Auswahl der wissenschaftlichen Literatur zum Thema „Dynamical Systems“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dynamical Systems" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Dynamical Systems"

1

Hornstein, John, und V. I. Arnold. „Dynamical Systems.“ American Mathematical Monthly 96, Nr. 9 (November 1989): 861. http://dx.doi.org/10.2307/2324864.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chillingworth, D. R. J., D. K. Arrowsmith und C. M. Place. „Dynamical Systems“. Mathematical Gazette 79, Nr. 484 (März 1995): 233. http://dx.doi.org/10.2307/3620112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jacob, G. „Dynamical systems“. Mathematics and Computers in Simulation 42, Nr. 4-6 (November 1996): 639. http://dx.doi.org/10.1016/s0378-4754(97)84413-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rota, Gian-Carlo. „Dynamical systems“. Advances in Mathematics 58, Nr. 3 (Dezember 1985): 322. http://dx.doi.org/10.1016/0001-8708(85)90129-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Meiss, James. „Dynamical systems“. Scholarpedia 2, Nr. 2 (2007): 1629. http://dx.doi.org/10.4249/scholarpedia.1629.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Li, Zhiming, Minghan Wang und Guo Wei. „Induced hyperspace dynamical systems of symbolic dynamical systems“. International Journal of General Systems 47, Nr. 8 (03.10.2018): 809–20. http://dx.doi.org/10.1080/03081079.2018.1524467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nasim, Imran, und Michael E. Henderson. „Dynamically Meaningful Latent Representations of Dynamical Systems“. Mathematics 12, Nr. 3 (02.02.2024): 476. http://dx.doi.org/10.3390/math12030476.

Der volle Inhalt der Quelle
Annotation:
Dynamical systems are ubiquitous in the physical world and are often well-described by partial differential equations (PDEs). Despite their formally infinite-dimensional solution space, a number of systems have long time dynamics that live on a low-dimensional manifold. However, current methods to probe the long time dynamics require prerequisite knowledge about the underlying dynamics of the system. In this study, we present a data-driven hybrid modeling approach to help tackle this problem by combining numerically derived representations and latent representations obtained from an autoencoder. We validate our latent representations and show they are dynamically interpretable, capturing the dynamical characteristics of qualitatively distinct solution types. Furthermore, we probe the topological preservation of the latent representation with respect to the raw dynamical data using methods from persistent homology. Finally, we show that our framework is generalizable, having been successfully applied to both integrable and non-integrable systems that capture a rich and diverse array of solution types. Our method does not require any prior dynamical knowledge of the system and can be used to discover the intrinsic dynamical behavior in a purely data-driven way.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Caballero, Rubén, Alexandre N. Carvalho, Pedro Marín-Rubio und José Valero. „Robustness of dynamically gradient multivalued dynamical systems“. Discrete & Continuous Dynamical Systems - B 24, Nr. 3 (2019): 1049–77. http://dx.doi.org/10.3934/dcdsb.2019006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Landry, Nicholas W., und Juan G. Restrepo. „Hypergraph assortativity: A dynamical systems perspective“. Chaos: An Interdisciplinary Journal of Nonlinear Science 32, Nr. 5 (Mai 2022): 053113. http://dx.doi.org/10.1063/5.0086905.

Der volle Inhalt der Quelle
Annotation:
The largest eigenvalue of the matrix describing a network’s contact structure is often important in predicting the behavior of dynamical processes. We extend this notion to hypergraphs and motivate the importance of an analogous eigenvalue, the expansion eigenvalue, for hypergraph dynamical processes. Using a mean-field approach, we derive an approximation to the expansion eigenvalue in terms of the degree sequence for uncorrelated hypergraphs. We introduce a generative model for hypergraphs that includes degree assortativity, and use a perturbation approach to derive an approximation to the expansion eigenvalue for assortative hypergraphs. We define the dynamical assortativity, a dynamically sensible definition of assortativity for uniform hypergraphs, and describe how reducing the dynamical assortativity of hypergraphs through preferential rewiring can extinguish epidemics. We validate our results with both synthetic and empirical datasets.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Akashi, Shigeo. „Embedding of expansive dynamical systems into symbolic dynamical systems“. Reports on Mathematical Physics 46, Nr. 1-2 (August 2000): 11–14. http://dx.doi.org/10.1016/s0034-4877(01)80003-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Dynamical Systems"

1

Behrisch, Mike, Sebastian Kerkhoff, Reinhard Pöschel, Friedrich Martin Schneider und Stefan Siegmund. „Dynamical Systems in Categories“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-129909.

Der volle Inhalt der Quelle
Annotation:
In this article we establish a bridge between dynamical systems, including topological and measurable dynamical systems as well as continuous skew product flows and nonautonomous dynamical systems; and coalgebras in categories having all finite products. We introduce a straightforward unifying definition of abstract dynamical system on finite product categories. Furthermore, we prove that such systems are in a unique correspondence with monadic algebras whose signature functor takes products with the time space. We substantiate that the categories of topological spaces, metrisable and uniformisable spaces have exponential objects w.r.t. locally compact Hausdorff, σ-compact or arbitrary time spaces as exponents, respectively. Exploiting the adjunction between taking products and exponential objects, we demonstrate a one-to-one correspondence between monadic algebras (given by dynamical systems) for the left-adjoint functor and comonadic coalgebras for the other. This, finally, provides a new, alternative perspective on dynamical systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zaks, Michael. „Fractal Fourier spectra in dynamical systems“. Thesis, [S.l.] : [s.n.], 2001. http://pub.ub.uni-potsdam.de/2002/0019/zaks.ps.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Haydn, Nicolai Theodorus Antonius. „On dynamical systems“. Thesis, University of Warwick, 1986. http://wrap.warwick.ac.uk/55813/.

Der volle Inhalt der Quelle
Annotation:
Part A. We prove existence of smooth invariant circles for area preserving twist maps close enough to integrable using renormalisation. The smoothness depends upon that of the map and the Liouville exponent of the rotation number. Part B. Ruelle and Capocaccia gave a new definition of Gibbs states on Smale spaces. Equilibrium states of suitable function there on are known to be Gibbs states. The converse in discussed in this paper, where the problem is reduced to shift spaces and there solved by constructing suitable conjugating homeomorphisms in order to verify the conditions for Gibbs states which Bowen gave for shift spaces, where the equivalence to equilibrium states is known. Part C. On subshifts which are derived from Markov partitions exists an equivalence relation which idendifies points that lie on the boundary set of the partition. In this paper we restrict to symbolic dynamics. We express the quotient space in terms of a non-transitive subshift of finite type, give a necessary and sufficient condition for the existence of a local product structure and evaluate the Zeta function of the quotient space. Finally we give an example where the quotient space is again a subshift of finite type.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Miles, Richard Craig. „Arithmetic dynamical systems“. Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323222.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Che, Dzul-Kifli Syahida. „Chaotic dynamical systems“. Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3410/.

Der volle Inhalt der Quelle
Annotation:
In this work, we look at the dynamics of four different spaces, the interval, the unit circle, subshifts of finite type and compact countable sets. We put our emphasis on chaotic dynamical system and exhibit sufficient conditions for the system on the interval, the unit circle and subshifts of finite type to be chaotic in three different types of chaos. On the interval, we reveal two weak conditions’s role as a fast track to chaotic behavior. We also explain how a strong dense periodicity property influences chaotic behavior of dynamics on the interval, the unit circle and subshifts of finite type. Finally we show how dynamics property of compact countable sets effecting the structure of the sets.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hillman, Chris. „Sturmian dynamical systems /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5806.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Umenberger, Jack. „Convex Identifcation of Stable Dynamical Systems“. Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17321.

Der volle Inhalt der Quelle
Annotation:
This thesis concerns the scalable application of convex optimization to data-driven modeling of dynamical systems, termed system identi cation in the control community. Two problems commonly arising in system identi cation are model instability (e.g. unreliability of long-term, open-loop predictions), and nonconvexity of quality-of- t criteria, such as simulation error (a.k.a. output error). To address these problems, this thesis presents convex parametrizations of stable dynamical systems, convex quality-of- t criteria, and e cient algorithms to optimize the latter over the former. In particular, this thesis makes extensive use of Lagrangian relaxation, a technique for generating convex approximations to nonconvex optimization problems. Recently, Lagrangian relaxation has been used to approximate simulation error and guarantee nonlinear model stability via semide nite programming (SDP), however, the resulting SDPs have large dimension, limiting their practical utility. The rst contribution of this thesis is a custom interior point algorithm that exploits structure in the problem to signi cantly reduce computational complexity. The new algorithm enables empirical comparisons to established methods including Nonlinear ARX, in which superior generalization to new data is demonstrated. Equipped with this algorithmic machinery, the second contribution of this thesis is the incorporation of model stability constraints into the maximum likelihood framework. Speci - cally, Lagrangian relaxation is combined with the expectation maximization (EM) algorithm to derive tight bounds on the likelihood function, that can be optimized over a convex parametrization of all stable linear dynamical systems. Two di erent formulations are presented, one of which gives higher delity bounds when disturbances (a.k.a. process noise) dominate measurement noise, and vice versa. Finally, identi cation of positive systems is considered. Such systems enjoy substantially simpler stability and performance analysis compared to the general linear time-invariant iv Abstract (LTI) case, and appear frequently in applications where physical constraints imply nonnegativity of the quantities of interest. Lagrangian relaxation is used to derive new convex parametrizations of stable positive systems and quality-of- t criteria, and substantial improvements in accuracy of the identi ed models, compared to existing approaches based on weighted equation error, are demonstrated. Furthermore, the convex parametrizations of stable systems based on linear Lyapunov functions are shown to be amenable to distributed optimization, which is useful for identi cation of large-scale networked dynamical systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Freeman, Isaac. „A modular system for constructing dynamical systems“. Thesis, University of Canterbury. Mathematics, 1998. http://hdl.handle.net/10092/8888.

Der volle Inhalt der Quelle
Annotation:
This thesis discusses a method based on the dual principle of Rössler, and developed by Deng, for systematically constructing robust dynamical systems from lower dimensional subsystems. Systems built using this method may be modified easily, and are suitable for mathematical modelling. Extensions are made to this scheme, which allow one to describe a wider range of dynamical behaviour. These extensions allow the creation of systems that reproduce qualitative features of the Lorenz Attractor (including bifurcation properties) and of Chua's circuit, but which are easily extensible.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ozaki, Junichi. „Dynamical quantum effects in cluster dynamics of Fermi systems“. 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

CAPPELLINI, VALERIO. „QUANTUM DYNAMICAL ENTROPIES AND COMPLEXITY IN DYNAMICAL SYSTEMS“. Doctoral thesis, Università degli studi di Trieste, 2004. http://thesis2.sba.units.it/store/handle/item/12545.

Der volle Inhalt der Quelle
Annotation:
2002/2003
We analyze the behavior of two quantum dynamical entropies in connection with the classical limit. Using strongly chaotic classical dynamical systems as models (Arnold Cat Maps and Sawtooth Maps), we also propose a discretization procedure that resembles quantization; even in this case, studies of quantum dynamical entropy production are carried out and the connection with the continuous limit is explored. In both case (quantization and discretization) the entropy production converge to the Kolmogorov-Sinai invariant on time-scales that are logarithmic in the quantization (discretization) parameter.
XVI Ciclo
1969
Versione digitalizzata della tesi di dottorato cartacea.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Dynamical Systems"

1

Dynamical systems. Mineola, N.Y: Dover Publications, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

1937-, Arnolʹd V. I., und Novikov Sergeĭ Petrovich, Hrsg. Integrable systems nonholonomic dynamical systems. Berlin: Springer-Verlag, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

service), SpringerLink (Online, Hrsg. Dynamical Systems. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tu, Pierre N. V. Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02779-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Arrowsmith, D. K., und C. M. Place. Dynamical Systems. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2388-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Alexander, James C., Hrsg. Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082819.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Arnold, Ludwig, Christopher K. R. T. Jones, Konstantin Mischaikow und Geneviève Raugel. Dynamical Systems. Herausgegeben von Russell Johnson. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0095237.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kurzhanski, Alexander B., und Karl Sigmund, Hrsg. Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-00748-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Barreira, Luis, und Claudia Valls. Dynamical Systems. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4835-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pickl, Stefan, und Werner Krabs. Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13722-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Dynamical Systems"

1

Greiner, Walter. „Dynamical Systems“. In Classical Mechanics, 463–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03434-3_23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

McLennan, Andrew. „Dynamical Systems“. In Advanced Fixed Point Theory for Economics, 289–330. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0710-2_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Neimark, Juri I. „Dynamical systems“. In Foundations of Engineering Mechanics, 5–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-47878-2_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Collet, Pierre, Servet Martínez und Jaime San Martín. „Dynamical Systems“. In Quasi-Stationary Distributions, 227–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33131-2_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Michel, Anthony N., Ling Hou und Derong Liu. „Dynamical Systems“. In Systems & Control: Foundations & Applications, 19–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15275-2_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bhatia, Nam Parshad, und George Philip Szegö. „Dynamical Systems“. In Stability Theory of Dynamical Systems, 5–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-62006-5_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Polderman, Jan Willem, und Jan C. Willems. „Dynamical Systems“. In Texts in Applied Mathematics, 1–25. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2953-5_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sun, Jian-Qiao, Fu-Rui Xiong, Oliver Schütze und Carlos Hernández. „Dynamical Systems“. In Cell Mapping Methods, 11–27. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0457-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bubnicki, Zdzislaw. „Dynamical Systems“. In Analysis and Decision Making in Uncertain Systems, 169–200. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3760-3_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Everest, Graham, und Thomas Ward. „Dynamical Systems“. In Heights of Polynomials and Entropy in Algebraic Dynamics, 29–50. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-3898-3_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Dynamical Systems"

1

Jiang, Yunping, und Lan Wen. „DYNAMICAL SYSTEMS“. In Proceedings of the International Conference in Honor of Professor Liao Shantao. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814527002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Andersson, Stig I., Ǻke E. Andersson und Ulf Ottoson. „Dynamical Systems“. In Conference. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814535526.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Shan-Tao, Liao, Ye Yan-Qian und Ding Tong-Ren. „Dynamical Systems“. In Special Program at Nankai Institute of Mathematics. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814535892.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

„Dynamical systems“. In Proceedings of the 7th International ISAAC Congress. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814313179_others11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Boutayeb, M. „A decentralized software sensor based approach for large-scale dynamical systems“. In 2010 4th Annual IEEE Systems Conference. IEEE, 2010. http://dx.doi.org/10.1109/systems.2010.5482344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chen, Wenchao, Bo Chen, Yicheng Liu, Qianru Zhao und Mingyuan Zhou. „Switching Poisson Gamma Dynamical Systems“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/281.

Der volle Inhalt der Quelle
Annotation:
We propose Switching Poisson gamma dynamical systems (SPGDS) to model sequentially observed multivariate count data. Different from previous models, SPGDS assigns its latent variables into mixture of gamma distributed parameters to model complex sequences and describe the nonlinear dynamics, meanwhile, capture various temporal dependencies. For efficient inference, we develop a scalable hybrid stochastic gradient-MCMC and switching recurrent autoencoding variational inference, which is scalable to large scale sequences and fast in out-of-sample prediction. Experiments on both unsupervised and supervised tasks demonstrate that the proposed model not only has excellent fitting and prediction performance on complex dynamic sequences, but also separates different dynamical patterns within them.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rabinovich, Y., A. Sinclair und A. Wigderson. „Quadratic dynamical systems“. In Proceedings., 33rd Annual Symposium on Foundations of Computer Science. IEEE, 1992. http://dx.doi.org/10.1109/sfcs.1992.267761.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pokorny, Pavel. „Excitable dynamical systems“. In 12th Czech-Slovak-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics, herausgegeben von Jan Perina, Sr., Miroslav Hrabovsky und Jaromir Krepelka. SPIE, 2001. http://dx.doi.org/10.1117/12.417864.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

YOUNG, LAI-SANG. „DYNAMICAL SYSTEMS EVOLVING“. In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ushiki, S. „Chaotic Dynamical Systems“. In RIMS Conference. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814536165.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Dynamical Systems"

1

Newhouse, Sheldon E. Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1987. http://dx.doi.org/10.21236/ada215319.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hale, Jack K. Analysis of Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada204636.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jones, Christopher, Steven Wiggins und George Haller. Dynamical Systems and Oceanography. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada279807.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jones, Christopher, Steven Wiggins und George Haller. Dynamical Systems and Oceanography. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada282635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hale, Jack K. Analysis of Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1985. http://dx.doi.org/10.21236/ada166224.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Weerasinghe, Ananda P. Controlled Stochastic Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada470046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Philip Holmes. NONLINEAR DYNAMICAL SYSTEMS - Final report. Office of Scientific and Technical Information (OSTI), Dezember 2005. http://dx.doi.org/10.2172/888778.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Denman, Matthew R., und Arlo Leroy Ames. Dynamical systems probabilistic risk assessment. Office of Scientific and Technical Information (OSTI), März 2014. http://dx.doi.org/10.2172/1177044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Barbone, Paul E. Shock Survivability of Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, Mai 1999. http://dx.doi.org/10.21236/ada363045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Glinsky, Michael Edwin, und Poul Hjorth. Helicity in Hamiltonian dynamical systems. Office of Scientific and Technical Information (OSTI), Dezember 2019. http://dx.doi.org/10.2172/1595915.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie