Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Effect of fire“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Effect of fire" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Effect of fire"
Mathieu, Renaud, Russell Main, David P. Roy, Laven Naidoo und Hannah Yang. „The Effect of Surface Fire in Savannah Systems in the Kruger National Park (KNP), South Africa, on the Backscatter of C-Band Sentinel-1 Images“. Fire 2, Nr. 3 (27.06.2019): 37. http://dx.doi.org/10.3390/fire2030037.
Der volle Inhalt der QuelleWotton, B. M., R. S. McAlpine und M. W. Hobbs. „The effect of fire front width on surface fire behaviour“. International Journal of Wildland Fire 9, Nr. 4 (1999): 247. http://dx.doi.org/10.1071/wf00021.
Der volle Inhalt der QuelleOris, France, Hugo Asselin, Adam A. Ali, Walter Finsinger und Yves Bergeron. „Effect of increased fire activity on global warming in the boreal forest“. Environmental Reviews 22, Nr. 3 (September 2014): 206–19. http://dx.doi.org/10.1139/er-2013-0062.
Der volle Inhalt der QuelleAnsley, RJ, DL Jones, TR Tunnell, BA Kramp und PW Jacoby. „Honey Mesquite Canopy Responses to Single Winter Fires: Relation to Herbaceous Fuel, Weather and Fire Temperature“. International Journal of Wildland Fire 8, Nr. 4 (1998): 241. http://dx.doi.org/10.1071/wf9980241.
Der volle Inhalt der QuelleFrancis, Bill B., Iftekhar Hasan und Yun Zhu. „Managerial effect or firm effect: Evidence from the private debt market“. Financial Review 55, Nr. 1 (23.04.2019): 25–59. http://dx.doi.org/10.1111/fire.12196.
Der volle Inhalt der QuellePotash, Laura L., und James K. Agee. „The effect of fire on red heather (Phyllodoce empetriformis)“. Canadian Journal of Botany 76, Nr. 3 (01.03.1998): 428–33. http://dx.doi.org/10.1139/b98-005.
Der volle Inhalt der QuelleCollins, Luke, Adele Hunter, Sarah McColl-Gausden, Trent D. Penman und Philip Zylstra. „The Effect of Antecedent Fire Severity on Reburn Severity and Fuel Structure in a Resprouting Eucalypt Forest in Victoria, Australia“. Forests 12, Nr. 4 (08.04.2021): 450. http://dx.doi.org/10.3390/f12040450.
Der volle Inhalt der QuelleBradstock, RA, und M. Bedward. „Simulation of the Effect of Season of Fire on Post-Fire Seedling Emergence of Two Banksia Species Based on Long-Term Rainfall Records“. Australian Journal of Botany 40, Nr. 1 (1992): 75. http://dx.doi.org/10.1071/bt9920075.
Der volle Inhalt der QuelleBowman-Prideaux, Chris, Beth A. Newingham und Eva K. Strand. „The Effect of Seeding Treatments and Climate on Fire Regimes in Wyoming Sagebrush Steppe“. Fire 4, Nr. 2 (27.03.2021): 16. http://dx.doi.org/10.3390/fire4020016.
Der volle Inhalt der QuelleMarino, Eva, Carmen Hernando, Javier Madrigal, Carmen Díez und Mercedes Guijarro. „Fuel management effectiveness in a mixed heathland: a comparison of the effect of different treatment types on fire initiation risk“. International Journal of Wildland Fire 21, Nr. 8 (2012): 969. http://dx.doi.org/10.1071/wf11111.
Der volle Inhalt der QuelleDissertationen zum Thema "Effect of fire"
Demir, Hasan Ülkü Semra. „Synergistic effect of natural zeolites on flame retardant additives/“. [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/kimyamuh/T000514.rar.
Der volle Inhalt der QuelleKayili, Serkan. „Effect Of Vehicles'“. Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611290/index.pdf.
Der volle Inhalt der Quelleblockage effect on heat release rate and temperature distribution inside tunnel with different ventilation velocities. As a result, in order to research this subject, the scaled model tunnel is constructed in Fluid Mechanics Laboratory. Based on the Froude number scaling, wood sticks with different configuration inside the model tunnel are burned in a controlled environment. The heat release rate measurement, sampling of gases after combustion, mass loss rate of burning models and temperature distribution along the tunnels with different longitudinal ventilation velocities are measured to investigate the effect of different cross-sectional areas of the burning substances. Furthermore, the model vehicles having a square base area are built according to wood crib theory. The results are investigated with statistical techniques called "
Analysis of Variance"
and general results have been tried to be reached. It is determined that the variation of air velocity inside tunnel is not so effective, but model vehicle'
s cross sectional area is directly proportional to heat release rate.
Pool, Christiaan Frederik. „The effect of modified fuel loads on fire behaviour in Pinus patula and Eucalyptus macarthurii stands in the Mpumalanga Highveld forestry region of South Africa“. Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/d1010958.
Der volle Inhalt der QuelleBalfour, Victoria Nairn. „The effect of forest fires on runoff rates the role of duff removal and surface sealing by vegetative ash, western Montana /“. Diss., [Missoula, Mont.] : The University of Montana, 2007. http://etd.lib.umt.edu/theses/available/etd-12202007-181528/.
Der volle Inhalt der QuelleYii, H. W. (Jennifer). „Effect of Surface Area and Thickness on Fire Loads“. University of Canterbury. Civil Engineering, 2000. http://hdl.handle.net/10092/8304.
Der volle Inhalt der QuelleMyers, Alexandra. „A computational study of the effect of cross wind on the flow of fire fighting agent“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FMyers.pdf.
Der volle Inhalt der QuelleYau, Tsz Man. „Effect of lining thermal inertia on small-scale compartment fire“. Thesis, University of Central Lancashire, 2001. http://clok.uclan.ac.uk/22767/.
Der volle Inhalt der QuelleLundin, Johan. „Safety in case of fire : the effect of changing regulations /“. Lund : Dept. of Fire Safety Engineering, Faculty of Engineering, Lund University, 2005. http://www.brand.lth.se/bibl/1032.pdf.
Der volle Inhalt der QuelleSeputro, Jenny. „Effect of Support Conditions on Steel Beams Exposed of Fire“. University of Canterbury. Civil Engineering, 2001. http://hdl.handle.net/10092/8293.
Der volle Inhalt der QuelleBayer, Andreas Paul Adolf. „Biomass forest modelling using UAV LiDAR data under fire effect“. Master's thesis, ISA, 2019. http://hdl.handle.net/10400.5/21269.
Der volle Inhalt der QuelleThe main goal of the study is to analyse the possibility of quantifying the loss of biomass in burned forest stands using Light Detection and Ranging (LiDAR) data. Since wildfires are not uncommon in Mediterranean areas, it is useful to quantify the magnitude of fire damage in forests. With the use of remote sensing, it is possible to plan post-fire recovery management and to quantify the losses of biomass and carbon stock. Mata Nacional de Leiria (MNL) was chosen, because, after the fire in October 2017, it showed areas with low and medium-high fire severity. MNL is divided in several rectangular management units (MU). To achieve our objective, it was necessary to find a MU with burned and unburned areas. In this selection process, we used Sentinel-2 images. The fire severity was estimated by deriving a spectral index related with the effects of fire and to compute the temporal difference (pre- minus post-fire) of this index, the delta normalized burn ratio (DNBR). Forest inventory was carried out in four plots installed in the selected MU. Allometric equations were used to estimate values of stand aboveground biomass. These values were used to fit a relationship with data extracted from LiDAR cloud metrics. The LiDAR data were acquired with a VLP-16 Velodyne LiDAR PUCK™ mounted on an Unmanned Aerial Vehicles (UAV) at an altitude of 60 m above the ground. The point clouds were then processed with the FUSION software until a cloud metrics was generated and then regression models were used to fit equations related to LiDAR-derived parameters. Two biomass equations were fit, one with the whole tree metrics having a R² = 0,95 and a second one only considering the tree crown metrics presenting a R² = 0,93. The state of the forest (unburned/burned) was significant on the final equation
N/A
Bücher zum Thema "Effect of fire"
Olsen, Penny. Fire and birds: Fire management for biodiversity. Hawthorn East, Vic: Birds Australia, 2005.
Den vollen Inhalt der Quelle findenK, Brown James, und Jane Kapler Smith. Wildland fire in ecosystems: Effects of fire on flora. Fort Collins? Colo.]: United States Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, 2000.
Den vollen Inhalt der Quelle findenGray, Robert W. Historical fire regime for Pothole Creek interior Douglas-fir research site. [Victoria]: British Columbia, Ministry of Forests Research Program, 1999.
Den vollen Inhalt der Quelle findenDavis, William D. Field modeling: Simulating the effect of sloped beamed ceilings on detector and sprinkler response : International Fire Detection Research Project : technical report, year 2. Quincy, Mass: National Fire Protection Research Foundation, 1994.
Den vollen Inhalt der Quelle findenPyne, Stephen J. Fire : [nature and culture]. London: Reaktion Books, 2012.
Den vollen Inhalt der Quelle findenRouse, Cary. Fire effects in northeastern forests, jack pine. [Saint Paul, Minn.]: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station, 1986.
Den vollen Inhalt der Quelle findenFisher, David E. Fire & ice: The greenhouse effect, ozone depletion, and nuclear winter. New York: Harper & Row, 1990.
Den vollen Inhalt der Quelle findenMcCaffrey, Bernard J. Naval fire fighting trainers: Effect of ventilation on fire environment (model calculations for 19F3 FFT). Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.
Den vollen Inhalt der Quelle findenHull, Sieg Carolyn, und Rocky Mountain Research Station (Fort Collins, Colo.), Hrsg. Postfire mortality of Ponderosa pine and Douglas-fir: A review of methods to predict tree death. Fort Collins, CO: U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, 2004.
Den vollen Inhalt der Quelle findenFowler, James F. Postfire mortality of Ponderosa pine and Douglas-fir: A review of methods to predict tree death. Fort Collins, CO: U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Effect of fire"
Tyers, Ben. „Particle Fire Effect“. In GameMaker: Studio 100 Programming Challenges, 75–76. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2644-5_38.
Der volle Inhalt der QuelleGašpercová, Stanislava, und Miroslava Vandlíčková. „Effect of Thermal Loading on Various Types of Wood Beams“. In Wood & Fire Safety, 311–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41235-7_46.
Der volle Inhalt der QuelleAseeva, Roza, Boris Serkov und Andrey Sivenkov. „Effect of Natural Aging of Timber Building Structures on Fire Behavior and Fire Safety“. In Fire Behavior and Fire Protection in Timber Buildings, 229–58. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7460-5_10.
Der volle Inhalt der QuelleGottuk, Daniel T., und Brian Y. Lattimer. „Effect of Combustion Conditions on Species Production“. In SFPE Handbook of Fire Protection Engineering, 486–528. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2565-0_16.
Der volle Inhalt der QuelleZeng, Yiping, Weiguo Song, Feizhou Huo und Xiaoge Wei. „Effect of Weibull Distributed Pre-movement Time on Evacuation“. In Fire Science and Technology 2015, 133–45. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_13.
Der volle Inhalt der QuelleLiu, Changcheng, Song Lu, Ruifang Zhang, Hui Yang, Xudong Cheng und Heping Zhang. „The Effect of Aspect Ratios on Critical Velocity in Tunnel Fires“. In Fire Science and Technology 2015, 925–31. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_95.
Der volle Inhalt der QuelleMakovicka Osvaldova, Linda, und Michaela Horvathova. „Effect of Thermal Load on the Heat Release Rate of the Selected Types of Wooden Floorings“. In Wood & Fire Safety, 41–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41235-7_7.
Der volle Inhalt der QuelleFeng, Lihua, Qingsong Wang, Chengying Ai und Jinhua Sun. „The Effect of Multicomponent Electrolyte Additive on LiFePO4-Based Lithium Ion Batteries“. In Fire Science and Technology 2015, 169–73. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_16.
Der volle Inhalt der QuelleSu, Chung-Hwei, Kuang-Chung Tsai, Ming-Hui Dai und Chun-Chou Lin. „Effect of Fire Detection Function on Fire Suppression in Home Stay Facilities in Taiwan“. In Fire Science and Technology 2015, 869–75. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_89.
Der volle Inhalt der QuelleYan, Weigang, Yang Shen, Lin Jiang, Weiguang An, Yang Zhou, Zhen Li und Jinhua Sun. „Experimental Study of Sidewall and Pressure Effect on Vertical Downward Flame Spread Over Insulation Material“. In Fire Science and Technology 2015, 823–30. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_84.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Effect of fire"
„The effect of fire channelling on fire severity in the 2009 Victorian fires, Australia“. In 20th International Congress on Modelling and Simulation (MODSIM2013). Modelling and Simulation Society of Australia and New Zealand, 2013. http://dx.doi.org/10.36334/modsim.2013.a3.price.
Der volle Inhalt der QuelleMa, Tingguang, Xiaoliang Zhang und Xiansheng Song. „The Oxygen Effect on Mixture Flammability“. In 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019. http://dx.doi.org/10.1109/icfsfpe48751.2019.9055864.
Der volle Inhalt der QuelleChen, Zinan, Yuanyuan Xiong, Han Lin, Menglin Liu, Chen Wang, Jinbo Gu, Maozhou Liao und Peng Lin. „Study on the Effect of Slope on Tunnel Fire Characteristics“. In 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019. http://dx.doi.org/10.1109/icfsfpe48751.2019.9055779.
Der volle Inhalt der QuelleWan Amalina Wan Zaharuddin, Bambang Ariwahjoedi und Patthi Hussain. „Effect of vermiculite on fire protectiveness of water-based acrylic fire retardant coating“. In 2010 Student Conference on Research and Development (SCOReD). IEEE, 2010. http://dx.doi.org/10.1109/scored.2010.5704044.
Der volle Inhalt der QuelleLi, Qiang, Chang Liu, Jiaqing Zhang, Jinmei Li, Hongxin Liu und Yang Jiang. „Experimental Study of the Effect of Ceiling Vent on Fuel Mass Loss Rate“. In 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019. http://dx.doi.org/10.1109/icfsfpe48751.2019.9055835.
Der volle Inhalt der QuelleRong, Luqing, Xudong Cheng und Yangyang Fu. „Effect of States of Charge on the Burning Behaviors of Lithium ion Batteries“. In 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019. http://dx.doi.org/10.1109/icfsfpe48751.2019.9055886.
Der volle Inhalt der QuelleYi, Xiaoying, Zheng Zhang, Zekun Li, Yuanhua He und Quanyi Liu. „Effect of State of Charge on Thermal Runaway Characteristics of 18650 Lithium Ion Batteries“. In 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019. http://dx.doi.org/10.1109/icfsfpe48751.2019.9055799.
Der volle Inhalt der QuelleWang, Di, Chunjie Zhai und Junhui Gong. „Numerical Estimation of Environmental Wind Effect on Smoke Evolution in a 10-storey Building“. In 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019. http://dx.doi.org/10.1109/icfsfpe48751.2019.9055824.
Der volle Inhalt der QuelleMullerova, Jana. „EFFECT OF FUEL SOURCE ON ENCLOSURE FIRE PARAMETERS.“ In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/5.2/s20.044.
Der volle Inhalt der QuelleChen, Xiantao, Qiang Sun, Haibin Wang, Song Xie, Yi Liu und Yuanhua He. „The Effect of Pressure in Cruise Phase on the Thermal Runaway Behaviors and Smoke Components“. In 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019. http://dx.doi.org/10.1109/icfsfpe48751.2019.9055814.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Effect of fire"
Kerber, Stephen, und William D. Walton. Effect of positive pressure ventilation on a room fire. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ir.7213.
Der volle Inhalt der QuelleMcCaffrey, B. J., J. A. Rockett und R. S. Levine. Naval fire fighting trainers - effect of ventilation on fire environment (model calculations for 19F3 FFT). Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.ir.85-3238.
Der volle Inhalt der QuelleOhlemiller, Thomas J., und Richard G. Gann. Effect of bed clothes modifications on fire performance of bed asemblies. Gaithersburg, MD: National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.tn.1449.
Der volle Inhalt der QuelleOhlemiller, T. J., und J. R. Shields. The effect of surface coatings on fire growth over composite materials. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5940.
Der volle Inhalt der QuelleAlam, Naveed, Ali Nadjai, Chrysanthos Maraveas, Konstantinos Daniel Tsavdaridis und Faris Ali. EFFECT OF AIR-GAP ON PERFORMANCE OF FABRICATED SLIM FLOOR BEAMS IN FIRE. The Hong Kong Institute of Steel Construction, Dezember 2018. http://dx.doi.org/10.18057/icass2018.p.043.
Der volle Inhalt der QuelleMcKenzie, Donald, David L. Peterson und Ernesto Alvarado. Predicting the effect of fire on large-scale vegetation patterns in North America. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1996. http://dx.doi.org/10.2737/pnw-rp-489.
Der volle Inhalt der QuelleFast, J. D. The effect of regional-scale soil-moisture deficits on mesoscale atmospheric dynamics that influence fire severity. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10193718.
Der volle Inhalt der QuelleChen, Jun, Jun Xiong und Si-Yuan Zhu. Effect of fire needle for ganglion cysts: a protocol of systematic review and meta-analysis of randomized controlled trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2020. http://dx.doi.org/10.37766/inplasy2020.8.0032.
Der volle Inhalt der QuelleDubrulle, Laura, Mauro Zammarano und Rick D. Davis. Effect of Fire-Retardant Coatings and Accelerated-Weathering on the Flammability of Wood-Based Materials in Wildland-Urban Interface (WUI) Communities. National Institute of Standards and Technology, November 2020. http://dx.doi.org/10.6028/nist.tn.2094.
Der volle Inhalt der QuelleLee, B. T. Effect of wall and room surfaces on the rates of heat, smoke, and carbon monoxide production in a park lodging bedroom fire. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.ir.85-2998.
Der volle Inhalt der Quelle