Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dynamical filtrations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dynamical filtrations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dynamical filtrations"
Bartłomiejczyk, P., und Z. Dzedzej. „Index filtrations and Morse decompositions for discrete dynamical systems“. Annales Polonici Mathematici 72, Nr. 1 (1999): 51–70. http://dx.doi.org/10.4064/ap-72-1-51-70.
Der volle Inhalt der QuelleGordin, M. I. „Double extensions of dynamical systems and constructing mixing filtrations“. Journal of Mathematical Sciences 99, Nr. 2 (April 2000): 1053–60. http://dx.doi.org/10.1007/bf02673626.
Der volle Inhalt der QuelleJiao, Rui, Wei Liu und Yijun Hu. „The Optimal Consumption, Investment and Life Insurance for Wage Earners under Inside Information and Inflation“. Mathematics 11, Nr. 15 (05.08.2023): 3415. http://dx.doi.org/10.3390/math11153415.
Der volle Inhalt der QuelleKCHIA, YOUNES, und PHILIP PROTTER. „PROGRESSIVE FILTRATION EXPANSIONS VIA A PROCESS, WITH APPLICATIONS TO INSIDER TRADING“. International Journal of Theoretical and Applied Finance 18, Nr. 04 (Juni 2015): 1550027. http://dx.doi.org/10.1142/s0219024915500272.
Der volle Inhalt der QuelleAtamanyuk, Volodymyr, und Yaroslav Gumnytskyi. „Mass Exchange Dynamics During the Second Filtration Drying Period“. Chemistry & Chemical Technology 3, Nr. 2 (15.06.2009): 129–37. http://dx.doi.org/10.23939/chcht03.02.129.
Der volle Inhalt der QuelleRazvan, M. R. „On Conley's fundamental theorem of dynamical systems“. International Journal of Mathematics and Mathematical Sciences 2004, Nr. 26 (2004): 1397–401. http://dx.doi.org/10.1155/s0161171204202125.
Der volle Inhalt der QuelleSavrassov, Ju S. „Algorithms of filtration and extrapolation for discrete-time dynamical systems“. Acta Applicandae Mathematicae 30, Nr. 3 (März 1993): 193–263. http://dx.doi.org/10.1007/bf00995471.
Der volle Inhalt der QuelleDuda, Zdzisław. „Hierarchical filtration for distributed linear multisensor systems“. Archives of Control Sciences 22, Nr. 4 (01.12.2012): 507–18. http://dx.doi.org/10.2478/v10170-011-0038-7.
Der volle Inhalt der QuelleH.Z, Igamberdiev, und Kholodzhayev B.A. „ALGORITHMS FOR SUSTAINABLE RECOVERY OF INPUT INFLUENCE ON THE BASIS OF DYNAMIC FILTRATION METHODS“. International Journal of Psychosocial Rehabilitation 24, Nr. 03 (18.02.2020): 232–39. http://dx.doi.org/10.37200/ijpr/v24i3/pr200774.
Der volle Inhalt der QuelleBang, Jong-Geun, und Yoong-Sup Yoon. „Analysis of Filtration Performance by Brownian Dynamics“. Transactions of the Korean Society of Mechanical Engineers B 33, Nr. 10 (01.10.2009): 811–19. http://dx.doi.org/10.3795/ksme-b.2009.33.10.811.
Der volle Inhalt der QuelleDissertationen zum Thema "Dynamical filtrations"
Benzoni, Séverin. „Classification des filtrations dynamiques et étude des systèmes d'entropie positive“. Electronic Thesis or Diss., Normandie, 2024. https://theses.hal.science/tel-04835404.
Der volle Inhalt der QuelleIn this thesis, we explore the possible structures of measure preserving dynamical systems of the form $\bfX :=(X, \A, \mu, T)$ and their factor $\s$-algebras $\B \subset \A$. The first two chapters investigate various ways in which a factor $\s$-algebra $\B$ can sit in a dynamical system $\bfX :=(X, \A, \mu, T)$, i.e. we study some possible structures of the \emph{extension} $\A \arr \B$. In the first chapter, we consider the concepts of \emph{super-innovations} and \emph{standardness} of extensions, which are inspired from the theory of filtrations. An important focus of our work is the introduction of the notion of \emph{confined extensions}, which first interested us because they have no super-innovation. We give several examples and study additional properties of confined extensions, including several lifting results. Then, we show our main result: the existence of non-standard extensions. Finally, this result finds an application to the study of dynamical filtrations, i.e. filtrations of the form $(\F_n)_{n \leq 0}$ such that each $\F_n$ is a factor $\s$-algebra. We show that there exist \emph{non-standard I-cosy dynamical filtrations}.The second chapter furthers the study of confined extensions by finding a new kind of such extensions, in the setup of Poisson suspensions: we take an infinite $\s$-finite measure-preserving dynamical system $(X, \mu, T)$ and a compact extension $(X \times G, \mu \otimes m_G, T_\phi)$, then we consider the corresponding Poisson extension $((X \times G)^*, (\mu \otimes m_G)^*, (T_\phi)_*) \to (X^*, \mu^*, T_*)$. We give conditions under which that extension is confined and build an example which fits those conditions.Lastly, the third chapter focuses on a family of dynamical filtrations: \emph{weak Pinsker filtrations}. The existence of those filtrations on any ergodic system comes from a recent result by Austin \cite{austin}, and they present themselves as a potential tool to describe positive entropy systems. We explore the links between the asymptotic structure of weak Pinsker filtrations and the properties of the underlying dynamical system. Naturally, we also ask whether, on a given system, the structure of weak Pinsker filtrations is unique up to isomorphism. We give a partial answer, in the case where the underlying system is Bernoulli. We conclude our work by giving two explicit examples of weak Pinsker filtrations
Lanthier, Paul. „Aspects ergodiques et algébriques des automates cellulaires“. Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR034.
Der volle Inhalt der QuelleThe first part of this manuscript falls within the framework of probability theory, and is devoted to the study of filtrations generated by some cellular automata. We study two versions of an algebraic automaton acting on configurations whose states take values in a finite Abelian group: one is deterministic, and consists in adding the states of two consecutive cells, and the second is a random perturbation of the first one. From these automata, random Markovian processes are constructed and the filtrations generated by these processes are studied. Using the I-cosiness criterion, we show that the two filtrations are standard in the sense developed by Vershik. However, cellular automata have the particularity of commuting with the coordinate shift operator. In this thesis, we introduce a new classification of the filtrations called "dynamic" which takes into account the action of this transformation. Filtrations are no longer defined on probability spaces but on dynamical systems, and are in this case "factor" filtrations: each sigma-algebra is invariant by the dynamics of the system. The counterpart of standardity from the dynamic point of view is studied. This creates a necessary criterion for dynamic standardity called "dynamic I-cosiness". The question of whether the dynamic I-cosiness is sufficient remains open, but a first result in this direction is given, showing that a strengthened version of the dynamic I-cosiness leads to dynamic standardity. By establishing that it does not satisfy the criterion of dynamic I-cosiness, it is proved that the factor filtration generated by the deterministic automaton is not dynamically standard, and therefore that the dynamic classification of the filtrations differs from the classification developed by Vershik. The probabilistic automaton depends on an error parameter, and it is shown by a percolation argument that the factor filtration generated by this automaton is dynamically standard for large enough values of this parameter. It is conjectured that it will not be dynamically standard for very small values of this parameter. The second part of this manuscript, more algebraic, has its origin in a musical problem, linked to the calculation of intervals in a periodic melodic line. The work presented here continues the research of the Romanian composer Anatol Vieru and of Moreno Andreatta and Dan Vuza, but in an original way from the point of view of cellular automata. We study the action on periodic sequences of two algebraic cellular automata, one of which is identical to that of the first part. The questions on the characterization of reducible and reproducible sequences as well as the associated times have been deepened and improved for these two automata. The calculation of preimages and images via the two automata was explained. The question of the evolution of the periods was treated with the creation of a tool called "characteristic" which allows to describe and control the evolution of the period in negative times. Simulations show that the evolution of the periods when the preimages are drawn at random follows an almost regular pattern, and the explanation of this phenomenon remains an open question. The mathematical results of this second part have been used in the "Automaton" module of a free composing software called "UPISketch ». This module allows a composer to create melodic lines by iterating images or taking successive preimages of a starting melodic line
Khan, Muhammad Waleed. „Dynamic filtration at soil-geotextile interfaces“. Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39882/.
Der volle Inhalt der QuelleTurkson, Abraham K. „Electro-ultrafiltration with rotating dynamic membranes“. Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72036.
Der volle Inhalt der QuelleFour dynamic membranes, Zr(IV) oxide, calcium oleate, poly-2-vinylpyridine and cadmium sulfide, were used to filter bovine serum albumin (BSA) in a disodium phosphate solution at pH = 8 and Prussian blue in distilled water. Prussian blue is a particle of 0.01(mu)m diameter with a zeta potential of -41mV while BSA is a macromolecule of 69,000 molecular weight, a Stokes-Einstein radius of 0.0038(mu)m and a zeta potential of -23.3mV at pH = 8. For BSA, the flux declined with time while the rejection increased. Filtrate fluxes increased with rotation rate and electric field and declined with concentration for both feeds. The flux declined beyond N = 2000rpm and was constant above C(,0) = 5.0wt%. For Prussian blue, the rejection was greater than 90% at all levels of E, N and C(,0). For BSA, the rejection increased with rotation rate and declined with concentration. The BSA rejection declined above N = 2000rpm and was constant beyond C(,0) = 0.5wt%.
A mathematical model was derived to predict the time variation of filtrate flux and a rejection model was used to predict the effect of surface concentration on BSA rejection.
Schousboe, Frederik Carl. „Media Velocity Considerations in Pleated Air Filtration“. Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6632.
Der volle Inhalt der QuelleWang, Yuyan. „Simulation of pulsatile flow in baffled permeable channel for membrane filtration system“. Thesis, University of Bath, 1993. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332793.
Der volle Inhalt der QuelleFLEISCHMAN, GREGORY JOSEPH. „FLUID FILTRATION FROM CAPILLARY NETWORKS (MICROCIRCULATION, MATHEMATICAL MODELING)“. Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187998.
Der volle Inhalt der QuelleCao, Shiya. „Analysis of Household Water Filtration in China: A System Dynamics Model“. Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1268.
Der volle Inhalt der QuelleArthur, Kevin Gordon. „An experimental and theoretical study of the filtration characteristics of water-based drilling muds“. Thesis, Heriot-Watt University, 1986. http://hdl.handle.net/10399/1082.
Der volle Inhalt der QuelleRoberts, Mark. „Assessment of glomerular dynamics in human pregnancy using theoretical analysis and dextran sieving coefficients“. Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336811.
Der volle Inhalt der QuelleBücher zum Thema "Dynamical filtrations"
Klotz, Dietmar. Berechnete Durchlässigkeiten handelsüblicher Brunnenfilterrohre und Kunststoff-Kiesbelagfilter (Stand 1990). Neuherberg: GSF-Forschungszentrum für Umwelt und Gesundheit, 1991.
Den vollen Inhalt der Quelle findenJohn, Harlim, Hrsg. Filtering complex turbulent systems. Cambridge: Cambridge University Press, 2012.
Den vollen Inhalt der Quelle findenV, Panfilova I., Hrsg. Osrednennye modeli filtrat͡s︡ionnykh prot͡s︡essov s neodnorodnoĭ vnutrenneĭ strukturoĭ. Moskva: "Nauka", 1996.
Den vollen Inhalt der Quelle findenPankov, V. N. (Viktor Nikolaevich) und Panʹko, S. V. (Sergeĭ Vasilʹevich), Hrsg. Matematicheskai︠a︡ teorii︠a︡ t︠s︡elikov ostatochnoĭ vi︠a︡zkoplastichnoĭ nefti. Tomsk: Izd-vo Tomskogo universiteta, 1989.
Den vollen Inhalt der Quelle findenMazo, Aleksandr, und Konstantin Potashev. The superelements. Modeling of oil fields development. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1043236.
Der volle Inhalt der QuelleEspedal, M. S. Filtration in porous media and industrial application: Lectures given at the 4th session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, August 24-29, 1998. Herausgegeben von Fasano A, Mikelić A und Centro internazionale matematico estivo. Berlin: Springer, 2000.
Den vollen Inhalt der Quelle findenEndlich, Karlhans, und Rodger Loutzenhiser. Tubuloglomerular feedback, renal autoregulation, and renal protection. Herausgegeben von Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0209.
Der volle Inhalt der QuelleCharry, Luisa, Pranav Gupta und Vimal Thakoor. Introducing a Semi-Structural Macroeconomic Model for Rwanda. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198785811.003.0018.
Der volle Inhalt der QuelleAndrle, Michal, Andrew Berg, R. Armando Morales, Rafael Portillo und Jan Vlcek. On the Sources of Inflation in Kenya. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198785811.003.0015.
Der volle Inhalt der QuelleEspedal, M. S., und A. Mikelic. Filtration in Porous Media and Industrial Application: Lectures given at the 4th Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held ... Mathematics / Fondazione C.I.M.E., Firenze). Springer, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Dynamical filtrations"
Shub, Michael. „Filtrations“. In Global Stability of Dynamical Systems, 8–12. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-1947-5_2.
Der volle Inhalt der QuelleShub, Michael. „Sequences of Filtrations“. In Global Stability of Dynamical Systems, 13–19. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-1947-5_3.
Der volle Inhalt der QuelleÇetin, Umut, und Albina Danilova. „Static Markov Bridges and Enlargement of Filtrations“. In Dynamic Markov Bridges and Market Microstructure, 81–117. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8835-8_4.
Der volle Inhalt der QuelleSpitzenberger, Andy, Katrin Bauer und Rüdiger Schwarze. „Reactive Cleaning and Active Filtration in Continuous Steel Casting“. In Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 427–52. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_17.
Der volle Inhalt der QuelleSirbiladze, Gia. „Problems of States Estimation (Filtration) of Extremal Fuzzy Processes“. In Extremal Fuzzy Dynamic Systems, 255–88. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4250-9_8.
Der volle Inhalt der QuelleKempken, R., H. Rechtsteiner, J. Schäfer, U. Katz, O. Dick, R. Weidemeier und I. Sellick. „Dynamic Membrane Filtration in Mammalian Cell Culture Harvest“. In Animal Cell Technology, 379–84. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5404-8_60.
Der volle Inhalt der QuelleXie, Xiaomin, Wenxiang Zhang, Luhui Ding, Philippe Schmitz und Luc Fillaudeau. „Hydrodynamic Enhancement by Dynamic Filtration for Environmental Applications“. In Environmental Chemistry for a Sustainable World, 243–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33978-4_6.
Der volle Inhalt der QuelleRõõm, Rein, und Aarne Männik. „Acoustic Filtration in Pressure-Coordinate Models“. In IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 221–26. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_29.
Der volle Inhalt der QuelleNicklas, Jan, Lisa Ditscherlein, Shyamal Roy, Stefan Sandfeld und Urs A. Peuker. „Microprocesses of Agglomeration, Hetero-coagulation and Particle Deposition of Poorly Wetted Surfaces in the Context of Metal Melt Filtration and Their Scale Up“. In Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 361–86. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_15.
Der volle Inhalt der QuelleBoguslavskiy, Josif A. „Identification of Parameters of Nonlinear Dynamic Systems; Smoothing, Filtration, Forecasting of State Vectors“. In Dynamic Systems Models, 71–108. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-04036-3_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dynamical filtrations"
Mao, Xinyu, Irmgard Bischofberger und Anette E. Hosoi. „Poster: Manta-inspired filtration“. In 77th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2024. http://dx.doi.org/10.1103/aps.dfd.2024.gfm.p2673818.
Der volle Inhalt der QuelleErshov, Ivan A., Oleg V. Stukach, Igor V. Sychev und Igor B. Tsydenzhapov. „The Wavelet Filtration Denoising in the Raman Distributed Temperature Sensing“. In 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2020. http://dx.doi.org/10.1109/dynamics50954.2020.9306138.
Der volle Inhalt der QuelleBelim, S. V., und S. B. Larionov. „The algorithm of the impulse noise filtration in images based on an algorithm of community detection in graphs“. In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239433.
Der volle Inhalt der QuelleVan Der Zwaag, Claas H., Tor Henry Omland und Tore Vandbakk. „Dynamic Filtration: Seepage Losses on Tyrihans“. In SPE International Symposium and Exhibition on Formation Damage Control. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/151678-ms.
Der volle Inhalt der QuellePeng, Shuang Jiu, und J. M. Peden. „Prediction of Filtration Under Dynamic Conditions“. In SPE Formation Damage Control Symposium. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/23824-ms.
Der volle Inhalt der QuelleErshov, Ivan A., Oleg V. Stukach, Nina V. Myasnikova, Igor B. Tsydenzhapov und Igor V. Sychev. „The Resolution Enhancement in the Distributed Temperature Sensor with the Extremal Filtration Method“. In 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2020. http://dx.doi.org/10.1109/dynamics50954.2020.9306163.
Der volle Inhalt der QuelleVaussard, A., M. Martin, O. Konirsch und J. M. Patroni. „An Experimental Study of Drilling Fluids Dynamic Filtration“. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1986. http://dx.doi.org/10.2118/15412-ms.
Der volle Inhalt der QuelleLi, D., B. Rong, X. Rui und Y. Liu. „Modelling of cake filtration in centrifugal dewatering by finite difference“. In 1st International Conference on Mechanical System Dynamics (ICMSD 2022). Institution of Engineering and Technology, 2022. http://dx.doi.org/10.1049/icp.2022.1791.
Der volle Inhalt der QuelleLu, Junfeng, Yang Chu und Wen-Qiang Lu. „An Investigation for the Usability of K-K Equations for Nano Porous Membranes“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18088.
Der volle Inhalt der QuelleOviroh, Peter Ozaveshe, Lesego M. Mohlala und Tien-Chien Jen. „Effects of Defects on Nanoporous Graphene and MoS2“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23442.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dynamical filtrations"
Clague, D., T. Weisgraber, J. Rockway und K. McBride. Dynamic simulation tools for the analysis and optimization of novel collection, filtration and sample preparation systems. Office of Scientific and Technical Information (OSTI), Februar 2006. http://dx.doi.org/10.2172/894770.
Der volle Inhalt der Quelle