Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Effet Autler-Townes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Effet Autler-Townes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Effet Autler-Townes"
Zhang, Yan, Yuanyuan Li, Minru Hao und Yunzhe Zhang. „Controllable A-T Splitting and Spatial Splitting Inside a Cascade Three-Level Atomic System“. Journal of Nanoelectronics and Optoelectronics 16, Nr. 5 (01.05.2021): 786–90. http://dx.doi.org/10.1166/jno.2021.2991.
Der volle Inhalt der QuelleLyyra, A. M., J. Qi und F. C. Spano. „AutlerTownes splitting and the AC Stark effect in nonpolar molecules: Prospects for all-optical alignment“. Canadian Journal of Physics 79, Nr. 2-3 (01.02.2001): 547–59. http://dx.doi.org/10.1139/p01-016.
Der volle Inhalt der QuelleBhattacharyya, Dipankar. „The pump induced Autler–Townes effect and Autler–Townes mixing in four-level atoms“. Journal of Optics B: Quantum and Semiclassical Optics 6, Nr. 12 (06.11.2004): 563–67. http://dx.doi.org/10.1088/1464-4266/6/12/012.
Der volle Inhalt der QuelleGuo, Wei, Xingqiang Lu, Xinlin Wang und Hongbin Yao. „The effect of pump-2 laser on Autler–Townes splitting in photoelectron spectra of K2 molecule“. Phys. Chem. Chem. Phys. 16, Nr. 38 (2014): 20755–62. http://dx.doi.org/10.1039/c4cp02258k.
Der volle Inhalt der QuelleNad'kin L. Yu., Korovai O. V. und Markov D. A. „Triexcitons and their effect on absorption in the exciton region of the spectrum“. Physics of the Solid State 64, Nr. 11 (2022): 1649. http://dx.doi.org/10.21883/pss.2022.11.54186.403.
Der volle Inhalt der QuelleTiaz, Gul, Fazal Ghafoor, Rashid Nazmitdinov und Ehtiram Shahalyev. „Interplay between electromagnetically induced transparency and Autler-Townes effect in fivelevel atomic systems“. EPJ Web of Conferences 204 (2019): 03013. http://dx.doi.org/10.1051/epjconf/201920403013.
Der volle Inhalt der QuelleLau, A. M. F. „The Autler-Townes effect in hydrogen at low pressure“. Journal of Physics B: Atomic and Molecular Physics 20, Nr. 15 (14.08.1987): L469—L473. http://dx.doi.org/10.1088/0022-3700/20/15/002.
Der volle Inhalt der QuelleBechtel, H., und D. Fick. „The Autler-Townes effect in an optical pumping experiment“. Journal of Physics B: Atomic and Molecular Physics 20, Nr. 9 (14.05.1987): 1909–18. http://dx.doi.org/10.1088/0022-3700/20/9/007.
Der volle Inhalt der QuelleLau, Albert M. F. „The Autler-Townes effect in hydrogen at low pressure“. Journal of Physics B: Atomic, Molecular and Optical Physics 21, Nr. 5 (14.03.1988): 925–26. http://dx.doi.org/10.1088/0953-4075/21/5/519.
Der volle Inhalt der QuelleZhi-Jing, Du, Zhang Shou-Gang, Wu Chang-Jiang, Guan Yong, Zhao Wen-Yu und Chang Hong. „Observation of Autler-Townes Effect in Electromagnetically Induced Transparency“. Chinese Physics Letters 27, Nr. 10 (Oktober 2010): 104202. http://dx.doi.org/10.1088/0256-307x/27/10/104202.
Der volle Inhalt der QuelleDissertationen zum Thema "Effet Autler-Townes"
Duverger, Romain. „Métrologie de champs électromagnétiques RF par spectroscopie de déplétion de piège à partir d'atomes froids de Rydberg“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP154.
Der volle Inhalt der QuelleRydberg atoms are atoms excited to states with a very high principal quantum number, where the valence electron orbits very far from the nucleus. This large distance imparts exceptional properties to Rydberg atoms compared to ordinary atoms, which has made them central to many developments and applications of modern experimental quantum physics. In particular, they exhibit transitions in the radiofrequency (RF) and terahertz (THz) domains with very large dipole matrix elements, making them extremely sensitive to electromagnetic fields in these frequency domains. This has led over the last ten years to the emergence of a new technology of RF and THz field sensors, where the amplitude of the field is measured by performing electromagnetically induced transparency spectroscopy of the Autler-Townes doublet induced by the interaction between the field and Rydberg states of atoms in a thermal vapor. Such sensors offer several advantages over classic antennas, including a greater sensitivity, a wider frequency range, a size independent from the frequency of the measured field, a significantly reduced need for calibration, and the ability to measure, in addition to the amplitude, the phase and the polarization. All these benefits make Rydberg atoms-based RF field sensors excellent candidates for applications in telecommunications, radar systems, and the space sector. Currently, these sensors are the subject to numerous works aiming at improving their performance in terms of sensitivity, accuracy, measurement bandwidth or spatial resolution. The use of cold atoms instead of thermal vapors represents a promising avenue in these goals, due to their better coherence and strongly reduced Doppler effect. Additionally, cold atoms are suitable for other forms of spectroscopy that are potentially more robust in certain aspects. This thesis focuses on the experimental study of a new approach for RF field sensing using cold Rydberg atoms, based on trap-loss spectroscopy. It consists in making the RF field interact with a set of ⁸⁷Rb atoms cooled and confined in a magneto-optical trap, and in probing the Autler-Townes doublet created by the field through a trap depletion effect. The mechanism responsible for the losses is the ionization of the atoms under the action of background blackbody radiation. This study involved the development of an entire experimental setup to perform trap-loss spectroscopy. Despite a low measurement bandwidth, the method proposed here has demonstrated a deviation from linearity of less than 2%, a sensitivity of the order of 250 µV/cm/Hz1/2, as well as an absence of drifts over several hours of measurement, with a resolution of the order of 5 µV/cm. Moreover, this method is easier to implement than other approaches involving cold atoms, and theoretically allows for determining both the amplitude and the frequency of the field. In this manuscript, we will describe the principle, setup and implementation of our experimental apparatus, present the results of the measurement performed with it, and then analyze its metrological performance, advantages and limitations
Pan, Xinhua. „Optical Control and Spectroscopic Studies of Collisional Population Transfer in Molecular Electronic States“. Diss., Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/440712.
Der volle Inhalt der QuellePh.D.
The quantum interference effects, such as the Autler-Townes (AT) effect and electromagnetically induced transparency (EIT) applied to molecular systems are the focus of this Dissertation in the context of high resolution molecular spectroscopy. We demonstrate that the AT effect can be used to manipulate the spin character of a spin-orbit coupled pair of molecular energy levels serving as a \textit{gateway} between the singlet and triplet electronic states. We demonstrate that the singlet-triplet mixing characters of the \textit{gateway} levels can be controlled by manipulating the coupling laser \textit{E} field amplitude. We observe experimentally the collisional population transfer between electronic states $G^1\Pi_g (v=12, J=21, f)$ and $1^3\Sigma _g^-(v=1, N=21, f)$ of $^7$Li$_2$. We obtain the Stern-Vollmer plot according to the vapor pressure dependence of collisional transfer rate. The triplet fluorescence from the mixed \textit{gateway} levels to the triplet $b^3\Pi_u(v'=1,J'=
Temple University--Theses
Hansson, Annie. „Stark Spectroscopy, Lifetimes and Coherence Effects in Diatomic Molecular Systems“. Doctoral thesis, Stockholm : Department of Physics, Stockholm University, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-650.
Der volle Inhalt der QuelleSchmidt, Johannes. „THz pump-probe spectroscopy of the intersubband AC-Stark effect in a GaAs quantum well“. 2019. https://tud.qucosa.de/id/qucosa%3A38238.
Der volle Inhalt der QuelleIn dieser Arbeit berichten wir über die starke Licht-Materie Wechselwirkung in 3-Niveau system anhand eines einzelnen, breiten GaAs/AlGaAs Quantentopfes. Insbesondere untersuchen wir den AC-Stark Effekt und beobachten eine Aufspaltung des Absorptionsspektrums durch das Autler-Townes Dublett und das Mollow Triplett. Im direkten Vergleich mit vorangegangenen Arbeiten zeigen wir zum ersten Mal ein reines THz Anrege-Abfrage Experiment mit Frequenzen unterhalb des Reststrahlenbandes. Weiterhin beobachten wir eine starke Frequenzverschiebung der Absorptionsenergie des ersten Intersubbandübergangs in Abhängigkeit von der Ladungsträgerdichte im Quantentopf. Sowohl das Autler-Townes Dublett als auch die Verschiebung der Absorptionsfrequenz ermöglichen potentielle Anwendung im Bereich der THz-Modulation. Im Bereich der starken Licht-Materie Wechselwirkung sind viele interessante Effekte beobachtbar wie Rabi Oszillationen, coherent population trapping, Lasern ohne Inversion, elektromagnetisch induzierte Transparenz (EIT) und der AC-Stark Effekt. Unser Quantentopf stellt ein 3-Niveau System dar, in welchem wir eine Aufspaltung der Absorption bezüglich des ersten und zweiten Intersubbandübergangs beobachten. Insbesondere für den ersten Intersubbandübergang ist auch eine Absorptionsaufspaltung durch den EIT Effekt vorhergesagt, während der zweite Intersubbandübergang durch ein starkes, elektrisches Wechselfeld angeregt wird. Es stellt sich dann die Frage, wodurch sich die Effekte EIT und Autler-Townes splitting unterscheiden, weil beide durch ein spektrales transparentes Fenster gekennzeichnet sind. Die von uns gewählte Methode verknüpft schmalbandige, starke elecktrische Wechselfelder im THz-Bereich eines freien Elektronen Lasers und breitbandigen THz-Pulsen, welche durch nichtlineare optische Effekte in einem THz Zeit-Bereichs Spektroskopie Aufbaus erzeugt werden. In dieser einzigartigen Konfiguration führen wir zeitaufgelöste Anrege-Abfrage Spektroskopie Experimente durch, in dem wir den zweiten Intersubbandübergang bei 3, 4 THz nahezu resonant anregen und das zweite und dritte Subband aufspalten. Mit breitbandigen THz Pulsen fragen wir dann die Absorptionsaufspaltung von ca. 0, 2 THz des ersten Intersubbandübergangs bei ≈ 2, 3 THz und des zweiten Intersubbandübergangs (Mollow-Triplett) ab. Nach Auswerten der Experimente und theoretischer Kriterien für die Unterscheidung zwischen EIT und Autler-Townes splitting schlussfolgern wir, ein Autler-Townes Dublett zu beobachten.
Bücher zum Thema "Effet Autler-Townes"
Bai, Yu Sheng. Experimental studies of the transient Autler-Townes effect. 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Effet Autler-Townes"
Cohen-Tannoudji, Claude N. „The Autler-Townes Effect Revisited“. In Amazing Light, 109–23. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-2378-8_11.
Der volle Inhalt der QuelleAhmed, Ergin H., John Huennekens, Teodora Kirova, Jianbing Qi und A. Marjatta Lyyra. „The Autler–Townes Effect in Molecules: Observations, Theory, and Applications“. In Advances In Atomic, Molecular, and Optical Physics, 467–514. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-396482-3.00009-0.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Effet Autler-Townes"
Lau, Albert M. F., und Winifred M. Huo. „Theory of molecular transition moment determination by Autler-Townes spectroscopy“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.thr5.
Der volle Inhalt der QuelleLau, Albert M. F. „The Autler-Townes effect in hydrogen at low pressure“. In AIP Conference Proceedings Volume 172. AIP, 1988. http://dx.doi.org/10.1063/1.37329.
Der volle Inhalt der QuelleChoe, A. S., Yongjoo Rhee und Jongmin Lee. „Double-dip in ionization due to Autler-Townes effect“. In International Conference on Coherent and Nonlinear Optics, herausgegeben von Konstantin N. Drabovich und Nikolai I. Koroteev. SPIE, 1996. http://dx.doi.org/10.1117/12.239730.
Der volle Inhalt der QuelleSkryabin, D. V., D. N. Puzyrev, V. V. Pankratov und A. Villois. „Autler-Townes Effect and chi-2 Turing-Rolls in Microresonators“. In 2021 IEEE Photonics Conference (IPC). IEEE, 2021. http://dx.doi.org/10.1109/ipc48725.2021.9593041.
Der volle Inhalt der QuelleCiret, C., V. Coda, A. A. Rangelov und G. Montemezzani. „All optical analogue to Electromagnetically Induced Transparency and Autler-Townes effect“. In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qf1d.6.
Der volle Inhalt der QuelleWagner, M., H. Schneider, D. Stehr, S. Winnerl, M. Helm, T. Roch, A. M. Andrews et al. „Terahertz Induced Intra-excitonic Autler-Townes Effect In Semiconductor Quantum Wells“. In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666462.
Der volle Inhalt der QuelleLau, A. M. F., D. W. Chandler, M. A. Quesada und D. H. Parker. „Measurement of transition moments between molecular excited electronic states using the Autler-Townes effect“. In AIP Conference Proceedings Volume 172. AIP, 1988. http://dx.doi.org/10.1063/1.37376.
Der volle Inhalt der QuelleYang, Lijun, Min Zhao, Lianshui Zhang und Xiaomin Feng. „Effect of the Bloch-Siegert Shift in a Strongly Driven Transition: High-Order Autler-Townes Doublets“. In 2009 Symposium on Photonics and Optoelectronics. IEEE eXpress Conference Publishing, 2009. http://dx.doi.org/10.1109/sopo.2009.5230321.
Der volle Inhalt der QuelleJiasheng, Liu, Zhang Hao, Song Zhenfei, Zhang Linjie und Jia Suotang. „Spatial distribution measurement of the microwave electric field strength via the Autler-Townes effect of Rydberg atom“. In 2016 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE, 2016. http://dx.doi.org/10.1109/nemo.2016.7561681.
Der volle Inhalt der QuelleZaks, Ben, Dominik Stehr, Stephen Hughes, Alex Maslov, D. S. Citrin und Mark S. Sherwin. „Asymmetric Autler-Townes Effect in THz-Driven Quantum Wells: Beyond the Three State and Rotating Wave Approximations“. In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.ctubb5.
Der volle Inhalt der Quelle