Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „ECG extraction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "ECG extraction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "ECG extraction"
Gohil, Heena Jaysukh. „Real Time ECG Extraction“. International Journal for Research in Applied Science and Engineering Technology 8, Nr. 2 (29.02.2020): 716–21. http://dx.doi.org/10.22214/ijraset.2020.2110.
Der volle Inhalt der QuelleR, Rasu, P. Shanmugasundaram und N. Santhiyakumari. „Fetal ECG Extraction from Maternal ECG using MATLAB“. i-manager's Journal on Digital Signal Processing 3, Nr. 1 (15.03.2015): 7–11. http://dx.doi.org/10.26634/jdp.3.1.3284.
Der volle Inhalt der QuelleChandra, Shanti, Ambalika Sharma und Girish Kumar Singh. „Feature extraction of ECG signal“. Journal of Medical Engineering & Technology 42, Nr. 4 (19.05.2018): 306–16. http://dx.doi.org/10.1080/03091902.2018.1492039.
Der volle Inhalt der QuelleChoi, Chul-Hyung, Young-Pil Kim, Si-Kyung Kim, Jeong-Bong You und Bong-Gyun Seo. „Mobile ECG Measurement System Design with Fetal ECG Extraction Capability“. Transactions of The Korean Institute of Electrical Engineers 66, Nr. 2 (01.02.2017): 431–38. http://dx.doi.org/10.5370/kiee.2017.66.2.431.
Der volle Inhalt der QuelleHASAN, M. A., M. I. IBRAHIMY und M. B. I. REAZ. „Fetal ECG Extraction from Maternal Abdominal ECG Using Neural Network“. Journal of Software Engineering and Applications 02, Nr. 05 (2009): 330–34. http://dx.doi.org/10.4236/jsea.2009.25043.
Der volle Inhalt der QuelleSelva Viji, C. Kezi, M. E. ,. P. Kanagasabap . und Stanley Johnson . „Fetal ECG Extraction using Softcomputing Technique“. Journal of Applied Sciences 6, Nr. 2 (01.01.2006): 251–56. http://dx.doi.org/10.3923/jas.2006.251.256.
Der volle Inhalt der QuelleBhyri, Channappa, S. T. Hamde und L. M. Waghmare. „ECG feature extraction and disease diagnosis“. Journal of Medical Engineering & Technology 35, Nr. 6-7 (20.07.2011): 354–61. http://dx.doi.org/10.3109/03091902.2011.595530.
Der volle Inhalt der QuelleRaj, Chinmayee G., V. Sri Harsha, B. Sai Gowthami und Sunitha R. „Virtual Instrumentation Based Fetal ECG Extraction“. Procedia Computer Science 70 (2015): 289–95. http://dx.doi.org/10.1016/j.procs.2015.10.093.
Der volle Inhalt der QuelleJen, K. K., und Y. R. Hwang. „Long-term ECG signal feature extraction“. Journal of Medical Engineering & Technology 31, Nr. 3 (Januar 2007): 202–9. http://dx.doi.org/10.1080/03091900600718675.
Der volle Inhalt der QuelleS V, Vinoth, und Kumarganesh S. „Fetal ECG Extraction using LMS Filter“. International Journal of Electronics and Communication Engineering 3, Nr. 11 (25.11.2016): 3–5. http://dx.doi.org/10.14445/23488549/ijece-v3i11p111.
Der volle Inhalt der QuelleDissertationen zum Thema "ECG extraction"
Peddaneni, Hemanth. „Comparison of algorithms for fetal ECG extraction“. [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0007480.
Der volle Inhalt der QuelleNiknazar, Mohammad. „Extraction et débruitage de signaux ECG du foetus“. Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00954175.
Der volle Inhalt der QuelleMichael, Pratheek. „Simulation Studies on ECG Vector Dipole Extraction in Liquid Medium“. Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6625.
Der volle Inhalt der QuelleDarrington, John Mark. „Real time extraction of ECG fiducial points using shape based detection“. University of Western Australia. School of Computer Science and Software Engineering, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0152.
Der volle Inhalt der QuelleBin, Safie Sairul Izwan. „Pulse domain novel feature extraction methods with application to ecg biometric authentication“. Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=17829.
Der volle Inhalt der QuelleJanjarasjitt, Suparerk. „A NEW QRS DETECTION AND ECG SIGNAL EXTRACTION TECHNIQUE FOR FETAL MONITORING“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1144263231.
Der volle Inhalt der QuelleTang, Yu. „Feature Extraction for the Cardiovascular Disease Diagnosis“. Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-33742.
Der volle Inhalt der QuelleIslam, Mohd Siblee. „A Decision Support System for StressDiagnosis using ECG Sensor“. Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-11769.
Der volle Inhalt der QuelleKoc, Bengi. „Detection And Classification Of Qrs Complexes From The Ecg Recordings“. Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12610328/index.pdf.
Der volle Inhalt der Quelles method that utilizes the morphological features of the ECG signal (Method III) and a neural network based QRS detection method (Method IV). Overall sensitivity and positive predictivity values above 99% are achieved with each method, which are compatible with the results reported in literature. Method III has the best overall performance among the others with a sensitivity of 99.93% and a positive predictivity of 100.00%. Based on the detected QRS complexes, some features were extracted and classification of some beat types were performed. In order to classify the detected beats, three methods were taken from literature and implemented in this thesis: a Kth nearest neighbor rule based method (Method I), a neural network based method (Method II) and a rule based method (Method III). Overall results of Method I and Method II have sensitivity values above 92.96%. These findings are also compatible with those reported in the related literature. The classification made by the rule based approach, Method III, did not coincide well with the annotations provided in the MIT-BIH database. The best results were achieved by Method II with the overall sensitivity value of 95.24%.
Noorzadeh, Saman. „Extraction de l'ECG du foetus et de ses caractéristiques grâce à la multi-modalité“. Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT135/document.
Der volle Inhalt der QuelleFetal health must be carefully monitored during pregnancy to detect early fetal cardiac diseases, and provide appropriate treatment. Technological development allows a monitoring during pregnancy using the non-invasive fetal electrocardiogram (ECG). Noninvasive fetal ECG is a method not only to detect fetal heart rate, but also to analyze the morphology of fetal ECG, which is now limited to analysis of the invasive ECG during delivery. However, the noninvasive fetal ECG recorded from the mother's abdomen is contaminated with several noise sources among which the maternal ECG is the most prominent.In the present study, the problem of noninvasive fetal ECG extraction is tackled using multi-modality. Beside ECG signal, this approach benefits from the Phonocardiogram (PCG) signal as another signal modality, which can provide complementary information about the fetal ECG.A general method for quasi-periodic signal analysis and modeling is first described and its application to ECG denoising and fetal ECG extraction is explained. Considering the difficulties caused by the synchronization of the two modalities, the event detection in the quasi-periodic signals is also studied which can be specified to the detection of the R-peaks in the ECG signal.The method considers both clinical and signal processing aspects of the application on ECG and PCG signals. These signals are introduced and their characteristics are explained. Then, using PCG signal as the reference, the Gaussian process modeling is employed to provide the possibility of flexible models as nonlinear estimations. The method also tries to facilitate the practical implementation of the device by using the less possible number of channels and also by using only 1-bit reference signal.The method is tested on synthetic data and also on real data that is recorded to provide a synchronous multi-modal data set.Since a standard agreement for the acquisition of these modalities is not yet taken into much consideration, the factors which influence the signals in recording procedure are introduced and their difficulties and effects are investigated.The results show that the multi-modal approach is efficient in the detection of R-peaks and so in the extraction of fetal heart rate, and it also provides the results about the morphology of fetal ECG
Bücher zum Thema "ECG extraction"
Hu, Li, und Zhiguo Zhang, Hrsg. EEG Signal Processing and Feature Extraction. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9113-2.
Der volle Inhalt der QuelleBlakemore, Robert John. The determination of change in PCB concentration by GC/MS with Soxhlet extraction: And GC/ECD with automated solvent extraction from Portsmouth Harbour sediment. Portsmouth: University of Portsmouth, School of Pharmacy and Biomedical Sciences, 1999.
Den vollen Inhalt der Quelle findenLee, Jimmy Kim-Mil. ECG feature extraction without fiducial detection: Applications to ECG biometric recognition. 2006.
Den vollen Inhalt der Quelle findenHu, Li, und Zhiguo Zhang. EEG Signal Processing and Feature Extraction. Springer, 2019.
Den vollen Inhalt der Quelle findenLeong, Wai Yie. EEG Signal Processing: Feature extraction, selection and classification methods. The Institution of Engineering and Technology, 2019.
Den vollen Inhalt der Quelle findenWai Yie Leong, Hrsg. EEG Signal Processing: Feature extraction, selection and classification methods. Institution of Engineering and Technology, 2019. http://dx.doi.org/10.1049/pbhe016e.
Der volle Inhalt der QuelleHancock, Kathleen J., und Juliann Emmons Allison, Hrsg. The Oxford Handbook of Energy Politics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780190861360.001.0001.
Der volle Inhalt der QuelleKumar, Nilesh, Nilesh Ramesh Kulkarni und Vinayak Bairagi. EEG-Based Diagnosis of Alzheimer Disease: A Review and Novel Approaches for Feature Extraction and Classification Techniques. Elsevier Science & Technology Books, 2018.
Den vollen Inhalt der Quelle findenPrasad, Girijesh. Brain–machine interfaces. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0049.
Der volle Inhalt der QuelleBaker, Maria, Eva Ramirez-Llodra und Paul Tyler, Hrsg. Natural Capital and Exploitation of the Deep Ocean. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198841654.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "ECG extraction"
Li, Dong, Kai Huang, Hanlin Zhang und Liqing Zhang. „UMPCA Based Feature Extraction for ECG“. In Advances in Neural Networks – ISNN 2013, 383–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39065-4_47.
Der volle Inhalt der QuelleWang, Jian, Yanwei Pang, Yuqing He und Jing Pan. „ECG Waveform Extraction from Paper Records“. In Lecture Notes in Computer Science, 505–12. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71589-6_44.
Der volle Inhalt der QuelleDong, Kejun, Li Zhao und Chengyu Liu. „Respiratory Signal Extraction from ECG Signal“. In Feature Engineering and Computational Intelligence in ECG Monitoring, 227–43. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3824-7_13.
Der volle Inhalt der QuelleLuo, Zhongliang, Jingguo Dai und Zhuohua Duan. „The Comparison of Fetal ECG Extraction Methods“. In Lecture Notes in Electrical Engineering, 3469–74. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7618-0_452.
Der volle Inhalt der QuelleNair, Mahesh A. „ECG Feature Extraction using Time Frequency Analysis“. In Innovations in Computing Sciences and Software Engineering, 461–66. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9112-3_78.
Der volle Inhalt der QuelleKaleem, Abdullah Mohammed, und Rajendra D. Kokate. „Performance Evaluation of Fetal ECG Extraction Algorithms“. In Lecture Notes in Electrical Engineering, 187–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5802-9_17.
Der volle Inhalt der QuelleLamesgin, Gizeaddis, Yonas Kassaw und Dawit Assefa. „Extraction of Fetal ECG from Abdominal ECG and Heart Rate Variability Analysis“. In Advances in Intelligent Systems and Computing, 65–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13572-4_5.
Der volle Inhalt der QuelleKuzilek, Jakub, Lenka Lhotska und Michal Huptych. „Extraction of beats from noisy ECG using ICA“. In IFMBE Proceedings, 469–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_124.
Der volle Inhalt der QuelleP., Anita, und K. T. Talele. „ECG Feature Extraction Using Wavelet Based Derivative Approach“. In Communications in Computer and Information Science, 239–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20209-4_34.
Der volle Inhalt der QuelleGerman-Sallo, Z. „Efficient ECG Signal Parameters Extraction Using Multiresolution Analysis“. In IFMBE Proceedings, 227–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04292-8_50.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "ECG extraction"
Serdengecti, Cigdem, Mehmet Engin, Erkan Zeki Engin und Soner Balci. „Extraction of fetal ECG from maternal ECG“. In 2009 14th National Biomedical Engineering Meeting. IEEE, 2009. http://dx.doi.org/10.1109/biyomut.2009.5130355.
Der volle Inhalt der QuelleTekeste, Temesghen, Nourhan Bayasi, Hani Saleh, Ahsan Khandoker, Baker Mohammad, Mahmoud Al-Qutayri und Mohammed Ismail. „Adaptive ECG interval extraction“. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2015. http://dx.doi.org/10.1109/iscas.2015.7168804.
Der volle Inhalt der QuelleGualsaqui Miranda, Marco V., Ivan P. Vizcaino Espinosa und Marco J. Flores Calero. „ECG signal features extraction“. In 2016 IEEE Ecuador Technical Chapters Meeting (ETCM). IEEE, 2016. http://dx.doi.org/10.1109/etcm.2016.7750859.
Der volle Inhalt der QuelleAnisha, M., S. S. Kumar und M. Benisha. „Survey on Fetal ECG extraction“. In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). IEEE, 2014. http://dx.doi.org/10.1109/iccicct.2014.6993123.
Der volle Inhalt der QuelleSutar, Rajendra G., A. G. Kothari und A. G. Keskar. „ECG Feature Extraction Using LCAD“. In 2012 International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2012. http://dx.doi.org/10.1109/csnt.2012.31.
Der volle Inhalt der QuellePeshave, Juie D., und Rajveer Shastri. „Feature extraction of ECG signal“. In 2014 International Conference on Communications and Signal Processing (ICCSP). IEEE, 2014. http://dx.doi.org/10.1109/iccsp.2014.6950168.
Der volle Inhalt der QuelleBhoraniya, Dixit V., und Rahul K. Kher. „Motion artifacts extraction using dwt from ambulatory ECG (A-ECG)“. In 2014 International Conference on Communications and Signal Processing (ICCSP). IEEE, 2014. http://dx.doi.org/10.1109/iccsp.2014.6950112.
Der volle Inhalt der QuelleRajesh, A. V., und R. Ganesan. „Comprehensive study on fetal ECG extraction“. In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). IEEE, 2014. http://dx.doi.org/10.1109/iccicct.2014.6993141.
Der volle Inhalt der QuelleHassanpour, Hamid, und Amin Parsaei. „Fetal ECG Extraction Using Wavelet Transform“. In 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA'06). IEEE, 2006. http://dx.doi.org/10.1109/cimca.2006.98.
Der volle Inhalt der QuelleEspiritu-Santo-Rincon, Antonio, und Cuauhtemoc Carbajal-Fernandez. „ECG feature extraction via waveform segmentation“. In 2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2010) (Formerly known as ICEEE). IEEE, 2010. http://dx.doi.org/10.1109/iceee.2010.5608655.
Der volle Inhalt der Quelle