a short-wavelength free-electron laser“. Nature 608, Nr. 7923 (17.08.2022): 488–93. http://dx.doi.org/10.1038/s41586-022-04948-y.

Der volle Inhalt der Quelle
Annotation:
AbstractRabi oscillations are periodic modulations of populations in two-level systems interacting with a time-varying field1. They are ubiquitous in physics with applications in different areas such as photonics2, nano-electronics3, electron microscopy4 and quantum information5. While the theory developed by Rabi was intended for fermions in gyrating magnetic fields, Autler and Townes realized that it could also be used to describe coherent light–matter interactions within the rotating-wave approximation6. Although intense nanometre-wavelength light sources have been available for more than a decade7–9, Rabi dynamics at such short wavelengths has not been directly observed. Here we show that femtosecond extreme-ultraviolet pulses from a seeded free-electron laser10 can drive Rabi dynamics between the ground state and an excited state in helium atoms. The measured photoelectron signal reveals an Autler–Townes doublet and an avoided crossing, phenomena that are both fundamental to coherent atom–field interactions11. Using an analytical model derived from perturbation theory on top of the Rabi model, we find that the ultrafast build-up of the doublet structure carries the signature of a quantum interference effect between resonant and non-resonant photoionization pathways. Given the recent availability of intense attosecond12 and few-femtosecond13 extreme-ultraviolet pulses, our results unfold opportunities to carry out ultrafast manipulation of coherent processes at short wavelengths using free-electron lasers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Suri, B., Z. K. Keane, R. Ruskov, Lev S. Bishop, C. Tahan, S. Novikov, J. E. Robinson, F. C. Wellstood und B. S. Palmer. „Observation of Autler–Townes effect in a dispersively dressed Jaynes–Cummings system“. New Journal of Physics 15, Nr. 12 (05.12.2013): 125007. http://dx.doi.org/10.1088/1367-2630/15/12/125007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kai-Jun, Yuan, Shu Chuan-Cun und Cong Shu-Lin. „Effect of Pulse Temporal Profile on Autler–Townes Splitting in Photoelectron Spectrum“. Chinese Physics Letters 23, Nr. 10 (27.09.2006): 2733–36. http://dx.doi.org/10.1088/0256-307x/23/10/030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Mishina, O. S., A. S. Sheremet, N. V. Larionov und D. V. Kupriyanov. „Autler—Townes effect in hyperfine structure of alkali-atom D 1 line“. Optics and Spectroscopy 108, Nr. 2 (Februar 2010): 313–18. http://dx.doi.org/10.1134/s0030400x10020220.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Smelyanskiy, V. N., R. S. Conti und G. W. Ford. „Simultaneously forbidden resonances in the Autler-Townes effect with a modulated pump“. Physical Review A 55, Nr. 3 (01.03.1997): 2186–202. http://dx.doi.org/10.1103/physreva.55.2186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

D’yachkov, A. B., A. A. Gorkunov, S. K. Kovalevich, A. V. Labozin, V. A. Firsov, S. V. Fomichev, G. O. Tsvetkov und V. Ya Panchenko. „Autler–Townes Effect of Autoionization Transition at Laser Separation of Lutetium Isotopes“. Optics and Spectroscopy 132, Nr. 4 (April 2024): 345–52. http://dx.doi.org/10.1134/s0030400x24040052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Azim, Tasnim, Manzoor Ikram und M. Suhail Zubairy. „Sub-wavelength atom localization via Autler–Townes spectroscopy: effect of the quantized field“. Journal of Optics B: Quantum and Semiclassical Optics 6, Nr. 4 (26.03.2004): 248–55. http://dx.doi.org/10.1088/1464-4266/6/4/009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Wei, Changjiang, Scott A. Holmstrom, Matthew J. Sellars, Neil B. Manson und Zbigniew Ficek. „Effect of the Bloch - Siegert shift in a strongly driven transition: asymmetric Autler - Townes profile“. Journal of Physics B: Atomic, Molecular and Optical Physics 30, Nr. 11 (14.06.1997): 2735–45. http://dx.doi.org/10.1088/0953-4075/30/11/022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Jakob, M., und G. Yu Kryuchkyan. „Autler-Townes effect with mono- and bichromatic pump fields: Reservoir effects and Floquet-state treatment“. Physical Review A 57, Nr. 2 (01.02.1998): 1355–66. http://dx.doi.org/10.1103/physreva.57.1355.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

He, Xing‐Fei, Peter T. H. Fisk und Neil B. Manson. „Autler–Townes effect of the photoexcited diamond nitrogen‐vacancy center in its triplet ground state“. Journal of Applied Physics 72, Nr. 1 (Juli 1992): 211–17. http://dx.doi.org/10.1063/1.352161.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

López-Rayón, Fernando, Maximino L. Arroyo Carrasco, René I. Rodríguez-Beltrán, Rafael Salas-Montiel und Ricardo Téllez-Limón. „Plasmonic-Induced Transparencies in an Integrated Metaphotonic System“. Nanomaterials 12, Nr. 10 (16.05.2022): 1701. http://dx.doi.org/10.3390/nano12101701.

Der volle Inhalt der Quelle
Annotation:
In this contribution, we numerically demonstrate the generation of plasmonic transparency windows in the transmission spectrum of an integrated metaphotonic device. The hybrid photonic–plasmonic structure consists of two rectangular-shaped gold nanoparticles fully embedded in the core of a multimode dielectric optical waveguide, with their major axis aligned to the electric field lines of transverse electric guided modes. We show that these transparencies arise from different phenomena depending on the symmetry of the guided modes. For the TE0 mode, the quadrupolar and dipolar plasmonic resonances of the nanoparticles are weakly coupled, and the transparency window is due to the plasmonic analogue of electromagnetically induced transparency. For the TE1 mode, the quadrupolar and dipolar resonances of the nanoparticles are strongly coupled, and the transparency is originated from the classical analogue of the Autler–Townes effect. This analysis contributes to the understanding of plasmonic transparency windows, opening new perspectives in the design of on-chip devices for optical communications, sensing, and signal filtering applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Herrera, Felipe, und Marina Litinskaya. „Disordered ensembles of strongly coupled single-molecule plasmonic picocavities as nonlinear optical metamaterials“. Journal of Chemical Physics 156, Nr. 11 (21.03.2022): 114702. http://dx.doi.org/10.1063/5.0080063.

Der volle Inhalt der Quelle
Annotation:
We propose to use molecular picocavity ensembles as macroscopic coherent nonlinear optical devices enabled by nanoscale strong coupling. For a generic picocavity model that includes molecular and photonic disorder, we derive theoretical performance bounds for coherent cross-phase modulation signals using weak classical fields of different frequencies. We show that strong coupling of the picocavity vacua with a specific vibronic sideband in the molecular emission spectrum results in a significant variation of the effective refractive index of the metamaterial relative to a molecule-free scenario due to a vacuum-induced Autler–Townes effect. For a realistic molecular disorder model, we demonstrate that cross-phase modulation of optical fields as weak as 10 kW/cm2 is feasible using dilute ensembles of molecular picocavities at room temperature, provided that the confined vacuum is not resonantly driven by the external probe field. Our work paves the way for the development of plasmonic metamaterials that exploit strong coupling for optical state preparation and quantum control.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Ramírez-Martínez, F., F. Ponciano-Ojeda, S. Hernández-Gómez, A. Del Ángel, C. Mojica-Casique, L. M. Hoyos-Campo, J. Flores-Mijangos, D. Sahagún, R. Jáuregui und J. Jiménez-Mier. „Electric-dipole forbidden transitions for probing atomic state preparation: the case of the Autler–Townes effect“. Journal of Physics B: Atomic, Molecular and Optical Physics 54, Nr. 9 (05.05.2021): 095002. http://dx.doi.org/10.1088/1361-6455/abf156.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Zaba, A., V. Cao Long, M. Glodz, E. Paul-Kwiek, K. Kowalski, J. Szonert, D. Wozniak und S. Gateva. „Electromagnetically induced transparency and Autler-Townes effect in a generalized L-system: A five-level model“. Ukrainian Journal of Physical Optics 14, Nr. 3 (2013): 135. http://dx.doi.org/10.3116/16091833/14/3/135/2013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Guo, Wei, Xing-Qiang Lu, Xin-Lin Wang und Hong-Bin Yao. „Effect of pump-1 laser on Autler–Townes splitting in photoelectron spectrum of K 2 molecule“. Chinese Physics B 24, Nr. 1 (Januar 2015): 013302. http://dx.doi.org/10.1088/1674-1056/24/1/013302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Papademetriou, S., M. F. Van Leeuwen und C. R. Stroud. „Autler-Townes effect for an atom in a 100% amplitude-modulated laser field. II. Experimental results“. Physical Review A 53, Nr. 2 (01.02.1996): 997–1003. http://dx.doi.org/10.1103/physreva.53.997.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Lyyra, A. M., J. Qi und F. C. Spano. „Autler–Townes splitting and the AC Stark effect in nonpolar molecules: Prospects for all-optical alignment“. Canadian Journal of Physics 79, Nr. 2-3 (2001): 547–59. http://dx.doi.org/10.1139/cjp-79-2-3-547.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Hong-wei, Wu, Mi Xian-wu, Huang Yong-gang und Song Ke-hui. „Autler-Townes splitting and quantum confined Stark effect of sideband peak in asymmetric double quantum wells“. Journal of Applied Physics 113, Nr. 4 (28.01.2013): 043105. http://dx.doi.org/10.1063/1.4788796.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Qin, Chaochao, Hongsheng Zhai, Xianzhou Zhang und Yufang Liu. „Coherent Control of Autler-Townes Splitting in Photoelectron Spectroscopy: The Effect of Laser Intensity and Laser Envelope“. Bulletin of the Korean Chemical Society 35, Nr. 11 (20.11.2014): 3294–98. http://dx.doi.org/10.5012/bkcs.2014.35.11.3294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kluczyk-Korch, Katarzyna, Lucjan Jacak, Witold Aleksander Jacak und Christin David. „Mode Splitting Induced by Mesoscopic Electron Dynamics in Strongly Coupled Metal Nanoparticles on Dielectric Substrates“. Nanomaterials 9, Nr. 9 (27.08.2019): 1206. http://dx.doi.org/10.3390/nano9091206.

Der volle Inhalt der Quelle
Annotation:
We study strong optical coupling of metal nanoparticle arrays with dielectric substrates. Based on the Fermi Golden Rule, the particle–substrate coupling is derived in terms of the photon absorption probability assuming a local dipole field. An increase in photocurrent gain is achieved through the optical coupling. In addition, we describe light-induced, mesoscopic electron dynamics via the nonlocal hydrodynamic theory of charges. At small nanoparticle size (<20 nm), the impact of this type of spatial dispersion becomes sizable. Both absorption and scattering cross sections of the nanoparticle are significantly increased through the contribution of additional nonlocal modes. We observe a splitting of local optical modes spanning several tenths of nanometers. This is a signature of semi-classical, strong optical coupling via the dynamic Stark effect, known as Autler–Townes splitting. The photocurrent generated in this description is increased by up to 2%, which agrees better with recent experiments than compared to identical classical setups with up to 6%. Both, the expressions derived for the particle–substrate coupling and the additional hydrodynamic equation for electrons are integrated into COMSOL for our simulations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zhou, Fei, Feng-Dong Jia, Jiong Mei, Xiu-Bin Liu, Huai-Yu Zhang, Yong-Hong Yu, Wei-Chen Liang et al. „The effect of the Doppler mismatch in microwave electrometry using Rydberg electromagnetically induced transparency and Autler–Townes splitting“. Journal of Physics B: Atomic, Molecular and Optical Physics 55, Nr. 7 (06.04.2022): 075501. http://dx.doi.org/10.1088/1361-6455/ac5d8d.

Der volle Inhalt der Quelle
Annotation:
Abstract We have systematically investigated the influence of the gas temperature (T), the Rabi frequencies of the probe laser (Ωp), the coupling laser (Ωc) and the radio-frequency (RF) (ΩRF) on the Rydberg electromagnetically induced transparency (EIT) and Autler–Townes (AT) splitting (Δf) by defining a general Doppler mismatch factor D g = ΩRF/Δf in the Rydberg atom-based microwave electrometry. The effect of T on D g is studied in detail from 0 to 1000 K, the results show that D g is insensitive to T when T < 10 μK or T > 10 K, while D g changes significantly with 10 K \,T > 10\enspace \mu K$?> > T > 10 μ K . Then the effects of Ωp, Ωc and ΩRF on factor D g at T = 300 K (typical room temperature) and T = 10 μK (typical temperature of cold atom by laser cooling) are studied in detail, respectively. The results show that the linewidth of Rydberg EIT (ΓEIT) can be used as a key parameter to characterize the dependence of D g on Ωp and Ωc in both cases. D g is insensitive to T, Ωp and Ωc when ΩRF > 3ΓEIT which means that ΓEIT determines the lower limit of the linear region of the RF electric field strength measured by EIT–AT splitting. More interesting, the range where D g is insensitive to Ωp and Ωc can be greatly expanded by lowering the gas temperature to 10 μK. The ranges of parameters where D g is insensitive to T, Ωp, Ωc and ΩRF are given, and such relationship can be easily scaled to other atomic systems. The results can help the selection of various parameters in the experiments and specific applications to ensure the accuracy of measuring the RF electric field.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Van Leeuwen, M. F., S. Papademetriou und C. R. Stroud. „Autler-Townes effect for an atom in a 100% amplitude-modulated laser field. I. A dressed-atom approach“. Physical Review A 53, Nr. 2 (01.02.1996): 990–96. http://dx.doi.org/10.1103/physreva.53.990.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Hu, Jinlian, Huaqiang Li, Rong Song, Jingxu Bai, Yuechun Jiao, Jianming Zhao und Suotang Jia. „Continuously tunable radio frequency electrometry with Rydberg atoms“. Applied Physics Letters 121, Nr. 1 (04.07.2022): 014002. http://dx.doi.org/10.1063/5.0086357.

Der volle Inhalt der Quelle
Annotation:
We demonstrate a continuously tunable electric field measurement based on the far off-resonant AC stark effect in a Rydberg atomic vapor cell. In this configuration, a strong far off-resonant field, denoted as a local oscillator (LO) field, acts as a gain to shift the Rydberg level to a high sensitivity region. An incident weak signal field with a few hundreds of kHz difference from the LO field is mixed with the LO field in the Rydberg system to generate an intermediate frequency signal, which is read out by Rydberg electromagnetically induced transparency (Rydberg-EIT) spectroscopy. Not like resonant EIT-Autler–Townes spectra, we realize the electric field measurement of the signal frequency from 2 to 5 GHz using a single Rydberg state. The detectable field strength is down to 2.25 μV/cm with sensitivity of the electrometry 712 nV cm−1 Hz−1/2, and a linear dynamic range is over 65 dB. The detectable field strength is comparable with a resonant microwave-dressed Rydberg heterodyne receiver using the same system, which is 0.96 μV/cm with sensitivity of 304 nV cm–1 Hz−1/2. We also show the system has an inherent polarization selectivity feature. Our method can provide high sensitivity of electric field measurement and be extended to arbitrary frequency measurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

D’yachkov, A. B., A. A. Gorkunov, A. V. Labozin, S. M. Mironov, V. A. Firsov, G. O. Tsvetkov und V. Ya Panchenko. „The Autler – Townes effect, the Rabi frequency, and determination of characteristics of the decay of excited states in the photoionisation scheme of lutetium“. Quantum Electronics 52, Nr. 4 (01.04.2022): 367–70. http://dx.doi.org/10.1070/qel18029.

Der volle Inhalt der Quelle
Annotation:
Abstract The splitting of the first and second transitions in the lutetium photoionisation scheme is studied in a wide range of laser radiation intensities, and the Rabi frequencies as functions of the radiation intensity are determined. Based on the results, we have obtained the decay branching coefficients of 0.54 and 0.41 for the first and second transitions, respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Li, Yuxuan, Lifeng Wang, Junhui Wang, Jingyi Zhu und Kaifeng Wu. „Autler-Townes splitting and linear dichroism in colloidal CdSe nanoplatelets driven by near-infrared pulses“. Science Advances 10, Nr. 43 (25.10.2024). http://dx.doi.org/10.1126/sciadv.abq2729.

Der volle Inhalt der Quelle
Annotation:
Coherent interaction between light fields and matter has led to many exotic physical phenomena, one of which is the Autler-Townes splitting originating from the optical Stark effect of a three-level system. It has been well documented for atoms, molecules, and low-dimensional, epitaxial-grown semiconductors but rarely for solution-processed samples. Here, we report on Autler-Townes splitting observed in CdSe nanoplatelets. The strong intersubband transition of these nanoplatelets situated in the near-infrared allows us to coherently drive it with femtosecond near-infrared pulses, and meanwhile, their strong interband transition in the visible records the resultant spectral changes. The splitting is most prominent with cross-polarized, linear pump-probe pulses, consistent with the orthogonal polarizations of interband and intersubband transition dipoles. When the nanoplatelets are driven from tilted incident angles, we observe anomalous spectral lineshapes arising from a competition between interband and intersubband drivings, which are nevertheless quantitatively captured by our dressed-state model simulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Mujahid, Anas, Huanrong Fan, Yafen Wang, Faizan Raza, Irfan Ahmed, Yaxin Guo, Faisal Munir, Muhammad Usman, Bo Li und Yanpeng Zhang. „Optical Router and 4 × 1 Multiplexer of Coexisting Crystal Field and Non‐Hermitian Autler‐Townes Splitting Controlled by Photon–Phonon Dressing in Eu3+: BiPO4“. Advanced Quantum Technologies, 08.09.2023. http://dx.doi.org/10.1002/qute.202300136.

Der volle Inhalt der Quelle
Annotation:
AbstractFor the first time, the Autler Townes‐splitting dependency on parity‐time symmetry breaking is investigated. The first‐, second‐, and third‐order splitting in spectral domain outputs obtained through different phase transitions of Eu3+: BiPO4 are explored. First‐order splitting corresponds to pure crystal field splitting attributed to the shifting of energy levels and the inherent effect of the crystal field. Second/third‐order splitting results from the coexistence of crystal field and non‐Hermitian spectral Autler Townes (SAT)‐splitting caused by single‐photon dressing coupled with the interaction of phonon and double photon–phonon dressing. It is further explored the relationship between spectral and temporal‐domain splitting obtained through the different phases of Eu3+: BiPO4 by changing the laser detuning. It is authenticated that the contributions of crystal field, photon, and phonon dressing interactions can only be individually distinguished in the spectral domain. Moreover, the experiment results suggest the analogy of an optical 4 × 1 multiplexer with a channel spacing contrast of ≈91% and an optical router with a channel equalization ratio of ≈93%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Pan, Jiazheng, Yunyi Fan, Yongchao Li, Xin Dai, Xingyu Wei, Yapeng Lu, Chunhai Cao et al. „Dynamically modulated Autler-Townes effect in a transmon qubit“. Physical Review B 96, Nr. 2 (06.07.2017). http://dx.doi.org/10.1103/physrevb.96.024502.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Sillanpää, Mika A., Jian Li, Katarina Cicak, Fabio Altomare, Jae I. Park, Raymond W. Simmonds, G. S. Paraoanu und Pertti J. Hakonen. „Autler-Townes Effect in a Superconducting Three-Level System“. Physical Review Letters 103, Nr. 19 (02.11.2009). http://dx.doi.org/10.1103/physrevlett.103.193601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Garcia-Fernandez, Ruth, Aigars Ekers, Janis Klavins, Leonid P. Yatsenko, Nikolai N. Bezuglov, Bruce W. Shore und Klaas Bergmann. „Autler-Townes effect in a sodium molecular-ladder scheme“. Physical Review A 71, Nr. 2 (01.02.2005). http://dx.doi.org/10.1103/physreva.71.023401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Prajapati, Nikunjkumar, Jakob W. Kunzler, Alexandra B. Artusio-Glimpse, Andrew P. Rotunno, Samuel Berweger, Matthew T. Simons, Christopher L. Holloway, Chad M. Gardner, Michael S. Mcbeth und Robert A. Younts. „High angular momentum coupling for enhanced Rydberg-atom sensing in the very-high frequency band“. Journal of Applied Physics 135, Nr. 7 (15.02.2024). http://dx.doi.org/10.1063/5.0179496.

Der volle Inhalt der Quelle
Annotation:
Recent advances in Rydberg-atom electrometry detail promising applications in radio frequency communications. Presently, most applications use carrier frequencies greater than 1 GHz where resonant Autler–Townes splitting provides the highest sensitivity. This letter documents a series of experiments with Rydberg atomic sensors to collect and process waveforms from the automated identification system (AIS) used in maritime navigation in the very high frequency (VHF) band. Detection in this band is difficult with conventional resonant Autler–Townes based Rydberg sensing and requires a new approach. We show the results of a method called high angular momentum matching excited Raman (HAMMER), which enhances low frequency detection and exhibits superior sensitivity compared to the traditional AC Stark effect. From measurements of electromagnetically induced transparency in rubidium and cesium vapor cells, we show the relationship between incident electric field strength and observed signal-to-noise ratio and find that the sensitivity of the HAMMER scheme in rubidium achieved an equivalent single VHF tone sensitivity of 100μV/m/Hz. With these results, we estimate the usable range of the atomic vapor cell antenna for AIS waveforms given current technology and detection techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Sanders, Barry C. „Perspective on electromagnetically induced transparency vs Autler–Townes splitting“. AVS Quantum Science 5, Nr. 2 (23.05.2023). http://dx.doi.org/10.1116/5.0149908.

Der volle Inhalt der Quelle
Annotation:
Electromagnetically induced transparency and Autler–Townes splitting are two distinct yet related effects. These phenomena are relevant to quantum technologies, including quantum memory, quantum switching, and quantum transduction. Here, the similarities and differences between these phenomena along historical and conceptual lines are discussed and their realizations on various physical platforms including atomic gases, superconducting circuits, and optomechanics are elaborated. In particular, the author clarifies two approaches to assessing which phenomenon is observed based on a black-box approach of modeling the output, given a particular input vs analyzing the underpinning physics. Furthermore, the author highlights the ability to effect a continuous transition between the two seemingly disparate phenomena.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Yang, Lijun, Lianshui Zhang, Xiaoli Li, Li Han, Guangsheng Fu, Neil B. Manson, Dieter Suter und Changjiang Wei. „Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance“. Physical Review A 72, Nr. 5 (01.11.2005). http://dx.doi.org/10.1103/physreva.72.053801.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Wagner, Martin, Harald Schneider, Dominik Stehr, Stephan Winnerl, Aaron M. Andrews, Stephan Schartner, Gottfried Strasser und Manfred Helm. „Observation of the Intraexciton Autler-Townes Effect inGaAs/AlGaAsSemiconductor Quantum Wells“. Physical Review Letters 105, Nr. 16 (12.10.2010). http://dx.doi.org/10.1103/physrevlett.105.167401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Wu, Liting, Wenkang Cao und Haolin Jiang. „Classic analogue of Autler-Townes-splitting transparency using a single magneto-optical ring resonator“. Chinese Physics B, 30.05.2023. http://dx.doi.org/10.1088/1674-1056/acd9c1.

Der volle Inhalt der Quelle
Annotation:
Abstract We show that an optical transparency can be obtained by using only one single magneto-optical ring resonator. This effect is based on the splitting of counterclockwise and clockwise modes in the ring resonator. Within a proposed resonator-waveguide configuration the superposition between the two degeneracy broken modes produces a transparency window, which can be closed, open, and modified by tuning the applied magnetic field. This phenomenon is an analogue of Autler-Townes splitting, and the magnetic field is equivalent to the strong external pump field. We provide a theoretic analysis on the induced transparency, and numerical demonstrate the effect by using full-wave simulation. Feasible implication of this effect and potential applications are also discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Ahmed, E. H., S. Ingram, T. Kirova, O. Salihoglu, J. Huennekens, J. Qi, Y. Guan und A. M. Lyyra. „Quantum Control of the Spin-Orbit Interaction Using the Autler-Townes Effect“. Physical Review Letters 107, Nr. 16 (11.10.2011). http://dx.doi.org/10.1103/physrevlett.107.163601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Mallweger, Marion, Murilo Henrique de Oliveira, Robin Thomm, Harry Parke, Natalia Kuk, Gerard Higgins, Romain Bachelard, Celso Jorge Villas-Boas und Markus Hennrich. „Single-Shot Measurements of Phonon Number States Using the Autler-Townes Effect“. Physical Review Letters 131, Nr. 22 (28.11.2023). http://dx.doi.org/10.1103/physrevlett.131.223603.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Yumoto, Go, Hideki Hirori, Fumiya Sekiguchi, Ryota Sato, Masaki Saruyama, Toshiharu Teranishi und Yoshihiko Kanemitsu. „Strong spin-orbit coupling inducing Autler-Townes effect in lead halide perovskite nanocrystals“. Nature Communications 12, Nr. 1 (21.05.2021). http://dx.doi.org/10.1038/s41467-021-23291-w.

Der volle Inhalt der Quelle
Annotation:
AbstractManipulation of excitons via coherent light-matter interaction is a promising approach for quantum state engineering and ultrafast optical modulation. Various excitation pathways in the excitonic multilevel systems provide controllability more efficient than that in the two-level system. However, these control schemes have been restricted to limited control-light wavelengths and cryogenic temperatures. Here, we report that lead halide perovskites can lift these restrictions owing to their multiband structure induced by strong spin-orbit coupling. Using CsPbBr3 perovskite nanocrystals, we observe an anomalous enhancement of the exciton energy shift at room temperature with increasing control-light wavelength from the visible to near-infrared region. The enhancement occurs because the interconduction band transitions between spin-orbit split states have large dipole moments and induce a crossover from the two-level optical Stark effect to the three-level Autler-Townes effect. Our finding establishes a basis for efficient coherent optical manipulation of excitons utilizing energy states with large spin-orbit splitting.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Li, Zhonghao, Desheng Hao, Wenhai Yang, Xin Liu, Huanfei Wen, Hao Guo, Yanjun Zhang, Jun Tang und Jun Liu. „Improvement of microwave detection sensitivity with atoms based on cavity enhancement effect“. Japanese Journal of Applied Physics, 26.07.2022. http://dx.doi.org/10.35848/1347-4065/ac8461.

Der volle Inhalt der Quelle
Annotation:
Abstract A high-precision microwave detection technology using atoms is an essential foundation in future communication technologies. In this study, improvement of microwave detection sensitivity by atoms is realized. First, an open-loop resonator is designed based on finite element simulation and subsequently fabricated; then, the microwave electric field intensity is measured with and without the resonator, based on the electromagnetically induced transparency Autler-Townes effect. The microwave electric field with different input powers is measured, and the improvement achieved with the resonator is verified. The optimal detection sensitivity is improved from 2.14(5) to 0.73(4)V/m, and the sensitivity is improved by a factor of approximately 2.9. These results provide a practical reference for the application of high-precision detection of microwave electric fields with atoms and atomic microwave communication in the future.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie