Dissertationen zum Thema „Écoulements de compression“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-19 Dissertationen für die Forschung zum Thema "Écoulements de compression" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Zidi, Koceila. „Écoulement d'une suspension de particules en compression“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST197.
Der volle Inhalt der QuelleThe study of particle suspensions is crucial due to their omnipresence in various industrial and natural domains. Understanding their behavior enables us to improve processes such as the manufacture of composite materials, water treatment and the study of sediments and soils. Over the past two decades, the rheology of particle suspensions has been extensively studied in simple shear flows. Experiments have shown that the effective viscosity of an isodense, non-Brownian suspension increases with the particle volume fraction. The question posed in my thesis is whether rheological laws can be used to describe the behavior of particle suspensions in more complex configurations such as compression flows. We have experimentally investigated the behavior of suspensions in two compression flow configurations. In the first configuration, the suspension is compressed between a moving disk approaching a vertical wall at an imposed velocity. Local pressure measurements were carried out, varying the volume fraction of the suspension and the compression velocity. A theoretical framework was established, enabling the radial pressure difference in the compression flow to be related to the effective viscosity of the suspension, and thus measured indirectly. We have shown that the effective viscosity deduced by this approach in compression flow is identical to that measured in a conventional simple shear configuration. In the second configuration, the suspension is compressed between a sphere sedimenting under its own weight towards a horizontal wall. Sedimentation velocity measurements of the sphere were carried out. The influence of suspension parameters, such as particle diameter and concentration, as well as geometric parameters, such as sphere radius and reservoir width, was investigated. In the region far from the wall, the fundamental principle of dynamics enabled us to predict the sedimentation velocity of the sphere and deduce the effective viscosity of the suspension, which corresponds to that of simple shear. We have shown that the suspension behaves like an effective Newtonian fluid. The approach dynamics of the sphere in the suspension deviate from those it would have in a Newtonian fluid. Close to the wall, lubrication theory is applied. This theory predicts that the sedimentation velocity of the sphere evolves linearly with distance from the horizontal wall, with zero velocity at contact with the wall. In the case of suspension, the sedimentation velocity of the sphere evolves non-linearly with distance from the wall. We also measured a non-zero impact velocity of the sphere with the wall. We have proposed an empirical relationship for the approach velocity that allows all the experimental data to be grouped on a single curve across the entire range of parameters studied
Sorba, Grégoire. „Etude expérimentale et modélisation numérique des écoulements de compression dans les composites stratifiés visqueux à plis discontinus“. Thesis, Ecole centrale de Nantes, 2017. http://www.theses.fr/2017ECDN0038.
Der volle Inhalt der QuelleThe design freedom of composites can be improved by combining continuous and discontinuous prepregs. The forming of a pre-heated blank made of optimally oriented and distributed discontinuous prepreg plies may lead to unacceptable defects such as in-plane and out-of-plane wrinkles, sliding of plies, rotation of adjacent plies, bending of fibres induced by transverse squeeze flow and finally to inappropriate and inefficient fibre distribution. This arises because the individual discontinuous plies are free to move and deform in the mould during the forming step. First, this work presents some experiments conducted to identify the behaviour of a stack of unidirectional and woven discontinuous viscous prepregs subjected to through-thickness compression. Then a model based on a heterogeneous transverse isotropic fluid approach is gradually developped in agreement with the experimental findings. It is shown that the various observed phenomena are retrieved for the unidirectional and partly for the woven prepreg by the numerical model. The predicted values are in good agreement with measurements, when the problem is solved in 3D with a relatively fine mesh in the thickness. Finally an attempt is made to reduce the computational cost by the use of advanced numerical simulation techniques
Nakano, Tamon. „Étude numérique de l’interaction choc/couche limite en géométrie de révolution“. Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2018. http://www.theses.fr/2018ESMA0013/document.
Der volle Inhalt der QuelleShock wave/boundary layer interactions (SWBLI) are present in various aerospace engineering applications.They can be associated with separated regions yielding low-frequency unsteadiness, which have mainly been studied in planar geometries. The present study aims at characterizing this type of interaction in a cylindrical configuration. A direct numerical simulation solver has been developed and validated with various test cases. It is based on a high-order finite difference based hybrid schemes (6th order centered scheme/5thorder WENO), extended to curvilinear geometries. Transverse curvature effects on properties of spatially developing supersonic boundary layer at Mach 3 are first examined. It is shown that the increase of the relative curvature of the boundary layer tends to reduce the fluctuation energy at lower frequencies near the wall, while reinforcing the perturbations at higher frequencies in the upper zone of the boundary layer.In comparison with the planar case, the transverse curvature leads to a significant re-organization of the boundary layer structures and a subsequent modified behavior of the invariants of anisotropy turbulent stress tensor. It however only leads to slightly modified distributions of Reynolds stress and a rather similar overall balance of turbulent kinetic energy through the boundary layer. The second part of this study is dedicated to the unsteady motions of the shock/separation zone in a cylinder/compression flare configuration for which the full cylindrical geometry is taken into account. The shock distortions in the azimutal direction appears to be mainly associated to the organization of the upstream vortex structures and the subsequent azimutal fluctuations of the separation line. It is shown that the energy of the fluctuating wall pressure is more amplified for higher order azimutal modes. The contributions to lateral forces, associated to the first mode, are dominated by low-frequencies only upstream of the separation line in the intermittent region. They become more dominant in the middle frequency range downstream of the reattachment zone on the ramp. It is also shown that the low-frequency activity at the wall is progressively due to higher order azimuthal modes through the interaction zone
Viciconte, Giovanni. „Turbulent mixing driven by variable density and transport coefficients effects“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC035.
Der volle Inhalt der QuelleThis thesis is dedicated to the study of turbulent mixing in flows with variable density and non-uniform transport coefficients. We use a new direct numerical simulation (DNS) code based on a two-dimensional domain decomposition, capable of taking into account variable density and diffusive contributions. At first, we consider the case of turbulence in weakly-coupled plasmas under isotropic compression, which can experience a sudden dissipation of kinetic energy due to the growth of the viscosity coefficient due to temperature increase. In this case, in addition to DNS we use a spectral model based on the Eddy-Damped Quasi-Normal Markovian closure. We evidence the sensitivity of the flow dynamics to initial conditions for homogeneous isotropic turbulence and an inhomogeneous spherical turbulent layer. In the latter case, we find, also, the first hint of a sudden diffusion effect. The importance of initial conditions is also shown in the study of the variable density unstably stratified homogeneous turbulence. If the initial density contrasts are sufficiently strong, the large scales of the flow are modified with the consequent modification of the self-similar scaling laws. Finally, we consider an idealized configuration of inertial confinement fusion implosion, with both variable density and transport coefficients effects. During the compression, we evidence the competition between the plasma molecular diffusion, which is enhanced by the temperature increase, and the turbulent diffusion, which on the contrary decreases due to the increased viscous dissipation. In the last phase of the implosion, we highlight a sudden diffusion process, where compressed spherical mixing layers are quickly diffused
Marc, Daniel. „Étude expérimentale de la compression d'un écoulement de rouleau : situation modèle de l'aérodynamique interne des moteurs à pistons“. Toulouse, INPT, 1998. http://www.theses.fr/1998INPT013H.
Der volle Inhalt der QuelleZambonini, Gherardo. „Unsteady dynamics of corner separation in a linear compressor cascade“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC049/document.
Der volle Inhalt der QuelleThe present work focuses on the study of the corner separation phenomenon in compressors carried out by experimental investigations on a subsonic linear cascade test rig (Re=3.8x105, M=0.12, blade profile NACA 65-009). Usually, this particular three-dimensional separation takes place in the corner between the blade and the endwall of compressor rows, mostly at hub, both in stators and rotors.Its main features are high total pressure losses and blockage of the flow, with consequent impacts on the efficiency. Whereas time averaged characteristics are well known from the past, only recent advanced experimental studies and improvements of numerical simulations, such as URANS and LES, have permitted to uncover the highly unsteady behavior of corner separation in compressors. Precedent studies on the same test rig have reported an intermittent unsteady behavior of corner separation, called bimodal behavior. In the present thesis it is shown that the bimodal behavior corresponds to two specific states of the flow: a closed separation, almost suppressed, and an open separation characterized by massive blockage and losses. Clearly hub-separation bimodal switches appearing in a real machine could have a first order detrimental effect on the stability of the flow in the compressor. By using high speed PIV coupled with unsteady pressure measurements on the surface of the blade the flow in a single blade passage has been investigated for different incidences. The PIV measurements provide, for the first time, time-resolved flow visualizations of the size switch of the separation with an extended field of view covering the entire blade section. The interaction of random large structures of the incoming boundary layer with the blade is found to be a predominant element that destabilizes the separation boundary and enlarges the recirculation region. Such a massive separation persists until the blockage in the passage causes the breakdown of the largest structures in the aft part of the blade, reestablishing the closed separation state. Such dynamics coincide with the aperiodic intermittent flow regime of diffusers, called transitory stall regime, and the associated Fourier spectra show the largest energy amplitudes in the low frequency range. Conditional ensemble averages of pressure and proper orthogonal decomposition (POD) of velocity fields have been applied to show the feedback effect of the blockage of the separation on the flow angle around the blade leading edge. These results draw the picture of a self-sustained instability caused by the diffusion imposed by the inter-blade passage. To answer the question about the interaction between adjacent corner separations, time-resolved total pressure measurements have been carried out by using high frequency response sensors positioned in bimodal points of multiple passages. The coherent propagation velocity and the linearity of the phase angle found between the signals confirm that the unsteadiness of the separation can propagate in pitch-wise direction. It is interesting to underline that equivalent elements characterize rotating disturbances appearing in annular test rigs. This finally shows that, even in an isolated stator blade row, the intrinsic unsteadiness of corner separation can start the propagation of instabilities. It is the first time that such a propagation effect is observed in a linear compressor cascade
Veglio, Monica. „Etude expérimentale et numérique des écoulements dans un étage de compresseur axial à basse vitesse en régime de fonctionnement instable“. Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0053/document.
Der volle Inhalt der QuelleThe reduction of the environmental impact is nowadays one of the crucial challenges of the aeronautic industry. The quest to lower the consumption of aircrafts has led to more compact and higher loaded engines in general, and especially compressor stages. This leads an increase of the internal flow unsteadiness and to the occurrence of unstable phenomena. The experimental study, performed during this work, concerns the characterization of flows in an axial compressor stage during both the emergence of rotating stall and its stabilized phase, by means of unsteady pressure and velocity measurements. The originality of the work proposed resides in the use and the development of non-standard data processing methods. The wavelets transform reveals to be an interesting tool for the detection of short coherent structures, like the spike-type precursor as well as the instantaneous features of a rotating stall cell. Beside this local approach, different procedures for phase-locked field measurements were developed, according to the specification of each studied phenomenon and the experimental proceedings. Thanks to these methods, it was possible to highlight the pressure field evolution until the development of the rotating stall regime. The alignment of the tip leakage vortex with the rotor inlet section forecasts a spike type stall onset. The comparison between transitional phase and fully developed stall fields conducts to assert that the precursor represent only the embryonic stage of the rotating stall evolution. This approach led to appreciate the complexity of the internal structure of the cell that appears to be the succession of stall propagation phase, zero-loaded high flow rate region and reattachment phase
Colliat-Dangus, Perrine. „Complexation interfaciale de polymères : propriétés et stabilité d'émulsions millimétriques“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066134/document.
Der volle Inhalt der QuelleThis work focuses on the study of an oil-water interface where the complexation of two polymers takes place. The aqueous phase is a solution of cross-linked polyacrylic acid microgels (carbomer) and the oil phase contains a polyelectrolyte possessing amine groups (amodimethicone). The stabilization of an emulsion of millimeter-sized droplets is achieved with this polymeric interface. Designed by millifluidic, the droplets are made one by one and a calibrated emulsion of oil in water is obtained. The process was developed by the company Capsum, with the objective to encapsulate perfumes or active ingredients for cosmetics. First, we characterize the adsorption and complexation of the polyelectrolytes at the oil-water interface with both static and dynamic tensiometry methods. Then, we study the mechanical properties of the polymeric membrane along with its capacity to stabilize emulsions, at the level of a collection of droplets undergoing compression which is applied either by gravity or by centrifugation, and also at the level of single droplets flowing through a glass capillary. Thanks to those various experimental methods, and depending on the physico-chemical conditions, the different emulsion stabilization regimes are highlighted. A major observation is that the amount of amodimethicone controls the anchoring of the carbomer at the interface, setting the interface state from fluid to solid, and therefore the corresponding emulsion stability. Moreover, when the membrane is solid, that is to say when the microgels are electrostatically cross-linked with the amodimethicone, a remarkable propagation of membrane rupture within an emulsion undergoing compression is revealed
Chpoun, Amer. „Contribution à l'étude d'écoulements hypersoniques (M=5) sur une rampe de compression en configuration 2-D et 3-D“. Paris 6, 1988. http://www.theses.fr/1988PA066149.
Der volle Inhalt der QuellePatrice, Estellé. „Méthodes d'analyse inverse des données d'écoulement de compression de fluides complexes homogènes“. Phd thesis, INSA de Rennes, 2004. http://tel.archives-ouvertes.fr/tel-00642094.
Der volle Inhalt der QuelleCourtiade, Nicolas. „Experimental analysis of the unsteady flow and instabilities in a high-speed multistage compressor“. Phd thesis, Ecole Centrale de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00838695.
Der volle Inhalt der QuelleBousquet, Yannick. „Modélisation et analyse des mécanismes impliqués dans l’apparition du pompage d’un étage de compresseur centrifuge“. Thesis, Toulouse, ISAE, 2014. http://www.theses.fr/2014ESAE0012/document.
Der volle Inhalt der QuelleThis work results from a CIFRE partnership between Liebherr-Aerospace Toulouse SAS and the Aerodynamics, Energetics and Propulsion Department (DAEP) of ISAE. The main objective is to investigate the mechanisms responsible of the stall onset in a centrifugal compressor operating at the nominal rotational speed. It is part of a larger work which aims at extending the stable operating range of compressors integrated in air conditioning system. The analyses are based on the results of unsteady simulations, in a calculation domain comprising all the blade passages. They are performed with the elsA software developed by ONERA and CERFACS.The investigations show the modifications of the unsteady flow pattern when the mass flow is reduced along the speed line. Near the stability limit, the high incidence angle on the impeller blade leads to a boundary layer separation on the suction side. The fluid in the separation zone moves toward the shroud and enlarges the low momentum flow zone generated by the leakage flow. The interface between the leakage flow and the main flow becomes unstable to the extent of a periodic vortex formation.The path to instability is driven by the growth of a small amplitude disturbance (modal wave) rotating in the vaneless space. The length scale of the wave is equal to the compressor circumference. This perturbation induces distortions and alters the flow characteristics in every location of this subsonic stage, and more specifically the impeller inlet flow structure: the unstable interface between the main flow and the leakage flow is periodically moved upstream of the leading edge plane causing a significant drop of the impeller total-to-total pressure ratio. The last part of this work concerns the definition of criteria which can improve the surge line prediction during the design process in an industrial environment. Therefore, they are adapted to the numerical steady model using the mixing plane approach. To do so, the capacity of the steady model to predict the flow structure when the compressor operates near stall is investigated. Then, the effects of the rotational speed and of the compressor geometry are evaluated. Theses two steps have permitted to define two critical situations regarding the stage stability. The first one is related to the alignment of the interface between the main flow and the leakage flow with the leading edge plane. The second one concerns the compressor operation with positive incidence on the diffuser vane, along the full span
Le, Sausse Paul. „Contribution à la modélisation de l’écoulement dans un compresseur centrifuge et développement de critères d’optimisation“. Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0105.
Der volle Inhalt der QuelleThis thesis is the result of a partnership between the company Johnson Controls and the university Bordeaux1. The objective is part of a project to develop innovative heat pump and involves the design of a high head centrifugal compressor. To do this, a numerical model is created to simulate the flow in this kind of compressor. To observe industriel deadlines, a first geometry was established by iterative changes of various parameters in analysing induced effiencies. The flow was then studied further, especially to better understand the onset of flow separation. Finally, a study of unsteady flow in the diffuser was performed. Beyond the physical phenomena investigated and comprehended during this process, it is firstly a methodology that values this work
Riera, William. „Evaluation of the ZDES method on an axial compressor : analysis of the effects of upstream wake and throttle on the tip-leakage flow“. Thesis, Ecully, Ecole centrale de Lyon, 2014. http://www.theses.fr/2014ECDL0030/document.
Der volle Inhalt der QuelleThe tip-leakage flow in axial compressors is studied with the Zonal Detached Eddy Simulation (ZDES). This study aims at evaluating the capability of hybrid URANS/LES methods to simulate the tip-leakage flow within a realistic axial compressor in order to better understand the involved physics, especially the behaviour of the flow near surge and the effects of stator wakes on the downstream rotor. Once the ZDES method is chosen, a numerical test bench is defined to simulate the first rotor of the research compressor CREATE. This bench takes into account the unsteady effects of the Inlet Guide Vane (IGV), such as its wake as well as vortices generated at the IGV hub and tip. It is based upon ZDES meshing criteria and is used to evaluate this method compared to classic RANS and URANS approaches. A method validation is carried out up to a spectral analysis compared to experimental data. The ZDES is capable to capture more accurately the intensity and position of the unsteady phenomena encountered in the tip region, especially the tip-leakage vortex. The power spectral densities highlight that this partly originates from a better capture of the energy transfer from large to small structures until their dissipation. The discrepancy between the methods is accentuated as the tip-leakage vortex crosses the shock. Near the surge line, the interactions between the shock, the tip-leakage vortex, the boundary layer developing on the shroud and the vortex generated by the IGV tip are amplified. The boundary layer on the shroud separates earlier and a local flow inversion occurs. Besides, the tip-leakage vortex widens and is deflected toward the adjacent blade. This strengthens the double leakage. At the design operating point, the interaction of the IGV tip vortex with the shock and the rotor tip vortex is studied. A vortex flutter is observed as the IGV tip vortex arrives on the rotor blade and stretches the rotor tip vortex. This phenomenon decreases the double leakage
Fakher, El Abiari Salah Eddine. „Modélisation des régimes d'écoulements instationnaires rencontrés en turbomachine axiale“. Ecully, Ecole centrale de Lyon, 1987. http://www.theses.fr/1987ECDL0007.
Der volle Inhalt der QuelleCroizet, Didier. „Etude experimentale et numérique du comportement à haute température d'un nitrure de silicium“. Paris, ENMP, 1992. http://www.theses.fr/1992ENMP0516.
Der volle Inhalt der QuelleCrevel, Flore. „Simulation numérique de l'écoulement en régime de pompage dans un compresseur axial multi-étage“. Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00929734.
Der volle Inhalt der QuelleBénichou, Emmanuel. „Analyse numérique des instabilités aérodynamiques dans un compresseur centrifuge de nouvelle génération“. Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0046.
Der volle Inhalt der QuelleThe present study aims at characterizing the aerodynamic instabilities involved in a centrifugal compressor designed by Turbomeca, by means of numerical simulation. This compressor is composed of inlet guide vanes, a centrifugal impeller, a radial vaned diffuser and axial outlet guide vanes. The test module, named Turbocel, will be delivered to the LMFA in 2016. Thus, the results presented in this manuscript are only based on CFD, although some of them are compared to experimental results obtained by Turbomeca on a close configuration.RANS and URANS simulations are performed for several rotational speeds, using the elsA software.Two methodological key points are to be emphasized:- As the flow in both the impeller and the radial diffuser is transonic at high rotational speed, steady RANS simulations cannot provide a satisfactory description of the physical phenomena taking place. This can be explained by the use of the mixing plane approach which prevents shock waves to extend upstream the rotor-stator interfaces, and which impacts the flow field predicted as well as the prediction of the stable operating range.- Below a given massflow rate, URANS simulations covering the spatial period of the compressor prove that the stage behavior does not obey to the single passage spatio-temporal periodicity anymore. An unstable operating range then appears at all the simulated rotational speeds. At low rotational speed, another stable range is however obtained if the compressor is further throttled’ A new periodicity arises on this massflow range, provided that the stator domain is extended to two neighboring blade passages. Concerning the stability domains of Turbocel, different evolutions are obtained depending on the rotational speed:- At high rotational speed, a low frequency phenomenon starts to develop near the peak efficiency point and its intensity keeps increasing until surge happens.- At low rotational speed, a low frequency signature also appears near the peak efficiency point, but it then vanishes when the compressor is further throttled, so that only a restricted operating range exhibits this instability. It then gives rise to a second stable operating range which can be described numerically, ending with surge itself. The low frequency signature is attributed to the enhancement of a flow recirculation in the inducer which, once fully established, is quasi-steady. The numerical results underline that the source of severe instability in the compressor comes from the vaned diffuser. Depending on the operating point, this component can adopt different behaviors, between which a relative continuity exists, and its performances decrease when the massflow rate decresases. The overall stage performances prove that at high rotational speed, the global stability is driven by the semi-vaneless diffuser and depends on the flow developing in the radial diffuser. Finally, in order to extend the stable operating range of the compressor, a flow control strategy based on boundary layer suction has also been determined in the diffuser. Its impact on the performances of Turbocel will be deeply studied later on
Godard, Antoine. „Etude numérique et expérimentale d'un compresseur aspiré“. Phd thesis, Ecole Centrale de Lyon, 2010. http://tel.archives-ouvertes.fr/tel-00728814.
Der volle Inhalt der Quelle