Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Edible fungus“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Edible fungus" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Edible fungus"
Li, Jian, Junmei Ma, Sufang Fan, Shengquan Mi und Yan Zhang. „Comparison of the Nutritional and Taste Characteristics of 5 Edible Fungus Powders Based on the Composition of Hydrolyzed Amino Acids and Free Amino Acids“. Journal of Food Quality 2022 (07.04.2022): 1–10. http://dx.doi.org/10.1155/2022/3618002.
Der volle Inhalt der QuelleCaroline, Clementia, und Alberta Rika Pratiwi. „BIOPRESERVATIF ALAMI DALAM PEMBUATAN EDIBLE FILM KARAGENAN Eucheuma cottonii DENGAN POLIETILEN GLIKOL SEBAGAI PLASTICIZER“. JURNAL AGROTEKNOLOGI 11, Nr. 02 (12.01.2018): 148. http://dx.doi.org/10.19184/j-agt.v11i02.6523.
Der volle Inhalt der QuelleGuan, Cheng Bo, Jing Yun Liu, Li Shuan Hu und Qin Zhang. „Composite Environment Monitoring System for Edible Fungus Cultivation Based on ZigBee Technology“. Advanced Materials Research 791-793 (September 2013): 975–79. http://dx.doi.org/10.4028/www.scientific.net/amr.791-793.975.
Der volle Inhalt der QuelleKAYA, Abdullah, Fevzi KILIÇEL, Hacer Sibel KARAPINAR und Yasin UZUN. „Mineral Contents of Some Wild Edible Mushrooms“. Journal of Fungus 8, Nr. 2 (31.10.2017): 178–83. http://dx.doi.org/10.15318/fungus.2017.49.
Der volle Inhalt der QuelleWang, Ying, Bu Tao, Bo Lin Ma und Qing Lin Xue. „The Development and Demonstration of Edible Fungus Circular Agriculture Mode and its Standardization Production Technology“. Advanced Materials Research 1010-1012 (August 2014): 2102–8. http://dx.doi.org/10.4028/www.scientific.net/amr.1010-1012.2102.
Der volle Inhalt der QuelleZhang, Ling Yun, Hua Zhang, Peng Fei Zhang und Qiu Hong Yuan. „Study on the Intelligent Monitoring System for the Industrialized Producing Environment of Edible Fungus Based on the Internet of Things“. Applied Mechanics and Materials 427-429 (September 2013): 1028–31. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.1028.
Der volle Inhalt der QuelleLi, Hongyan, Lianxin Liu, Jianguo Cui, Jiali Cui, Fang Wang und Feng Zhang. „High-efficiency adsorption and regeneration of methylene blue and aniline onto activated carbon from waste edible fungus residue and its possible mechanism“. RSC Advances 10, Nr. 24 (2020): 14262–73. http://dx.doi.org/10.1039/d0ra01245a.
Der volle Inhalt der QuelleZhong, Yuanyuan, Shuting Dong, Yuan Cui, Xiaobo Dong, Huaide Xu und Mei Li. „Recent Advances in Postharvest Irradiation Preservation Technology of Edible Fungi: A Review“. Foods 12, Nr. 1 (25.12.2022): 103. http://dx.doi.org/10.3390/foods12010103.
Der volle Inhalt der QuelleMurugesan, Priya. „Phytochemical Analysis and Antimicrobial Activity of Edible Lichen“. Journal of Drug Delivery and Therapeutics 10, Nr. 2-s (15.04.2020): 102–4. http://dx.doi.org/10.22270/jddt.v10i2-s.4016.
Der volle Inhalt der QuelleChen, Xiang Ning, Wen Bin Jin, Yin Ran Dong, Ling Chuan Meng und Qiang Wei. „Research Progress in Preservation of Postharvest Edible Fungi“. Advanced Materials Research 476-478 (Februar 2012): 614–19. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.614.
Der volle Inhalt der QuelleDissertationen zum Thema "Edible fungus"
Jackson, Lauren W., und Barry M. Pryor. „Degradation of aflatoxin B1 from naturally contaminated maize using the edible fungus Pleurotus ostreatus“. BIOMED CENTRAL LTD, 2017. http://hdl.handle.net/10150/625197.
Der volle Inhalt der QuelleNair, Ramkumar B. „Integration of first and second generation bioethanol processes using edible filamentous fungus Neurospora intermedia“. Doctoral thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-12436.
Der volle Inhalt der QuelleStott, Karen Gai. „Characteristics of Australian edible fungi in the genus Lepista and investigation into factors affecting cultivation“. Thesis, [Richmond, N.S.W.] : University of Western Sydney, Hawkesbury, 1998. http://handle.uws.edu.au:8081/1959.7/495.
Der volle Inhalt der QuelleCarvalho, Cristiane Suely Melo de. „Viabilidade do uso de resíduos agrícolas no cultivo do cogumelo medicinal Ganoderma lucidum (Curt.: Fr.) P. Karst“. Universidade Federal do Amazonas, 2014. http://tede.ufam.edu.br/handle/tede/4318.
Der volle Inhalt der QuelleApproved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-09T19:33:55Z (GMT) No. of bitstreams: 1 Tese - Cristiane Suely Melo de Carvalho.pdf: 1370893 bytes, checksum: 46bf755ee5dee8613480145e68e439ce (MD5)
Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-09T19:38:12Z (GMT) No. of bitstreams: 1 Tese - Cristiane Suely Melo de Carvalho.pdf: 1370893 bytes, checksum: 46bf755ee5dee8613480145e68e439ce (MD5)
Made available in DSpace on 2015-07-09T19:38:12Z (GMT). No. of bitstreams: 1 Tese - Cristiane Suely Melo de Carvalho.pdf: 1370893 bytes, checksum: 46bf755ee5dee8613480145e68e439ce (MD5) Previous issue date: 2014-07-17
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Ganoderma lucidum it is a fungus that arouses considerable interest worldwide because on their numerous properties, it is reported mainly for their medicinal power, and it may be used in the prevention and treatment of various diseases including cancer and AIDS. It is a mushroom that has the ability to thrive in a multitude of lignocellulosic wastes, since they produce lignocellulolytic enzymes, specialized to degrade this type of raw material. The G. lucidum species has several distinct lineages, and also nutritional requirements that vary in relation to the collection site and the type of substrate. Therefore, it is necessary to know the substrates, and the situation of the most suitable growing to the different strains of G. lucidum. The aim of this study was to evaluate the production of two strains of Ganoderma lucidum on agricultural waste as well as to perform chemical analyzes of basidiomata obtained in cultivation. The experiment was conducted at the premises of the module Mushrooms FCA / UNESP-Botucatu, SP, in which two strains were used: GLM-09/01 GLM and 10/02 both grown in waste, oat straw, bean straw, straw brachiaria grass Tifton straw and sawdust in two situations: with (20%) and without supplementation (0%) of wheat bran. All the waste came from dumps of agricultural activity resulting from Botucatu-SP. Both treatments were performed in 10 replications, totaling 200 packages. The cultivation of mushrooms totaled 95 days, later we assessed the biological efficiency of the treatments and it was performed and their chemical analysis of initial and residual substrates and basidiomata obtained. EB values (%) ranging from 0.0% to 6.7%. In the chemical analysis of the mushrooms, in the parameters, total protein, ether extract, crude fiber and ash, the results ranged from 8.7% to 13.7%, from 2.0% to 6.7%, 0.83% 1.79% to 38.8% and 54.5% respectively. Thus, it is concluded that from the substrates analyzed, those with the highest income were the base of straw brachiaria 20% in both strains tested (GLM 10/02 and GLM 09/01 and bean straw to 20% GLM on 10/02 line. The mushrooms showed high levels of ether extract, ash and fiber and low protein content.
Ganoderma lucidum trata-se de um fungo que desperta bastante interesse mundial devido suas inúmeras propriedades medicinais, são relatados principalmente pelo seu poder medicinal, podendo ser utilizados na prevenção e tratamento de diversas doenças incluindo o câncer e AIDS. É um cogumelo que apresenta a capacidade de desenvolver-se em diversos resíduos lignocelulósicos, pelo fato de produzirem enzimas lignocelulolíticas, especializadas em degradar esse tipo de matéria-prima. A espécie G. lucidum, apresenta diversas linhagens distintas, cujas exigências nutricionais que variam em relação ao local de coleta e ao tipo de substrato. Assim, torna-se necessário conhecer os substratos e a situação de cultivo mais adequados as diferentes linhagens de G. lucidum. O objetivo deste estudo foi avaliar a produção de duas linhagens de Ganoderma lucidum em resíduos agrícolas, bem como realizar a caracterização físico-química dos basidiomas obtidos no cultivo. O experimento foi conduzido nas instalações do Módulo de Cogumelos da FCA/UNESP-Botucatu, SP. As linhagens utilizadas foram GLM-09/01 e GLM 10/02. Os resíduos utilizados na cultura foram palha de aveia, palha de feijão, palha de capim braquiária, palha de capim tifton e serragem de eucalipto, todos em duas situações: com (20%) e sem suplementação (0%) de farelo de trigo. Todos os resíduos foram provenientes de despejos da atividade agrícola decorrente do município de Botucatu-SP. Os tratamentos foram realizados em 10 repetições, totalizando 200 pacotes. O cultivo totalizou 95 dias. Avaliou-se a eficiência biológica dos tratamentos e realizou-se a caracterização físico-química dos substratos inicial e residual e também dos basidiomas obtidos. Os valores de EB (%) variaram de 0,0% a 6,7%. Nas analises da composição centesimal dos cogumelos, os parâmetros, proteína bruta, extrato etéreo, cinzas e fibra bruta, os resultados variaram de 8,7% a 13,7%, de 2,0% a 6,7%, de 0,83% a 1,79% e de 38,8% a 54,5% respectivamente. Dos substratos analisados, os que apresentaram maior rendimento foram os formulados à base de palha de braquiária (20%) em ambas as linhagens testadas (GLM-09/01 e GLM 10/02) e palha de feijão (20%) na linhagem GLM 10/02. Os cogumelos apresentaram teores elevados de lipídios, fibras e cinzas e baixo teor de proteínas.
Stott, Karen Gai, of Western Sydney Hawkesbury University, Faculty of Science and Technology und of Science Food and Horticulture School. „Characteristics of Australian edible fungi in the genus Lepista and investigation into factors affecting cultivation“. THESIS_FST_SFH_Stott_K.xml, 1998. http://handle.uws.edu.au:8081/1959.7/495.
Der volle Inhalt der QuelleDoctor of Philosophy (PhD)
Adeleke, Rasheed Adegbola. „Isolation, propagation and rapid molecular detection of the Kalahari truffle, a mycorrhizal fungus occurring in South Africa“. Thesis, Rhodes University, 2007. http://hdl.handle.net/10962/d1002951.
Der volle Inhalt der QuelleKMBT_363
Adobe Acrobat 9.53 Paper Capture Plug-in
Yara, Ricardo. „Localização in situ e caracterização molecular da bactéria endossimbionte de Pleurotus ostreatus“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/11/11137/tde-21082006-150238/.
Der volle Inhalt der QuelleThe fungus Pleurotus ostreatus, which belongs to white rot basidiomycete group, is a widely cultivated mushroom; this species has high productivity and rusticity, besides its use in biobleaching and bioremediation processes. This biotechnological potential justifies microbial interaction studies between this fungi and others microorganisms. In P. ostreatus mycelia, it has been observed pleomorphic bacteria growing on agar media. This research describes several assays to confirm bacterial presence in this sample. Therefore, the full-cycle rRNA analysis (described for unculturable or fastidious microorganism), ultrastructure and basic microbiology approaches were employed. Basic microbiology approaches indicated slow growing bacteria, which grown faster near to fungi colonies in solid media amended with Tween 80 or Tween 20 (co-culture system). Ultrastructure studies confirm the presence of intracellular and extracellular pleomorphic bacteria. The full-cycle rRNA analysis started with 16S rDNA amplification and sequencing. This approach demonstrated a relation between these bacteria with Burkholderia cepacia complex. By bioinformatics analysis was determinate which DNA probes can be use to identified this bacterial group. The last step for full-cycle rRNA analysis was applying fluorescent in situ hybridization (FISH). This technique confirmed the relationship between 16S rDNA bacterial sequence and bacterial forms. This is the first time that a pleomorphic bacteria from B. cepacia complex is found associated with P. ostreatus.
Stott, Karen Gai. „Characteristics of Australian edible fungi in the genus Lepista and investigation into factors affecting cultivation /“. [Richmond, N.S.W.] : University of Western Sydney, Hawkesbury, 1998. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20030512.092250/index.html.
Der volle Inhalt der QuelleThesis submitted for the degree of Doctor of Philosophy. Photocopies of articles by Karen Stott ... [et al.] in back. Includes bibliographical references (leaves 137-148).
Alontaga, Barbara Mae, und Anna Axebrink. „Edible Fungal Production using Acetic Acid as Carbon and Energy Source“. Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-23396.
Der volle Inhalt der QuelleFlyktiga fettsyror (VFAs) har ekonomiska fördelar och kan användas inom kemiska industrier i olika sammanhang, detta har lett till ett stort forskningsintresse för att kunna nyttja VFAs. Organiskt avfall, såsom matavfall, kan användas som substrat för att producera fettsyror genom anaerob rötning. Anaerob rötning är en miljövänlig process och VFAs bildas som intermediära produkter under den anaeroba nedbrytningen där annars bildas biogas som slutprodukt. Syftet med denna studie var att använda ättiksyra, (den vanligaste typen av VFAs), som kol- och energikälla vid odling av tre olika ätbara svampar, som Rhizopus oligosporus, Mucor indicus, och Volvariella volvacea. Först odlades dessa ätbara svampar i odlingsmedium innehållande ättiksyra. Resultatet visade att ättiksyra kan användas som kol- och energikälla vid produktion av svampbiomassa. Målet i de nästkommande stegen var att optimera tillväxtförhållande för svampodlingen. Fem olika odlingsmedier som innehöll olika kombinationer av ättiksyra, jästextrakt och mineraler användes. Det undersöktes dessutom hur två olika skakmetoder, orbitalt, eller linjärt, skakbad påverkar odlingen. Svamptillväxt var möjligt vid alla olika förhållanden oavsett sammansättningen av medium och typ av skakbad, däremot verkar odlingsmedium som innehåller ättiksyra, jästextrakt och/eller mineraler i kombination med linjär skakning vara de bästa förutsättningar för tillväxt av biomassa. I det sista steget kultiverades svamp med olika koncentrationer av ättiksyra, 0,2 g/l och 2,0 g/l, under liknande optimerade förhållanden som ovan, för att undersöka om en högre koncentration av ättiksyra skulle vara fördelaktig. Det producerades mer svampbiomassa (som torrvikt) vid koncentration av 2,0 g/l ättiksyra jämfört med när 0,2 g/l ättiksyra användes, dock var det svårt att säkerställa utbytet. Det behövs därför ytterligare fortsatta studier för att kunna bevisa om en högre koncentration av ättiksyra är fördelaktig för odlingen, eller om en högre koncentration skulle verka inhiberande för tillväxten.
Roberts, G. C. „Lignin biodegradation and aromatic metabolism by the edible mushroom, Agaricus bisporus“. Thesis, University of Kent, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354000.
Der volle Inhalt der QuelleBücher zum Thema "Edible fungus"
Delupis, Gianluigi Dojmi Di. Contaminazione di funghi commestibili con mercurio, cadmio, e piombo. Roma: Istituto superiore di sanità, 1996.
Den vollen Inhalt der Quelle findenTalice-Lacombe, Ninon. Hongos de Uruguay: Comestibles y venenosos. Montevideo, Uruguay: Nordan Comunidad, 2005.
Den vollen Inhalt der Quelle findenValencia, Nelson Rodríguez. Cultivo de hongos comestibles del género Pleurotus sobre residuos agrícolas de la zona cafetera. Chinchiná, Caldas, Colombia: Cenicafé, 2005.
Den vollen Inhalt der Quelle findenDowding, Paul. Forest fungi in Ireland. Dublin: COFORD, 2008.
Den vollen Inhalt der Quelle findenLouis, Smith, und COFORD, Hrsg. Forest fungi in Ireland. Dublin: COFORD, 2008.
Den vollen Inhalt der Quelle findenInternational Congress on the Science and Cultivation of Edible Fungi (13th 1991 Dublin, Ireland). Science and cultivation of edible fungi: Proceedings of the 13th International Congress on the Science and Cultivation of Edible Fungi, Dublin, 1-16 September, 1991. Rotterdam: Balkema, 1991.
Den vollen Inhalt der Quelle findenInternational, Congress on the Science and Cultivation of Edible Fungi (14th 1995 Oxford Eng ). Science and cultivation of edible fungi: Proceedings of the 14th international congress on the science and cultivation of edible fungi, Oxford, 17-22 September. Rotterdam: A.A. Balkema, 1995.
Den vollen Inhalt der Quelle findenSekido, Isamu. Fruits, roots, and fungi: Plants we eat. Minneapolis: Lerner Publcations Co., 1993.
Den vollen Inhalt der Quelle findenInternational Congress on the Science and Cultivation of Edible Fungi (13th 1991 Dublin, Ireland). Science and cultivation of edible fungi: Proceedings of the 13th International Congress on the Science and Cultivation of Edible Fungi, Dublin, 1-6 September 1991. Rotterdam, Netherlands: A.A. Balkema, 1991.
Den vollen Inhalt der Quelle findenInternational Congress on the Science and Cultivation of Edible Fungi (15th 2000 Maastricht, Netherlands). Science and cultivation of edible fungi: Proceedings of the 15th International Congress on the Science and Cultivation of Edible Fungi, Maastricht/Netherlands/15-19 May 2000. Rotterdam: A.A. Balkema, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Edible fungus"
Yang, Xiaodong, Chunyu Mao, Zhuojuan Yang und Hao Liu. „Sealing Detection Technology of Cotton Ball of Edible Fungus Bag“. In Advances in Intelligent Systems and Computing, 517–24. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-33-4572-0_75.
Der volle Inhalt der QuelleKhaund, Polashree, und S. R. Joshi. „The Gomphus Paradox of Meghalaya: Wild Edible Fungus or a Poisonous Mushroom?“ In Microbial Diversity and Biotechnology in Food Security, 171–76. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1801-2_13.
Der volle Inhalt der QuelleDíaz-Godínez, Gerardo, und Maura Téllez-Téllez. „Mushrooms as Edible Foods“. In Fungal Biology, 143–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64406-2_9.
Der volle Inhalt der QuelleKaliyaperumal, Malarvizhi, Kezhocuyi Kezo und Sugantha Gunaseelan. „A Global Overview of Edible Mushrooms“. In Fungal Biology, 15–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02622-6_2.
Der volle Inhalt der QuellePalfner, Götz, Viviana Salazar Vidal, Elizabeth Melgarejo Estrada, Bernardo E. Lechner, Juana Palma Martínez, Ignacio Montenegro Bralic und Angélica Casanova Katny. „Edible Ectomycorrhizal Mushrooms in South America“. In Fungal Biology, 321–37. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12994-0_16.
Der volle Inhalt der QuelleKapahi, Meena. „Recent Advances in Cultivation of Edible Mushrooms“. In Fungal Biology, 275–86. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02622-6_13.
Der volle Inhalt der QuelleGlamočlija, Jasmina, Marina Kostić und Marina Soković. „Antimicrobial and Hepatoprotective Activities of Edible Mushrooms“. In Fungal Biology, 81–113. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02622-6_4.
Der volle Inhalt der QuellePreston, Gail M., Jaime Carrasco, Francisco J. Gea und María J. Navarro. „Biological Control of Microbial Pathogens in Edible Mushrooms“. In Fungal Biology, 305–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02622-6_15.
Der volle Inhalt der QuelleSułkowska-Ziaja, Katarzyna, Katarzyna Kała, Jan Lazur und Bożena Muszyńska. „Chemical and Bioactive Profiling of Wild Edible Mushrooms“. In Fungal Biology, 129–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02622-6_6.
Der volle Inhalt der QuelleJagadish, Bijavara Ramakrishnappa, Kandikere Ramaiah Sridhar, Hosamane Ramesh Dattaraj, Nagabhushana Chandramohana und Shivannegowda Mahadevakumar. „Nutraceutical Potential of Wild Edible Mushroom Hygrocybe alwisii“. In Fungal Biology, 597–615. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85603-8_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Edible fungus"
Shao, Meili, Hongyang Sun, Ziyi Zhao, Hongyu Zhao und Liang Li. „Degradation of AFB1 by edible fungus“. In Proceedings of the 3rd Annual Congress on Advanced Engineering and Technology (CAET 2016). P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com, www.crcpress.com – www.taylorandfrancis.com: CRC Press/Balkema, 2016. http://dx.doi.org/10.1201/9781315387222-30.
Der volle Inhalt der QuelleZhang, Chao. „Establishment of Edible Fungus Poverty Alleviation Wisdom Platform“. In BIC 2022: 2022 2nd International Conference on Bioinformatics and Intelligent Computing. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3523286.3524507.
Der volle Inhalt der QuelleWang, Xiaoling, Shuang Han, Ning Cao und Wenbin Yuan. „Remote Monitor System Design of Edible Fungus Greenhouse Basing on ZigBee“. In 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). IEEE, 2017. http://dx.doi.org/10.1109/cse-euc.2017.247.
Der volle Inhalt der Quelle„Analysis of characteristics and quality of hot air drying edible fungus“. In 2016 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2016. http://dx.doi.org/10.13031/aim.20162460069.
Der volle Inhalt der QuelleRuiqing, Zhang, Ma Yuejin und Wang Bingshu. „Remote monitoring system of edible fungus liquid fermentation based on data encryption“. In 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2015. http://dx.doi.org/10.1109/sice.2015.7285556.
Der volle Inhalt der QuelleHiroko Isoda, Keo Intabon, Norio Sugiura und Takaaki Maekawa. „Development of Functional Foodstaffs Operated by a Liquid Bioreactor of an Edible Fungus“. In 2001 Sacramento, CA July 29-August 1,2001. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2001. http://dx.doi.org/10.13031/2013.3674.
Der volle Inhalt der QuelleKhot, Mahesh Balwant. „Life cycle assessment (LCA) of microbial oil-derived fuels and other non-fuel products“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/imol9786.
Der volle Inhalt der QuelleKeo INTABON, Takaaki MAEKAWA und Norio SUGIURA. „A Scale Up and Operation Problems for a Liquid Bioreactor of an Edible Fungus (Mushroom Agaricus blazei Murill.)“. In 2001 Sacramento, CA July 29-August 1,2001. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2001. http://dx.doi.org/10.13031/2013.4057.
Der volle Inhalt der QuelleNi, Yan, und Zhen Qin. „A positive study on farmers' cultivating willingness of edible fungus and the influencing factors: A survey to 213 farmers in Hubei province“. In 2012 International Conference on Management Science and Engineering (ICMSE). IEEE, 2012. http://dx.doi.org/10.1109/icmse.2012.6414265.
Der volle Inhalt der QuelleYin, Yueyue, und BaoHeng Wang. „Edible fungi quality and safety traceability management system“. In 2022 Global Conference on Robotics, Artificial Intelligence and Information Technology (GCRAIT). IEEE, 2022. http://dx.doi.org/10.1109/gcrait55928.2022.00177.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Edible fungus"
Poverenov, Elena, Tara McHugh und Victor Rodov. Waste to Worth: Active antimicrobial and health-beneficial food coating from byproducts of mushroom industry. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7600015.bard.
Der volle Inhalt der QuelleSchwartz, Bertha, Vaclav Vetvicka, Ofer Danai und Yitzhak Hadar. Increasing the value of mushrooms as functional foods: induction of alpha and beta glucan content via novel cultivation methods. United States Department of Agriculture, Januar 2015. http://dx.doi.org/10.32747/2015.7600033.bard.
Der volle Inhalt der Quelle