Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dynamical memory“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dynamical memory" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dynamical memory"
Ganguli, S., D. Huh und H. Sompolinsky. „Memory traces in dynamical systems“. Proceedings of the National Academy of Sciences 105, Nr. 48 (19.11.2008): 18970–75. http://dx.doi.org/10.1073/pnas.0804451105.
Der volle Inhalt der QuelleRehn, Martin, und Anders Lansner. „Sequence memory with dynamical synapses“. Neurocomputing 58-60 (Juni 2004): 271–78. http://dx.doi.org/10.1016/j.neucom.2004.01.055.
Der volle Inhalt der QuelleMitchell, Melanie. „Human Memory: A Dynamical Process“. Contemporary Psychology 48, Nr. 3 (Juni 2003): 326–27. http://dx.doi.org/10.1037/000805.
Der volle Inhalt der QuelleBoffetta, G., R. Monasson und R. Zecchina. „MEMORY RETRIEVAL IN OPTIMAL SUBSPACES“. International Journal of Neural Systems 03, supp01 (Januar 1992): 71–77. http://dx.doi.org/10.1142/s0129065792000401.
Der volle Inhalt der QuelleAICARDI, FRANCESCA, und SERGIO INVERNIZZI. „MEMORY EFFECTS IN DISCRETE DYNAMICAL SYSTEMS“. International Journal of Bifurcation and Chaos 02, Nr. 04 (Dezember 1992): 815–30. http://dx.doi.org/10.1142/s0218127492000458.
Der volle Inhalt der QuelleKlinshov, Vladimir V., und Vladimir I. Nekorkin. „Dynamical model of working memory system“. Neuroscience Research 58 (Januar 2007): S44. http://dx.doi.org/10.1016/j.neures.2007.06.259.
Der volle Inhalt der QuelleBrianzoni, Serena, Cristiana Mammana, Elisabetta Michetti und Francesco Zirilli. „A Stochastic Cobweb Dynamical Model“. Discrete Dynamics in Nature and Society 2008 (2008): 1–18. http://dx.doi.org/10.1155/2008/219653.
Der volle Inhalt der QuelleOliveira, H. S., A. S. de Paula und M. A. Savi. „Dynamical Jumps in a Shape Memory Alloy Oscillator“. Shock and Vibration 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/656212.
Der volle Inhalt der QuelleMohapatra, Anushaya, und William Ott. „Memory loss for nonequilibrium open dynamical systems“. Discrete & Continuous Dynamical Systems - A 34, Nr. 9 (2014): 3747–59. http://dx.doi.org/10.3934/dcds.2014.34.3747.
Der volle Inhalt der QuelleOtt, William, Mikko Stenlund und Lai-Sang Young. „Memory loss for time-dependent dynamical systems“. Mathematical Research Letters 16, Nr. 3 (2009): 463–75. http://dx.doi.org/10.4310/mrl.2009.v16.n3.a7.
Der volle Inhalt der QuelleDissertationen zum Thema "Dynamical memory"
Liu, Yuxi. „Dynamical Activity Patterns of High-frequency Oscillations and Their Functional Roles in Neural Circuits“. Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23236.
Der volle Inhalt der QuelleKropff, Emilio. „Statistical and dynamical properties of large cortical network models: insights into semantic memory and language“. Doctoral thesis, SISSA, 2007. http://hdl.handle.net/20.500.11767/4639.
Der volle Inhalt der QuelleRehn, Martin. „Aspects of memory and representation in cortical computation“. Doctoral thesis, KTH, Numerisk Analys och Datalogi, NADA, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4161.
Der volle Inhalt der QuelleIn this thesis I take a modular approach to cortical function. I investigate how the cerebral cortex may realise a number of basic computational tasks, within the framework of its generic architecture. I present novel mechanisms for certain assumed computational capabilities of the cerebral cortex, building on the established notions of attractor memory and sparse coding. A sparse binary coding network for generating efficient representations of sensory input is presented. It is demonstrated that this network model well reproduces the simple cell receptive field shapes seen in the primary visual cortex and that its representations are efficient with respect to storage in associative memory. I show how an autoassociative memory, augmented with dynamical synapses, can function as a general sequence learning network. I demonstrate how an abstract attractor memory system may be realised on the microcircuit level -- and how it may be analysed using tools similar to those used experimentally. I outline some predictions from the hypothesis that the macroscopic connectivity of the cortex is optimised for attractor memory function. I also discuss methodological aspects of modelling in computational neuroscience.
QC 20100916
Bhalala, Smita Ashesh 1966. „Modified Newton's method for supervised training of dynamical neural networks for applications in associative memory and nonlinear identification problems“. Thesis, The University of Arizona, 1991. http://hdl.handle.net/10150/277969.
Der volle Inhalt der QuelleBauer, Michael. „Dynamical characterization of Markov processes with varying order“. Master's thesis, [S.l. : s.n.], 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200900153.
Der volle Inhalt der QuelleAbbs, Brandon Robert. „The temporal dynamics of auditory memory for static and dynamic sounds“. Diss., University of Iowa, 2008. http://ir.uiowa.edu/etd/4.
Der volle Inhalt der QuelleWilliams, Peter. „Dynamic memory for design“. Thesis, The University of Sydney, 1995. https://hdl.handle.net/2123/27472.
Der volle Inhalt der QuelleSperens, Martin. „Dynamic Memory Managment in C++“. Thesis, Luleå tekniska universitet, Datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76611.
Der volle Inhalt der QuelleBisht, Pawas. „Disaster and the dynamics of memory“. Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/14184.
Der volle Inhalt der QuelleWu, Jiaming. „A modular dynamic Neuro-Synaptic platform for Spiking Neural Networks“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP145.
Der volle Inhalt der QuelleBiological and artificial neural networks share a fundamental computational unit: the neuron. These neurons are coupled by synapses, forming complex networks that enable various functions. Similarly, neuromorphic hardware, or more generally neuro-computers, also require two hardware elements: neurons and synapses. In this work, we introduce a bio-inspired spiking Neuro-Synaptic hardware unit, fully implemented with conventional electronic components. Our hardware is based on a textbook theoretical model of the spiking neuron, and its synaptic and membrane currents. The spiking neuron is fully analog and the various models that we introduced are defined by their hardware implementation. The neuron excitability is achieved through a memristive device made from off-the-shelf electronic components. Both synaptic and membrane currents feature tunable intensities and bio-mimetic dynamics, including excitatory and inhibitory currents. All model parameters are adjustable, allowing the system to be tuned to bio-compatible timescales, which is crucial in applications such as brain-machine interfaces. Building on these two modular units, we demonstrate various basic neural network motifs (or neuro-computing primitives) and show how to combine these fundamental motifs to implement more complex network functionalities, such as dynamical memories and central pattern generators. Our hardware design also carries potential extensions for integrating oxide-based memristors (which are widely studied in material science),or porting the design to very large-scale integration (VLSI) to implement large-scale networks. The Neuro-Synaptic unit can be considered as a building block for implementing spiking neural networks of arbitrary geometry. Its compact and modular design, as well as the wide availability of ordinary electronic components, makes our approach an attractive platform for building neural interfaces in medical devices, robotics, and artificial intelligence systems such as reservoir computing
Bücher zum Thema "Dynamical memory"
Irene, Dorfman, Fokas A. S. 1952- und Gelʹfand I. M, Hrsg. Algebraic aspects of integrable systems: In memory of Irene Dorfman. Boston: Birkäuser, 1997.
Den vollen Inhalt der Quelle findenBlokh, Alexander, Leonid Bunimovich, Paul Jung, Lex Oversteegen und Yakov Sinai, Hrsg. Dynamical Systems, Ergodic Theory, and Probability: in Memory of Kolya Chernov. Providence, Rhode Island: American Mathematical Society, 2017. http://dx.doi.org/10.1090/conm/698.
Der volle Inhalt der QuelleV, Anosov D., Stepin A. M und Bolibruch Andrej Andreevič, Hrsg. Dynamical systems and related problems of geometry: Collected papers dedicated to the memory of academician Andrei Andreevich Bolibrukh. Moscow: Maik Nauka/Interperiodica, 2004.
Den vollen Inhalt der Quelle findenMotorola. Dynamic RAMs & memory modules. 2. Aufl. Phoenix, AZ: Motorola, 1996.
Den vollen Inhalt der Quelle findenKorostelina, Karina V. Memory Sites and Conflict Dynamics. London: Routledge, 2024. http://dx.doi.org/10.4324/9781003497332.
Der volle Inhalt der QuelleMotorola. Dynamic RAMs and memory modules. Phoenix, AZ: Motorola, 1993.
Den vollen Inhalt der Quelle findenAtienza Alonso, David, Stylianos Mamagkakis, Christophe Poucet, Miguel Peón-Quirós, Alexandros Bartzas, Francky Catthoor und Dimitrios Soudris. Dynamic Memory Management for Embedded Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10572-7.
Der volle Inhalt der QuelleIncorporated, Advanced Micro Devices. Dynamic memory design data book/handbook. [Sunnyvale, CA]: Advanced Micro Devices, Inc., 1990.
Den vollen Inhalt der Quelle findenDaconta, Michael C. C++ pointers and dynamic memory management. New York: Wiley, 1995.
Den vollen Inhalt der Quelle findenFarkas, Keith I. Memory-system design considerations for dynamically-scheduled microprocessors. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Dynamical memory"
Pandolfi, Luciano. „Dynamical Algorithms for Identification Problems“. In Systems with Persistent Memory, 283–329. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80281-3_6.
Der volle Inhalt der QuelleLiu, Jun, und Andrew R. Teel. „Hybrid Dynamical Systems with Finite Memory“. In Recent Results on Nonlinear Delay Control Systems, 261–73. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18072-4_13.
Der volle Inhalt der QuelleFung, C. C. Alan, K. Y. Michael Wong und Si Wu. „Dynamical Synapses Enhance Mobility, Memory and Decoding“. In Advances in Cognitive Neurodynamics (III), 131–37. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4792-0_18.
Der volle Inhalt der QuelleCosnard, Michel, und Eric Goles Chacc. „Dynamical Properties of An Automaton with Memory“. In Disordered Systems and Biological Organization, 63–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82657-3_7.
Der volle Inhalt der QuelleBragov, A. M., L. A. Igumnov, A. Yu Konstantinov, A. K. Lomunov und A. I. Razov. „Dynamic Research of Shape Memory Alloys“. In Dynamical Processes in Generalized Continua and Structures, 133–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11665-1_7.
Der volle Inhalt der QuelleGrasselli, Maurizio, und Vittorino Pata. „Uniform Attractors of Nonautonomous Dynamical Systems with Memory“. In Evolution Equations, Semigroups and Functional Analysis, 155–78. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8221-7_9.
Der volle Inhalt der QuelleButaud, Pauline, Morvan Ouisse, Kévin Jaboviste, Vincent Placet und Emmanuel Foltête. „Dynamical Mechanical Thermal Analysis of Shape-Memory Polymers“. In Advanced Structured Materials, 129–51. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8574-2_6.
Der volle Inhalt der QuelleSoares, O. D. D., A. L. V. S. Lage, A. O. S. Gomes und J. C. D. M. Santos. „Dynamical Digital Memory for Holography, Moiré and E.S.P.I.“ In Optical Metrology, 182–98. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3609-6_16.
Der volle Inhalt der QuelleKoopmans, Matthijs. „Investigating the Long Memory Process in Daily High School Attendance Data“. In Complex Dynamical Systems in Education, 299–321. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27577-2_14.
Der volle Inhalt der QuelleHayashi, Hatsuo, und Motoharu Yoshida. „A Memory Model Based on Dynamical Behavior of the Hippocampus“. In Lecture Notes in Computer Science, 967–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30132-5_130.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dynamical memory"
Shen, Minghao, und Gábor Orosz. „Memory Sketching for Data-driven Prediction of Dynamical Systems“. In 2024 American Control Conference (ACC), 5388–93. IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10645035.
Der volle Inhalt der QuelleLoveridge, Tegan, Kai Shinbrough und Virginia O. Lorenz. „Optimal Continuous Dynamical Decoupling in N-type Atomic Ensemble Quantum Memories“. In CLEO: Fundamental Science, FM3R.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm3r.4.
Der volle Inhalt der QuelleOtsuka, Kenju, und Jyh-Long Chern. „Factorial Dynamic Pattern Memory in Globally Coupled Lasers“. In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.thb1.
Der volle Inhalt der QuelleGordon, Goren, und Gershon Kurizki. „Dynamical control of noisy quantum memory channels“. In Microtechnologies for the New Millennium, herausgegeben von Ali Serpengüzel, Gonçal Badenes und Giancarlo C. Righini. SPIE, 2007. http://dx.doi.org/10.1117/12.723952.
Der volle Inhalt der QuelleDuda, Alexander M., und Stephen E. Levinson. „Nonlinear Dynamical Multi-Scale Model of Associative Memory“. In 2010 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2010. http://dx.doi.org/10.1109/icmla.2010.135.
Der volle Inhalt der QuelleChung-Ming Ou und C. R. Ou. „Immune memory with associativity: Perspectives on dynamical systems“. In 2012 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2012. http://dx.doi.org/10.1109/cec.2012.6256646.
Der volle Inhalt der QuelleAndrianov, Serge N., und Nikolai S. Edamenko. „Geometric integration of nonlinear dynamical systems“. In 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE, 2015. http://dx.doi.org/10.1109/scp.2015.7342048.
Der volle Inhalt der QuelleVakhnenko, Vyacheslav O. „Dynamical realization of end-point memory in consolidated materials“. In INNOVATIONS IN NONLINEAR ACOUSTICS: ISNA17 - 17th International Symposium on Nonlinear Acoustics including the International Sonic Boom Forum. AIP, 2006. http://dx.doi.org/10.1063/1.2210332.
Der volle Inhalt der QuelleAlonso-Sanz, Ramon. „Cellular automata and other discrete dynamical systems with memory“. In 2012 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2012. http://dx.doi.org/10.1109/hpcsim.2012.6266914.
Der volle Inhalt der QuelleDavydenko, Alexander A., Natalya V. Raspopova und Sergei S. Ustimenko. „On mass simulations of dynamical models of galaxy“. In 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE, 2015. http://dx.doi.org/10.1109/scp.2015.7342053.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dynamical memory"
Beri, A. C., und T. F. George. Memory Effects in Dynamical Many-Body Systems: The Isomnesic (Constant-Memory) Approximation. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada154160.
Der volle Inhalt der QuellePerdigão, Rui A. P., und Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, November 2020. http://dx.doi.org/10.46337/201111.
Der volle Inhalt der QuelleAsea, Patrick K., und Michael J. Dueker. Non-Monotonic Long Memory Dynamics in Black-Market Exchange Rates. Federal Reserve Bank of St. Louis, 1995. http://dx.doi.org/10.20955/wp.1995.003.
Der volle Inhalt der QuelleKim, Joohee, und Marios C. Papaefthymiou. Block-Based Multi-Period Refresh for Energy Efficient Dynamic Memory. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada414244.
Der volle Inhalt der QuelleLagoudas, Dimitris C. Dynamic Behavior and Shock Absorption Properties of Porous Shape Memory Alloys. Fort Belvoir, VA: Defense Technical Information Center, Juli 2002. http://dx.doi.org/10.21236/ada403775.
Der volle Inhalt der QuelleSaxena, A., A. R. Bishop, S. R. Shenoy, Y. Wu und T. Lookman. A model of shape memory materials with hierarchical twinning: Statics and dynamics. Office of Scientific and Technical Information (OSTI), Juli 1995. http://dx.doi.org/10.2172/102295.
Der volle Inhalt der QuelleMayas, Magda. Creating with timbre. Norges Musikkhøgskole, August 2018. http://dx.doi.org/10.22501/nmh-ar.686088.
Der volle Inhalt der QuelleD`Azevedo, E. F., und C. H. Romine. A new shared-memory programming paradigm for molecular dynamics simulations on the Intel Paragon. Office of Scientific and Technical Information (OSTI), Dezember 1994. http://dx.doi.org/10.2172/28414.
Der volle Inhalt der QuelleD'Azevedo, E. F. A New Shared-Memory Programming Paradigm for Molecular Dynamics Simulations on the Intel Paragon. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/814063.
Der volle Inhalt der QuelleVineyard, Craig Michael, und Stephen Joseph Verzi. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1396076.
Der volle Inhalt der Quelle