Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Effect of temperature on weeds“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Effect of temperature on weeds" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Effect of temperature on weeds"
Monks, C. Dale, David W. Monks, Tom Basden, Arthur Selders, Suzanne Poland und Edward Rayburn. „Soil Temperature, Soil Moisture, Weed Control, and Tomato (Lycopersicon esculentum) Response to Mulching“. Weed Technology 11, Nr. 3 (September 1997): 561–66. http://dx.doi.org/10.1017/s0890037x00045425.
Der volle Inhalt der QuelleAziz, Fahrurrozi, und Katrine A. Stewart. „EFFECT OF SPECTRAL QUALITIES OF PLASTIC MULCH ON WEED DEVELOPMENT AND GROWTH“. HortScience 29, Nr. 4 (April 1994): 251c—251. http://dx.doi.org/10.21273/hortsci.29.4.251c.
Der volle Inhalt der QuelleKumar, Vipin, Annu Kumari, Andrew J. Price, Ram Swaroop Bana, Vijay Singh und Shanti Devi Bamboriya. „Impact of Futuristic Climate Variables on Weed Biology and Herbicidal Efficacy: A Review“. Agronomy 13, Nr. 2 (15.02.2023): 559. http://dx.doi.org/10.3390/agronomy13020559.
Der volle Inhalt der QuelleWright, Shawn R., Harold D. Coble, C. David Raper und Thomas W. Rufty. „Comparative responses of soybean (Glycine max), sicklepod (Senna obtusifolia), and Palmer amaranth (Amaranthus palmeri) to root zone and aerial temperatures“. Weed Science 47, Nr. 2 (April 1999): 167–74. http://dx.doi.org/10.1017/s004317450009158x.
Der volle Inhalt der QuellePark, Hyun-Hwa, Do-Jin Lee und Yong-In Kuk. „Effects of Various Environmental Conditions on the Growth of Amaranthus patulus Bertol. and Changes of Herbicide Efficacy Caused by Increasing Temperatures“. Agronomy 11, Nr. 9 (03.09.2021): 1773. http://dx.doi.org/10.3390/agronomy11091773.
Der volle Inhalt der QuelleKirigiah, Richard, Masinde Peter und Mworia G. Erick. „Effect of Plastic Mulch Color and Transplanting Stage on Baby Corn Plant Performance“. European Journal of Agriculture and Food Sciences 4, Nr. 5 (20.10.2022): 103–11. http://dx.doi.org/10.24018/ejfood.2022.4.5.567.
Der volle Inhalt der QuelleTremmel, D. C., und D. T. Patterson. „Effects of elevated CO2 and temperature on development in soybean and five weeds“. Canadian Journal of Plant Science 74, Nr. 1 (01.01.1994): 43–50. http://dx.doi.org/10.4141/cjps94-009.
Der volle Inhalt der QuelleMartinez-Ghersa, Maria A., Emilio H. Satorre und Claudio M. Ghersa. „Effect of soil water content and temperature on dormancy breaking and germination of three weeds“. Weed Science 45, Nr. 6 (Dezember 1997): 791–97. http://dx.doi.org/10.1017/s0043174500088986.
Der volle Inhalt der QuelleSwanton, Clarence J., Jian Zhong Huang, William Deen, Matthijs Tollenaar, Anil Shrestha und Hamid Rahimian. „Effects of temperature and photoperiod onSetaria viridis“. Weed Science 47, Nr. 4 (August 1999): 446–53. http://dx.doi.org/10.1017/s0043174500092067.
Der volle Inhalt der QuelleWEAVER, S. E., C. S. TAN und P. BRAIN. „EFFECT OF TEMPERATURE AND SOIL MOISTURE ON TIME OF EMERGENCE OF TOMATOES AND FOUR WEED SPECIES“. Canadian Journal of Plant Science 68, Nr. 3 (01.07.1988): 877–86. http://dx.doi.org/10.4141/cjps88-105.
Der volle Inhalt der QuelleDissertationen zum Thema "Effect of temperature on weeds"
Omami, Elizabeth Nabwile, of Western Sydney Hawkesbury University, of Agriculture Horticulture and Social Ecology Faculty und School of Horticulture. „Amaranthus retroflexus seed dormancy and germination responses to environmental factors and chemical stimulants“. THESIS_FAHSE_HOR_Omami_E.xml, 1993. http://handle.uws.edu.au:8081/1959.7/66.
Der volle Inhalt der QuelleMaster of Science (Hons)
Omami, Elizabeth Nabwile. „Amaranthus retroflexus seed dormancy and germination responses to environmental factors and chemical stimulants“. Thesis, [S.l. : s.n.], 1993. http://handle.uws.edu.au:8081/1959.7/66.
Der volle Inhalt der QuelleSuryani, Titik. „The effects of temperature, hours of leaf wetness, age of giant foxtail (setaria faberi herrm.), and host specificity of phoma sp. as a biological herbicide“. Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/941362.
Der volle Inhalt der QuelleDepartment of Biology
Antill, Marc. „The effect of repair welds on the high temperature low cycle fatigue behaviour of nickel base superalloy turbine blades“. Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297923.
Der volle Inhalt der QuellePline, Wendy Ann. „Effect of Temperature and Chemical Additives on the Efficacy of the Herbicides Glufosinate and Glyphosate in Weed Management of Liberty-Link and Roundup-Ready Soybeans“. Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/31699.
Der volle Inhalt der QuelleMaster of Science
Virbickait-Staniulienė, Rasa. „The impact of high-temperature environment on weeds highly resistant to thermal killing“. Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20101214_140738-85437.
Der volle Inhalt der QuelleDarbo tikslas – nustatyti aukštatemperatūrės aplinkos poveikį sunkiai termiškai sunaikinamoms piktžolėms. Terminei piktžolių kontrolei naudojant drėgną vandens garą, ne visos piktžolės vienodai reaguoja į terminį poveikį. Termiškai sunaikinus antžeminę dalį, atskiros piktžolių rūšys po kurio laiko atželia. Išnagrinėjus piktžolių morfologinę sandarą ir piktžolių jautrumą drėgnam vandens garui, galima piktžoles suskirstyti į tris grupes: lengvai termiškai sunaikinamos, sunkiai termiškai sunaikinamos (miglinės ir skrotelinės piktžolės) ir labai sunkiai termiškai sunaikinamos piktžolės. Terminėje piktžolių kontrolėje didelę problemą kelia sunkiai termiškai sunaikinamos piktžolės. Suvėlinus šių piktžolių terminę kontrolę, piktžolės stelbia žemės ūkio augalus, patiriami derliaus nuostoliai. Norint tobulinti piktžolių terminės kontrolės technologiją teko įvertinti aukštatemperatūrės aplinkos parametrus, sunkiai termiškai sunaikinamų piktžolių morfologinę sandarą, piktžolių augimo ir vystymosi tarpsnius, piktžolių lapų oro tarpsluoksnių įtaką aukštatemperatūrio lauko plitimui į gilesnius audinius, piktžolių lapų posvyrio kampo įtaką terminei kontrolei. Šiame darbe yra nagrinėjama minėtų veiksnių įtaka sunkiai termiškai sunaikinamų piktžolių kontrolei, bei siūlomos sprendimo priemonės formuojant aukštatemperatūrę aplinką efektyvesnei terminei piktžolių kontrolei drėgnuoju vandens garu.
Umeda, Kai. „Effect of Halosulfuron on Rotational Crops“. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2002. http://hdl.handle.net/10150/214957.
Der volle Inhalt der QuelleUmeda, K., und N. Lund. „Effect of Prowl and Prefar Herbicides on Onions“. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2001. http://hdl.handle.net/10150/214935.
Der volle Inhalt der QuelleFillmore, Andrew Nathan. „Droplet Size Effect on Herbicide Used in Cereals to Control Dicotyledonous Weeds“. Thesis, North Dakota State University, 2014. https://hdl.handle.net/10365/27419.
Der volle Inhalt der QuelleHewitt, Cade Alan. „Effect of row spacing and seeding rate on grain sorghum tolerance of weeds“. Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/19784.
Der volle Inhalt der QuelleDepartment of Agronomy
J. A. Dille
Weed control in grain sorghum has always presented a challenge to producers in the semi-arid Great Plains. Cultural control tactics such as narrowing of row spacings and increasing seeding rates can be effective control methods. The objective of this research was to determine the row spacing and seeding rates that maximizes yield while suppressing weeds. Grain sorghum row spacings of 25, 51, and 76-cm and seeding rates of 75,000, 100,000, 125,000, and 150,000 seeds ha[superscript]-1 were evaluated in Kansas at Beloit and Manhattan in 2013 and Beloit, Manhattan, and Hays in 2014. Grain sorghum growth and yield response were measured in response to natural weed communities. After evaluation, Beloit was considered a low weed pressure site while Manhattan and Hays were considered to be moderate and high weed pressure sites, respectively. Grain sorghum biomass was different while weed biomass was consistent across row spacings. Yield loss equations and profit functions were derived to determine the amount of grain yield and $ ha[superscript]-1 loss from each of the three locations. Yield and profit lost was greatest amongst weedy observations. Results indicated that grain sorghum grown on wide row spacings and seeding rates of 125,000 seeds ha[superscript]-1 out yielded all other treatments under a low weed pressure site (Beloit) and narrow row spacings out yielded wider spacings in moderate and high weed pressure sites (Manhattan and Hays). These results imply that a Kansas grain sorghum producer should evaluate potential weed pressure before determining a final row spacing and seeding rate.
Bücher zum Thema "Effect of temperature on weeds"
Hansson, David. Hot water weed control on hard surface areas. Alnarp: Swedish University of Agricultural Sciences, 2002.
Den vollen Inhalt der Quelle findenHamada, Azhari Abdelazim. Investigations on the germination requirements and competitive effects of weeds: A case study of the Rahad Scheme in the Sudan. Weikersheim [Germany]: Josef Margraf, 1992.
Den vollen Inhalt der Quelle findenMallory-Smith, Carol. Herbicide-resistant weeds and their management. [Moscow, Idaho]: University of Idaho Cooperativae Extension System, 1993.
Den vollen Inhalt der Quelle findenMallory-Smith, Carol. Herbicide-resistant weeds and their management. [Moscow, Idaho]: University of Idaho Cooperativae Extension System, 1993.
Den vollen Inhalt der Quelle findenMallory-Smith, Carol. Herbicide-resistant weeds and their management. [Moscow, Idaho]: University of Idaho Cooperativae Extension System, 1993.
Den vollen Inhalt der Quelle findenMallory-Smith, Carol. Herbicide-resistant weeds and their management. [Moscow, Idaho]: University of Idaho Cooperativae Extension System, 1999.
Den vollen Inhalt der Quelle findenMallory-Smith, Carol. Herbicide-resistant weeds and their management. [Moscow, Idaho]: University of Idaho Cooperativae Extension System, 1999.
Den vollen Inhalt der Quelle findenHarań, Grzegorz. Impurity effect in high temperature superconductors. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2001.
Den vollen Inhalt der Quelle findenFranklin, Keara A., und Philip A. Wigge. Temperature and plant development. Ames, Iowa USA: Wiley Blackwell, 2014.
Den vollen Inhalt der Quelle findenRitter, Ronald Lloyd. Understanding herbicide resistance in weeds. Des Plaines, Ill: Sandoz Crop Protection Corp., 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Effect of temperature on weeds"
Marques, Severino P. C., und Guillermo J. Creus. „Temperature Effect“. In Computational Viscoelasticity, 51–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25311-9_6.
Der volle Inhalt der QuelleZhang, Guigen. „Temperature Effect“. In Bulk and Surface Acoustic Waves, 257–71. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003256625-7.
Der volle Inhalt der QuelleAlderliesten, René. „Effect of Temperature“. In Fatigue and Fracture of Fibre Metal Laminates, 253–70. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56227-8_11.
Der volle Inhalt der QuelleBrown, R. P. „Effect of temperature“. In Physical Testing of Rubber, 235–58. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0529-3_15.
Der volle Inhalt der QuelleBrown, Roger. „Effect of Temperature“. In Physical Test Methods for Elastomers, 305–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66727-0_21.
Der volle Inhalt der QuelleFerrell, Richard A. „The Josephson Effect“. In High Temperature Superconductivity, 60–83. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3222-3_3.
Der volle Inhalt der QuelleOka, Yoshiaki. „Temperature Effect of Reactivity“. In Nuclear Reactor Kinetics and Plant Control, 23–33. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54195-0_3.
Der volle Inhalt der QuelleWen, Shengmin. „Temperature Effect on Fatigue“. In Encyclopedia of Tribology, 3538–40. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_281.
Der volle Inhalt der QuelleShur, M., und M. A. Khan. „GaN-based field effect transistors“. In High Temperature Electronics, 297–320. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4613-1197-3_10.
Der volle Inhalt der QuelleSaha, Biswanath, Heena Kauser, Meena Khwairakpam und Ajay S. Kalamdhad. „Effect and Management of Various Terrestrial Weeds—Review“. In Lecture Notes in Civil Engineering, 231–38. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0990-2_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Effect of temperature on weeds"
Dai, H., R. J. Moat und P. J. Withers. „Modelling the Interpass Temperature Effect on Residual Stress in Low Transformation Temperature Stainless Steel Welds“. In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57329.
Der volle Inhalt der Quellede Barbadillo, John J., Brian A. Baker und Xishan Xie. „Microstructure Stability of Alloy 740H and its Effect on Material Properties“. In ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/etam2014-1000.
Der volle Inhalt der QuelleBandara, R. M. U. S., T. K. Ilangakoon, H. M. M. K. K. H. Dissanayaka, Y. M. S. H. I. U. De Silva, C. H. Piyasiri und D. M. C. B. Dissanayaka. „EFFECT OF ELEVATED TEMPERATURE ON WEED SEED GERMINATION IN PADDY SOIL SEED BANK“. In International Conference on Agriculture and Forestry. The International Institute of Knowledge Management (TIIKM), 2018. http://dx.doi.org/10.17501/icoaf.2017.3103.
Der volle Inhalt der QuelleRonevich, Joseph A., Chris San Marchi und Dorian K. Balch. „Temperature Effects on Fracture Thresholds of Hydrogen Precharged Stainless Steel Welds“. In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65603.
Der volle Inhalt der QuelleTrevisan, R. E., N. F. Santos, H. C. Fals und A. A. Santos. „Effect of Interpass Temperature on Morphology, Microstructure and Microhardness of Welded API 5L X65 Steel“. In 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27112.
Der volle Inhalt der QuelleDodge, Michael, Lars Magne Haldorsen, Mike Gittos und Kasra Sotoudeh. „Effect of Temperature on Resistance to Hydrogen Embrittlement of Dissimilar Metal Welds Subjected to SENB and SENT Testing“. In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-79852.
Der volle Inhalt der QuelleAndresen, Peter L., und Martin M. Morra. „Effect of Rising and Falling K Profiles on SCC Growth Rates in High Temperature Water“. In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71643.
Der volle Inhalt der QuelleTanaka, Tomohiro, Masamitsu Abe, Mitsuyoshi Nakatani und Hidenori Terasaki. „Effect of Postweld Heat Treatment Conditions on Mechanical Properties of 9Cr-1Mo-V Steel Welds for Pressure Vessel“. In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65320.
Der volle Inhalt der QuelleSiefert, J., J. Parker und J. Foulds. „Effect of PWHT on the Fracture Toughness and Burst Test Response of Grade 91 Tube Weldments“. In ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/etam2018-6714.
Der volle Inhalt der QuelleNarayanan, Badri K., und Jon Ogborn. „Effect of Strain Ageing on Mechanical Properties of Pipeline Girth Welds“. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49818.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Effect of temperature on weeds"
VanderGheynst, Jean, Michael Raviv, Jim Stapleton und Dror Minz. Effect of Combined Solarization and in Solum Compost Decomposition on Soil Health. United States Department of Agriculture, Oktober 2013. http://dx.doi.org/10.32747/2013.7594388.bard.
Der volle Inhalt der QuelleSamach, Alon, Douglas Cook und Jaime Kigel. Molecular mechanisms of plant reproductive adaptation to aridity gradients. United States Department of Agriculture, Januar 2008. http://dx.doi.org/10.32747/2008.7696513.bard.
Der volle Inhalt der QuelleNathan, Harms, und Cronin James. Variability in weed biological control : effects of foliar nitrogen on larval development and dispersal of the alligatorweed flea beetle, Agasicles hygrophila. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41886.
Der volle Inhalt der QuelleYahav, Shlomo, John Brake und Orna Halevy. Pre-natal Epigenetic Adaptation to Improve Thermotolerance Acquisition and Performance of Fast-growing Meat-type Chickens. United States Department of Agriculture, September 2009. http://dx.doi.org/10.32747/2009.7592120.bard.
Der volle Inhalt der QuelleNanstad, R. K., G. M. Goodwin und M. J. Swindeman. Effects of nonstandard heat treatment temperatures on tensile and Charpy impact properties of carbon-steel casting repair welds. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10144288.
Der volle Inhalt der QuelleSawatzky, H., I. Clelland und J. Houde. Effect of topping temperature on Cold Lake asphalt's susceptibility to temperature. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/304486.
Der volle Inhalt der QuelleCheng, Juei-Teng, und Lowell E. Wenger. Josephson Effect Research in High-Temperature Superconductors. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada201483.
Der volle Inhalt der QuelleKorinko, P. EFFECT OF FILTER TEMPERATURE ON TRAPPING ZINC VAPOR. Office of Scientific and Technical Information (OSTI), März 2011. http://dx.doi.org/10.2172/1025512.
Der volle Inhalt der QuelleSun, W. D., Fred H. Pollak, Patrick A. Folkes und Godfrey A. Gumbs. Band-Bending Effect of Low-Temperature GaAs on a Pseudomorphic Modulation-Doped Field-Effect Transistor. Fort Belvoir, VA: Defense Technical Information Center, März 1999. http://dx.doi.org/10.21236/ada361412.
Der volle Inhalt der QuellePrice, J. T., J. F. Gransden, M. A. Khan und B. D. Ryan. Effect of selected minerals on high temperature properties of coke. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/304533.
Der volle Inhalt der Quelle