Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Dynamical system modeling.

Bücher zum Thema „Dynamical system modeling“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Bücher für die Forschung zum Thema "Dynamical system modeling" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Bücher für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Fuchs, Hans U. Modeling of uniform dynamical systems: A system dynamics approach. Zürich: Füssli, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Goebel, Rafal. Hybrid dynamical systems: Modeling, stability, and robustness. Princeton, N.J: Princeton University Press, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Palm, William J. Modeling, analysis, and control of dynamic systems. 2. Aufl. New York: Wiley, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Palm, William J. Modeling, analysis, and control of dynamic systems. 2. Aufl. New York: Wiley, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mukherjee, Animesh. Dynamics On and Of Complex Networks, Volume 2: Applications to Time-Varying Dynamical Systems. New York, NY: Springer New York, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Abarbanel, Henry. Predicting the Future: Completing Models of Observed Complex Systems. New York, NY: Springer New York, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Beltrami, Edward J. Mathematics for dynamic modeling. Boston: Academic Press, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Beltrami, Edward J. Mathematics for dynamic modeling. 2. Aufl. Boston: Academic Press, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Awrejcewicz, Jan, Hrsg. Dynamical Systems: Modelling. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42402-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

L, Margolis Donald, und Rosenberg Ronald C, Hrsg. System dynamics: Modeling and simulation of mechatronic systems. 3. Aufl. New York: Wiley, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Karnopp, Dean. System dynamics: Modeling and simulation of mechatronic systems. 5. Aufl. Hoboken, NJ: Wiley, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

L, Margolis Donald, und Rosenberg Ronald C, Hrsg. System dynamics: Modeling and simulation of mechatronic systems. 4. Aufl. Hoboken, N.J: John Wiley & Sons, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Coyle, R. G. System Dynamics Modelling. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-2935-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Clark, Rolf. System dynamics and modeling. Arlington, Va: Operations Research Society of America, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Vu, Hung V. Dynamic systems: Modeling and analysis. London: McGraw-Hill, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Takács, Gergely. Model Predictive Vibration Control: Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures. London: Springer London, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Fabien, Brian C. Analytical system dynamics: Modeling and simulation. New York: Springer Science+Business Media, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Duggan, Jim. System Dynamics Modeling with R. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34043-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Layer, Edward. Modelling of Simplified Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56098-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Layer, Edward. Modelling of Simplified Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Hannon, Bruce, und Matthias Ruth. Modeling Dynamic Biological Systems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05615-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ruth, Matthias, und Bruce Hannon. Modeling Dynamic Biological Systems. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0651-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Ruth, Matthias, und Bruce Hannon. Modeling Dynamic Economic Systems. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2268-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Robinson, Walter A. Modeling Dynamic Climate Systems. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0113-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Ruth, Matthias, und Bruce Hannon. Modeling Dynamic Economic Systems. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-2209-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Matthias, Ruth, Hrsg. Modeling dynamic biological systems. New York: Springer, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Ruth, Matthias. Modeling Dynamic Economic Systems. 2. Aufl. Boston, MA: Springer US, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ruth, Matthias. Modeling Dynamic Economic Systems. New York, NY: Springer New York, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

M, Hannon Bruce, Hrsg. Modeling dynamic economic systems. New York: Springer, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Torkel, Glad, Hrsg. Modeling of dynamic systems. Englewood Cliffs, N.J: PTR Prentice Hall, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Shearer, J. Lowen. Dynamic modeling and control of engineering systems. New York: Macmillan, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

P. P. J. van den Bosch und A. C. van der Klauw. Modeling, Identification and Simulation of Dynamical Systems. Taylor & Francis Group, 2020.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

P. P. J. van den Bosch und A. C. van der Klauw. Modeling, Identification and Simulation of Dynamical Systems. Taylor & Francis Group, 2020.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

P. P. J. van den Bosch und A. C. van der Klauw. Modeling, Identification and Simulation of Dynamical Systems. Taylor & Francis Group, 2020.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Goebel, Rafal, Andrew R. Teel und Ricardo G. Sanfelice. Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Goebel, Rafal, Andrew R. Teel und Ricardo G. Sanfelice. Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Modeling complex systems. 2. Aufl. New York: Springer, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Mathematics of complexity and dynamical systems. New York: Springer, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Ganguly, Niloy, Animesh Mukherjee, Monojit Choudhury, Fernando Peruani und Bivas Mitra. Dynamics On and Of Complex Networks, Volume 2: Applications to Time-Varying Dynamical Systems. Birkhäuser, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Dynamics On and Of Complex Networks Volume 2 Modeling and Simulation in Science Engineering and Technology. Springer-Verlag New York Inc., 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Abarbanel, Henry. Predicting the Future: Completing Models of Observed Complex Systems. Springer New York, 2016.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Gao, Yanhong, und Deliang Chen. Modeling of Regional Climate over the Tibetan Plateau. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.591.

Der volle Inhalt der Quelle
Annotation:
The modeling of climate over the Tibetan Plateau (TP) started with the introduction of Global Climate Models (GCMs) in the 1950s. Since then, GCMs have been developed to simulate atmospheric dynamics and eventually the climate system. As the highest and widest international plateau, the strong orographic forcing caused by the TP and its impact on general circulation rather than regional climate was initially the focus. Later, with growing awareness of the incapability of GCMs to depict regional or local-scale atmospheric processes over the heterogeneous ground, coupled with the importance of this information for local decision-making, regional climate models (RCMs) were established in the 1970s. Dynamic and thermodynamic influences of the TP on the East and South Asia summer monsoon have since been widely investigated by model. Besides the heterogeneity in topography, impacts of land cover heterogeneity and change on regional climate were widely modeled through sensitivity experiments.In recent decades, the TP has experienced a greater warming than the global average and those for similar latitudes. GCMs project a global pattern where the wet gets wetter and the dry gets drier. The climate regime over the TP covers the extreme arid regions from the northwest to the semi-humid region in the southeast. The increased warming over the TP compared to the global average raises a number of questions. What are the regional dryness/wetness changes over the TP? What is the mechanism of the responses of regional changes to global warming? To answer these questions, several dynamical downscaling models (DDMs) using RCMs focusing on the TP have recently been conducted and high-resolution data sets generated. All DDM studies demonstrated that this process-based approach, despite its limitations, can improve understandings of the processes that lead to precipitation on the TP. Observation and global land data assimilation systems both present more wetting in the northwestern arid/semi-arid regions than the southeastern humid/semi-humid regions. The DDM was found to better capture the observed elevation dependent warming over the TP. In addition, the long-term high-resolution climate simulation was found to better capture the spatial pattern of precipitation and P-E (precipitation minus evapotranspiration) changes than the best available global reanalysis. This facilitates new and substantial findings regarding the role of dynamical, thermodynamics, and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The DDM was found to add value regarding snowfall retrieval, precipitation frequency, and orographic precipitation.Although these advantages in the DDM over the TP are evidenced, there are unavoidable facts to be aware of. Firstly, there are still many discrepancies that exist in the up-to-date models. Any uncertainty in the model’s physics or in the land information from remote sensing and the forcing could result in uncertainties in simulation results. Secondly, the question remains of what is the appropriate resolution for resolving the TP’s heterogeneity. Thirdly, it is a challenge to include human activities in the climate models, although this is deemed necessary for future earth science. All-embracing further efforts are expected to improve regional climate models over the TP.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

(Foreword), D. H. Meadows, Hrsg. Dynamic Modeling (Modeling Dynamic Systems). Springer, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Giunti, Marco. Computation, Dynamics, and Cognition. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195090093.001.0001.

Der volle Inhalt der Quelle
Annotation:
Currently there is growing interest in the application of dynamical methods to the study of cognition. Computation, Dynamics, and Cognition investigates this convergence from a theoretical and philosophical perspective, generating a provocative new view of the aims and methods of cognitive science. Advancing the dynamical approach as the methodological frame best equipped to guide inquiry in the field's two main research programs--the symbolic and connectionist approaches--Marco Giunti engages a host of questions crucial not only to the science of cognition, but also to computation theory, dynamical systems theory, philosophy of mind, and philosophy of science. In chapter one Giunti employs a dynamical viewpoint to explore foundational issues in computation theory. Using the concept of Turing computability, he precisely and originally defines the nature of a computational system, sharpening our understanding of computation theory and its applications. In chapter two he generalizes his definition of a computational system, arguing that the concept of Turing computability itself is relative to the kind of support on which Turing machine operate. Chapter three completes the book's conceptual foundation, discussing a form of scientific explanation for real dynamical systems that Giunti calls "Galilean explanation." The book's fourth and final chapter develops the methodological thesis that all cognitive systems are dynamical systems. On Giunti's view, a dynamical approach is likely to benefit even those scientific explanations of cognition which are based on symbolic models. Giunti concludes by proposing a new modeling practice for cognitive science, one based on "Galilean models" of cognitive systems. Innovative, lucidly-written, and broad-ranging in its analysis, Computation, Dynamics, and Cognition will interest philosophers of science and mind, as well as cognitive scientists, computer scientists, and theorists of dynamical systems. This book elaborates a comprehensive picture of the application of dynamical methods to the study of cognition. Giunti argues that both computational systems and connectionist networks are special types of dynamical systems. He shows how this dynamical approach can be applied to problems of cognition, information processing, consciousness, meaning, and the relation between body and mind.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Rosenberg, Ronald C., Dean C. Karnopp und Donald L. Margolis. System Dynamics: Modeling and Simulation of Mechatronic Systems. Wiley, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Rosenberg, Ronald C., Dean C. Karnopp und Donald L. Margolis. System Dynamics: Modeling and Simulation of Mechatronic Systems. 3. Aufl. Wiley-Interscience, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Rosenberg, Ronald C., Dean C. Karnopp und Donald L. Margolis. System Dynamics: Modeling and Simulation of Mechatronic Systems. Wiley & Sons, Incorporated, John, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

System Dynamics Modelling. 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Brauer, Fred, und Christopher Kribs. Dynamical Systems for Biological Modeling. Chapman and Hall/CRC, 2015. http://dx.doi.org/10.1201/b20687.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Takács, Gergely, und Boris Rohaľ-Ilkiv. Model Predictive Vibration Control: Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures. Springer, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie