Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dynamics of optimization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dynamics of optimization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dynamics of optimization"
Boettcher, Stefan, und Allon G. Percus. „Optimization with Extremal Dynamics“. Physical Review Letters 86, Nr. 23 (04.06.2001): 5211–14. http://dx.doi.org/10.1103/physrevlett.86.5211.
Der volle Inhalt der QuelleBennett, J. A., und G. J. Park. „Automotive Occupant Dynamics Optimization“. Shock and Vibration 2, Nr. 6 (1995): 471–79. http://dx.doi.org/10.1155/1995/682694.
Der volle Inhalt der QuelleTamura, Kenichi, und Keiichiro Yasuda. „Spiral Dynamics Inspired Optimization“. Journal of Advanced Computational Intelligence and Intelligent Informatics 15, Nr. 8 (20.10.2011): 1116–22. http://dx.doi.org/10.20965/jaciii.2011.p1116.
Der volle Inhalt der QuelleGay-Balmaz, François, Darryl D. Holm und Tudor S. Ratiu. „Geometric dynamics of optimization“. Communications in Mathematical Sciences 11, Nr. 1 (2013): 163–231. http://dx.doi.org/10.4310/cms.2013.v11.n1.a6.
Der volle Inhalt der QuelleBarettin, Daniele, und Paolo Sibani. „Optimization by record dynamics“. Computer Physics Communications 185, Nr. 3 (März 2014): 730–35. http://dx.doi.org/10.1016/j.cpc.2013.10.030.
Der volle Inhalt der QuelleBoettcher, Stefan, und Allon G. Percus. „Optimization with extremal dynamics“. Complexity 8, Nr. 2 (November 2002): 57–62. http://dx.doi.org/10.1002/cplx.10072.
Der volle Inhalt der QuelleSchuster, Peter, und Karl Sigmund. „Dynamics of Evolutionary Optimization“. Berichte der Bunsengesellschaft für physikalische Chemie 89, Nr. 6 (Juni 1985): 668–82. http://dx.doi.org/10.1002/bbpc.19850890620.
Der volle Inhalt der QuelleZhang, Jing, Xiaokai Zhu, Te Chen und Guowei Dou. „Optimal Dynamics Control in Trajectory Tracking of Industrial Robots Based on Adaptive Gaussian Pseudo-Spectral Algorithm“. Algorithms 18, Nr. 1 (03.01.2025): 18. https://doi.org/10.3390/a18010018.
Der volle Inhalt der QuelleLurie, K. A. „MATERIAL OPTIMIZATION AND DYNAMIC MATERIALS“. Cybernetics and Physics, Volume 10, 2021, Number 2 (01.10.2021): 84–87. http://dx.doi.org/10.35470/2226-4116-2021-10-2-84-87.
Der volle Inhalt der QuelleJiang, Shuai, Yuanpeng Lin, Jianan Liu, Linjing Xiao und Shuaishuai Zhang. „Dynamics Optimization Research and Dynamics Accuracy and Reliability Analysis of a Multi-Link Mechanism with Clearances“. Machines 10, Nr. 8 (16.08.2022): 698. http://dx.doi.org/10.3390/machines10080698.
Der volle Inhalt der QuelleDissertationen zum Thema "Dynamics of optimization"
Marsden, Christopher J. „Nonlinear dynamics of pattern recognition and optimization“. Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10694.
Der volle Inhalt der QuelleZhu, Yitao. „Sensitivity Analysis and Optimization of Multibody Systems“. Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/71649.
Der volle Inhalt der QuellePh. D.
Lei, Zhen. „Isogeometric shell analysis and optimization for structural dynamics“. Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0028/document.
Der volle Inhalt der QuelleIsogeometric method is a promising method in bridging the gap between the computer aided design and computer aided analysis. No information is lost when transferring the design model to the analysis model. It is a great advantage over the traditional finite element method, where the analysis model is only an approximation of the design model. It is advantageous for structural optimization, the optimal structure obtained will be a design model. In this thesis, the research is focused on the fast three dimensional free shape optimization with isogeometric shell elements. The related research, the development of isogeometric shell elements, the patch coupling in isogeometric analysis, the modal synthesis with isogeometric elements are also studied. We proposed a series of mixed grid Reissner-Minlin shell formulations. It adopts both the interpolatory basis functions, which are from the traditional FEM, and the non-interpolatory basis functions, which are from IGA, to approximate the unknown elds. It gives a natural way to define the fiber vectors in IGA Reissner-Mindlin shell formulations, where the non-interpolatory nature of IGA basis functions causes complexity. It is also advantageous for applying the rotational boundary conditions. A modified reduce quadrature scheme was also proposed to improve the quadrature eficiency, at the same time, relieve the locking in the shell formulations. We gave a method for patch coupling in isogeometric analysis. It is used to connect the adjacent patches. The classical modal synthesis method, the fixed interface Craig-Bampton method, is also used as well as the isogeometric Kirchhoff-Love shell elements. The key problem is also the connection between adjacent patches. The modal synthesis method can largely reduce the time costs in analysis concerning structural dynamics. This part of work lays a foundation for the fast shape optimization of built-up structures, where the design variables are only relevant to certain substructures. We developed a fast shape optimization framework for three dimensional thin wall structure design. The thin wall structure is modelled with isogeometric Kirchhoff-Love shell elements. The analytical sensitivity analysis is the key focus, since the gradient base optimization is normally more fast. There are two models in most optimization problem, the design model and the analysis model. The design variables are defined in the design model, however the analytical sensitivity is normally obtained from the analysis model. Although it is possible to use the same model in analysis and design under isogeomeric framework, it might give either a highly distorted optimum structure or a unreliable structural response. We developed a sensitivity mapping scheme to resolve this problem. The design sensitivity is extracted from the analysis model mesh level sensitivity, which is obtained by the discrete analytical sensitivity analysis. It provides exibility for the design variable definition. The correctness of structure response is also ensured. The modal synthesis method is also used to further improve the optimization eficiency for the built-up structure optimization concerning structural dynamics criteria
Lundvall, Johan. „Data Assimilation in Fluid Dynamics using Adjoint Optimization“. Doctoral thesis, Linköping : Matematiska institutionen, Linköpings universitet, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9684.
Der volle Inhalt der QuelleROUSSEAU, Yannick, Igor MEN'SHOV und Yoshiaki NAKAMURA. „Morphing-Based Shape Optimization in Computational Fluid Dynamics“. 日本航空宇宙学会, 2007. http://hdl.handle.net/2237/13876.
Der volle Inhalt der QuelleMunro, Bruce C. „Airplane trajectory expansion for dynamics inversion“. Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07102009-040551/.
Der volle Inhalt der QuelleWu, Kailiang. „Modeling the semiconductor industry dynamics“. Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45280.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 89-92).
The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage supply chain planning and investment in technology transitions. Better understanding the essence of the industry dynamics will help firms win competitive advantages in this turbulent market. In this thesis, we will study semiconductor industry dynamics from three different angles: quantitative modeling, industry dynamics simulation, and strategic analysis. First, we develop a stochastic linear optimization model to address the supplier's "order fulfillment dilemma" suggested by previous empirical studies. The model provides optimal equipment production decisions that minimize the total cost under stochastic demand. To solve the large scale problem, we introduce the Bender's Decomposition, which is proven to outperform the pure Simplex method. Furthermore, we extend the basic model to multiple periods, allowing equipment inventory planning over a period of time. Second, we build a macro-level industry dynamic model using the methodology of System Dynamics. The model includes components of electronics demand projection, fabrication capacity allocation, fabrication cost structure, technology roadmapping as well as equipment production and R&D. The model generates projections of demand , industry productivity, schedule of building new fabrication, adoption of the latest process technology, etc., which are validated by actual industry data. In addition, we devise a control panel in the software that enables the users to implement flexible scenario and sensitivity analysis. Third, we propose a strategic framework for companies to pinpoint the root causes of the supply-demand mismatch problem.
(cont.) This framework considers long lead times, fast clockspeeds, Moore's Law, and risky product and technology, which transitions contribute to the pronounced volatility amplification occurring in the semiconductor industry. This framework, along with several industry successful practices, will assist companies to mitigate the demand volatility and improve their supply chain performance.
by Kailiang Wu.
S.M.
Williams, Nathan A. „Drag optimization of light trucks using computational fluid dynamics“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03sep%5FWilliams%5FNathan.pdf.
Der volle Inhalt der QuelleThesis advisor(s): Joshua H. Gordis, Dan Boger. Includes bibliographical references (p. 157-158). Also available online.
Kwok, Terence 1973. „Neural networks with nonlinear system dynamics for combinatorial optimization“. Monash University, School of Business Systems, 2001. http://arrow.monash.edu.au/hdl/1959.1/8928.
Der volle Inhalt der QuelleFahrenkopf, Max A. „Optimization, Dynamics and Stability of Non-Linear Separation Processes“. Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/390.
Der volle Inhalt der QuelleBücher zum Thema "Dynamics of optimization"
Thévenin, Dominique, und Gábor Janiga, Hrsg. Optimization and Computational Fluid Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72153-6.
Der volle Inhalt der QuelleDockner, Engelbert J., Richard F. Hartl, Mikulas Luptačik und Gerhard Sorger, Hrsg. Optimization, Dynamics, and Economic Analysis. Heidelberg: Physica-Verlag HD, 2000. http://dx.doi.org/10.1007/978-3-642-57684-3.
Der volle Inhalt der Quelle1966-, Thévenin Dominique, und Janiga Gábor, Hrsg. Optimization and computational fluid dynamics. Berlin: Springer Verlag, 2008.
Den vollen Inhalt der Quelle findenPinto, Alberto, und David Zilberman, Hrsg. Modeling, Dynamics, Optimization and Bioeconomics IV. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78163-7.
Der volle Inhalt der QuellePinto, Alberto Adrego, und David Zilberman, Hrsg. Modeling, Dynamics, Optimization and Bioeconomics I. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04849-9.
Der volle Inhalt der QuelleJunge, Oliver, Oliver Schütze, Gary Froyland, Sina Ober-Blöbaum und Kathrin Padberg-Gehle, Hrsg. Advances in Dynamics, Optimization and Computation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51264-4.
Der volle Inhalt der QuelleMatsumoto, Akio, Hrsg. Optimization and Dynamics with Their Applications. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4214-0.
Der volle Inhalt der QuellePinto, Alberto A., und David Zilberman, Hrsg. Modeling, Dynamics, Optimization and Bioeconomics III. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74086-7.
Der volle Inhalt der QuellePinto, Alberto A., und David Zilberman, Hrsg. Modeling, Dynamics, Optimization and Bioeconomics II. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55236-1.
Der volle Inhalt der QuelleN, Bolotnik N., und Gradet͡s︡kiǐ V. G, Hrsg. Manipulation robots: Dynamics, control, and optimization. Boca Raton: CRC Press, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Dynamics of optimization"
Stavroulakis, Georgios E. „Transient Dynamics“. In Applied Optimization, 187–223. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0019-3_7.
Der volle Inhalt der QuelleJazar, Reza N. „Suspension Optimization“. In Vehicle Dynamics, 939–84. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8544-5_14.
Der volle Inhalt der QuelleGandolfo, Giancarlo. „Dynamic Optimization“. In Economic Dynamics, 597–642. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03871-6_27.
Der volle Inhalt der QuelleJazar, Reza N. „Suspension Optimization“. In Vehicle Dynamics, 883–943. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53441-1_13.
Der volle Inhalt der QuelleJazar, Reza N. „Suspension Optimization“. In Vehicle Dynamics, 1033–94. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-74458-7_13.
Der volle Inhalt der QuelleStavroulakis, Georgios E. „Steady-State Dynamics“. In Applied Optimization, 157–86. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0019-3_6.
Der volle Inhalt der QuelleGhafil, Hazim Nasir, und Károly Jármai. „Dynamics“. In Optimization for Robot Modelling with MATLAB, 157–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40410-9_7.
Der volle Inhalt der QuelleHritonenko, Natali, und Yuri Yatsenko. „Aggregate Models of Economic Dynamics“. In Applied Optimization, 27–40. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4419-9733-3_2.
Der volle Inhalt der QuelleLu, Yong-Zai, Yu-Wang Chen, Min-Rong Chen, Peng Chen und Guo-Qiang Chen. „Multiobjective Optimization with Extremal Dynamics“. In Extremal Optimization, 165–212. Boca Raton : Auerbach Publications, 2015.: Auerbach Publications, 2018. http://dx.doi.org/10.1201/b19572-6.
Der volle Inhalt der QuelleCoyle, R. G. „Optimization in practice“. In System Dynamics Modelling, 249–96. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-2935-8_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dynamics of optimization"
Karpov, N. S., I. A. Alexandrov und A. K. Lampezhev. „Optimization of Group Loading of Equipment for Multiproduct Manufacturing“. In 2024 Dynamics of Systems, Mechanisms and Machines (Dynamics), 1–5. IEEE, 2024. https://doi.org/10.1109/dynamics64718.2024.10838665.
Der volle Inhalt der QuelleKhusainov, Emil, und Vasily Anikin. „Methodology of Construction of Heuristic Algorithm for Optimization of Electrical Engineering Complexes“. In 2024 Dynamics of Systems, Mechanisms and Machines (Dynamics), 1–5. IEEE, 2024. https://doi.org/10.1109/dynamics64718.2024.10838661.
Der volle Inhalt der QuelleKulbida, U. N., O. N. Kaneva und A. V. Zykina. „Media planning optimization treatment“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005673.
Der volle Inhalt der QuelleSemenikhin, Sviatoslav, und Liudmila Denisova. „Learning to rank based on multi-criteria optimization“. In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239503.
Der volle Inhalt der QuelleDenisova, Liudmila A., und Vitalii A. Meshcheryakov. „Control system synthesis based on multicriteria optimization using genetic algorithm“. In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239446.
Der volle Inhalt der QuelleZadorozhnyi, V. N., und T. R. Zakharenkova. „Optimization of channel distribution over nodes in networks with fractal traffic“. In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819112.
Der volle Inhalt der QuelleMakkapati, Satheesh, Steve Poe, Kim Ku und James Dopirak. „Valvetrain dynamics optimization“. In 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-4785.
Der volle Inhalt der QuelleAnfilofiev, A. E., I. A. Hodashinsky und O. O. Evsutin. „Algorithm for tuning fuzzy network attack classifiers based on invasive weed optimization“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005632.
Der volle Inhalt der QuelleKolokolov, Alexander A., Alexandra V. Artemova und Irina E. Kan. „Computer-aided design of some assortment groups of complex products using discrete optimization“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005667.
Der volle Inhalt der QuelleMashkov, Yury K., Dmitry N. Korotaev, Marina Yu Baybaratskaya und Botagoz Sh Alimbaeva. „Research and optimization of technological modes of electro-spark processing details of tribosistem“. In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005682.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dynamics of optimization"
Arguello, Bryan, Nathan Stewart, Matthew Hoffman, Bethany Nicholson, Richard Garrett und Emily Moog. Dynamics Informed Optimization forResilient Energy Systems. Office of Scientific and Technical Information (OSTI), Oktober 2022. http://dx.doi.org/10.2172/1893998.
Der volle Inhalt der QuelleNegre, Christian, Anders Niklasson, Joshua Finkelstein und Michael Wall. Next Generation Quantum Based Molecular Dynamics: Hybrid Performance Optimization. Office of Scientific and Technical Information (OSTI), März 2023. http://dx.doi.org/10.2172/1963617.
Der volle Inhalt der QuelleRamamurti, Ravi, und William C. Sandberg. Computational Fluid Dynamics Study for Optimization of a Fin Design. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada441476.
Der volle Inhalt der QuelleBewley, Thomas R. Adjoint-Based Optimization and Control of Complex Dynamics in Fluid Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada441360.
Der volle Inhalt der QuellePulay, Peter, und Jon Baker. Efficient Modeling of Large Molecules: Geometry Optimization Dynamics and Correlation Energy. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada416248.
Der volle Inhalt der QuelleShanbhag, Uday V., Tamer Basar, Sean Meyn und Prashant Mehta. EXTENDING THE REALM OF OPTIMIZATION FOR COMPLEX SYSTEMS: UNCERTAINTY, COMPETITION, AND DYNAMICS. Office of Scientific and Technical Information (OSTI), Oktober 2013. http://dx.doi.org/10.2172/1095695.
Der volle Inhalt der QuellePasupuleti, Murali Krishna. Mathematical Modeling for Machine Learning: Theory, Simulation, and Scientific Computing. National Education Services, März 2025. https://doi.org/10.62311/nesx/rriv125.
Der volle Inhalt der QuelleBylsma, Wesley. Simplified Dynamics and Mobility Factors for Multi-Disciplinary Optimization of an Occupant Centric Platform. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada559920.
Der volle Inhalt der QuelleSlapikas, Robert, Anindya Ghoshal, Luis Bravo, Muthuvel Murugan und Douglas Wolfe. Molecular Dynamics Analysis and Optimization of Ultra-High-Temperature Ceramic (UHTC)Compositions for Propulsion. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, Juni 2022. http://dx.doi.org/10.21236/ad1171344.
Der volle Inhalt der QuelleSundaryanto, Bagus, und Yanis C. Yortsos. Optimization of Fluid Front Dynamics in Porous Media Using Rate Control: I. Equal Mobility Fluids. Office of Scientific and Technical Information (OSTI), Oktober 1999. http://dx.doi.org/10.2172/13828.
Der volle Inhalt der Quelle