Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dynamic treatment regimes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dynamic treatment regimes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dynamic treatment regimes"
Chakraborty, Bibhas, und Susan A. Murphy. „Dynamic Treatment Regimes“. Annual Review of Statistics and Its Application 1, Nr. 1 (03.01.2014): 447–64. http://dx.doi.org/10.1146/annurev-statistics-022513-115553.
Der volle Inhalt der QuelleLavori, Philip W., und Ree Dawson. „Dynamic treatment regimes: practical design considerations“. Clinical Trials 1, Nr. 1 (Februar 2004): 9–20. http://dx.doi.org/10.1191/1740774504cn002oa.
Der volle Inhalt der QuelleMurphy, S. A. „Optimal dynamic treatment regimes“. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65, Nr. 2 (25.04.2003): 331–55. http://dx.doi.org/10.1111/1467-9868.00389.
Der volle Inhalt der QuelleZhang, Yichi, Eric B. Laber, Marie Davidian und Anastasios A. Tsiatis. „Interpretable Dynamic Treatment Regimes“. Journal of the American Statistical Association 113, Nr. 524 (02.10.2018): 1541–49. http://dx.doi.org/10.1080/01621459.2017.1345743.
Der volle Inhalt der QuelleMoodie, Erica E. M., Thomas S. Richardson und David A. Stephens. „Demystifying Optimal Dynamic Treatment Regimes“. Biometrics 63, Nr. 2 (26.02.2007): 447–55. http://dx.doi.org/10.1111/j.1541-0420.2006.00686.x.
Der volle Inhalt der QuelleZhao, Ying-Qi, und Eric B. Laber. „Estimation of optimal dynamic treatment regimes“. Clinical Trials: Journal of the Society for Clinical Trials 11, Nr. 4 (28.05.2014): 400–407. http://dx.doi.org/10.1177/1740774514532570.
Der volle Inhalt der QuelleLavori, Philip W., und Ree Dawson. „Dynamic treatment regimes: practical design considerations“. Clinical Trials 1, Nr. 1 (01.02.2004): 9–20. http://dx.doi.org/10.1191/1740774s04cn002oa.
Der volle Inhalt der QuelleJohnson, Brent A. „Treatment-competing events in dynamic regimes“. Lifetime Data Analysis 14, Nr. 2 (09.09.2007): 196–215. http://dx.doi.org/10.1007/s10985-007-9051-3.
Der volle Inhalt der QuelleLizotte, Daniel J., und Arezoo Tahmasebi. „Prediction and tolerance intervals for dynamic treatment regimes“. Statistical Methods in Medical Research 26, Nr. 4 (11.07.2017): 1611–29. http://dx.doi.org/10.1177/0962280217708662.
Der volle Inhalt der QuelleMurphy, S. A., und D. Bingham. „Screening Experiments for Developing Dynamic Treatment Regimes“. Journal of the American Statistical Association 104, Nr. 485 (März 2009): 391–408. http://dx.doi.org/10.1198/jasa.2009.0119.
Der volle Inhalt der QuelleDissertationen zum Thema "Dynamic treatment regimes"
Moodie, Erica E. M. „Inference for optimal dynamic treatment regimes /“. Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/9605.
Der volle Inhalt der QuelleMohamed, Nur Anisah. „Optimal dynamic treatment regimes : regret-regression method with myopic strategies“. Thesis, University of Newcastle upon Tyne, 2013. http://hdl.handle.net/10443/2242.
Der volle Inhalt der QuelleYazzourh, Sophia. „Apprentissage par renforcement et outcome-weighted learning bayésien pour la médecine de précision : Intégration de connaissances médicales dans les algorithmes de décision“. Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES139.
Der volle Inhalt der QuellePrecision medicine aims to tailor treatments to the characteristics of each patient by relying on the frameworks of Individualized Treatment Regimes (ITR) and Dynamic Treatment Regimes (DTR). ITRs involve a single therapeutic decision, while DTRs allow for the adaptation of treatments over time through a sequence of decisions. For these approaches to be effective, they must be capable of handling complex data and integrating medical knowledge, which is essential for enabling realistic and safe clinical use. This work presents three research projects. First, a state-of-the-art review of methods for integrating medical knowledge into Reinforcement Learning (RL) models was conducted, considering the context of DTR and their specific constraints for application to observational data. Second, a probabilistic method for constructing rewards was developed for RL models, based on the preferences of medical experts. Illustrated by case studies on diabetes and cancer, this method generates data-driven rewards, avoiding the biases of "manual" construction and ensuring consistency with medical objectives in learning treatment recommendation strategies. Third, a Bayesian framework for the Outcome-Weighted Learning (OWL) method was proposed to quantify uncertainty in treatment recommendations, thereby enhancing the robustness of therapeutic decisions, and was illustrated through simulations studies. This contributions aim to improve the reliability of decision-making tools in precision medicine, by integrating medical knowledge into RL models on one hand, and proposing a Bayesian framework to quantify uncertainty in the OWL model on the other. This work is part of a global perspective of interdisciplinary collaboration, particularly among the fields of machine learning, medical sciences, and statistics
Young, Katherine W. „Dynamic treatment regimens for congestive heart failure“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129847.
Der volle Inhalt der QuelleCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 59-60).
Each year, millions of patients are hospitalized with a diagnosis of congestive heart failure (CHF). This condition is characterized by inadequate tissue perfusion resulting from an inability of the heart to provide enough blood to meet the body's metabolic demands. Patients with CHF remain at a greater risk for mortality and other adverse events. A primary symptom of CHF is fluid overload ("congestion"), which is routinely treated with diuretic therapy. However, choosing a diuretic therapy that maximizes the therapeutic effects while minimizing harmful side effects remains a challenge. In order to assess a patient's response to a particular therapy and guide future treatment decisions, clinicians monitor a number of variables including a patients' vital signs, glomerular filtration rate (GFR, a measure of renal function), and fluctuations in volume status. Nevertheless, these variables are typically insufficient by themselves to ensure that a given therapy is optimal for a given patient. Current guidelines for heart failure management were developed, in part, from large clinical trials. However, it is not always clear how to apply these observations to a given patient, whose clinical characteristics may differ significantly from those of the patients in the original studies. Therefore, there is a need for methods that identify patient-specific treatments that would allow physicians to construct therapies that are truly personalized. This work describes an approach for building dynamic treatment regimens (DTRs) - a set of patient-specific treatment rules that optimize an outcome of interest. The method uses artificial neural networks to suggest diuretic doses that will improve a patient's volume status while simultaneously minimizing harmful side effects on renal function. This body of work suggests the potential that DTRs have in developing personalized diuretic regimens to improve the clinical outcomes of CHF patients.
by Katherine W. Young.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Rich, Benjamin. „Optimal dynamic treatment regime structural nested mean models: improving efficiency through diagnostics and re-weighting and application to adaptive individual dosing“. Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114179.
Der volle Inhalt der QuelleLes régimes de traitement dynamiques sont utilisés fréquemment en médecine. Nous les retrouvons, par exemple, dans le traitement des maladies chroniques. Alors que l'information obtenue chez un patient est récupérée dans le temps, il est souhaitable d'utiliser cette information afin de pouvoir faire des décisions de traitement qui sont adaptées à chaque patient, ou de pouvoir baser des décisions de traitements sur des observations qui évoluent. Les régimes de traitement dynamiques ont fait le sujet de travaux récents dans le domaine de l'inférence causale. Plus particulièrement, des méthodes semi-paramétriques ont été développées pour estimer, à partir de données non expérimentales, la règle de traitement ou la stratégie la meilleure ou optimale. Une de ces méthodes, proposée par Robins, est le modèle moyen structurel emboîté pour régime de traitement optimal dynamique (Optimal Dynamic Treatment Regime Structural Nested Mean Model : ODTR-SNMM) et la procédure g-estimation associée. Les suppostitions impliquées dans la modèlisation sont une préoccupation importante lors de l'application de cette méthodologie. Dans cette thèse, la vérification des suppositions de modélisation en utilisant les diagnostics résiduels et d'influence, normalement réalisée dans une analyse de régression traditionelle, est étendue à l'approche ODTR-SNMM. La méthodogie est évaluée en utilisant des données simulées, obtenues à partir de différents réglages de simulation. L'approche est aussi mise en application dans une étude d'arrêt d'allaitement. Par la suite, nous considérons des modèles partiellement mal spécifiés qui engendrent une estimation cohérente mais inefficace du paramètre d'intérêt en raison de la mal spécification du modèle de nuisance. En plus de la possibilité de traiter les mal spécifications partielles par les méthodes de diagnostic proposées, la repondération est considérée comme façon d'améliorer l'efficacité des estimateurs sous ces suppositions de modélisation. Une méthode de repondération basée sur l'influence des échantillons est proposée et étudiée par simulations. Finalement, nous considérons l'application de l'estimation des régimes de traitement dynamiques optimaux sur les stratégies de dosage adaptatifs pour les médicaments ayant une marge thérapeutique étroite et un dosage hautement variable. Utilisant l'anticoagulothérapie orale en exemple, nous concevons une simulation dans laquelle les données sont réalisées à partir de modèles pharmacocinétique (PK) et pharmacodynamique (PD) réalistes. Une technique de modélisation pour l'ODTR-SNMM avec dosage continu est proposée et appliquée aux données PK et PD simulées. Nous comparons la performance de plusieurs modèles utilisant différent réglages.
Daddi, Hammou Aoumeur. „Improved theoretical treatment of the dynamics of quarkonia in the quark gluon plasma : from semiclassical approximation to unified quantum master equations between the quantum Brownian and the quantum optical regimes“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0425.
Der volle Inhalt der QuelleHeavy quarkonia are one of the probes of Quark-Gluon Plasma (QGP) formed in Ultra-Relativistic Heavy-Ion collisions (URHIC). Over the past decade, there has been an increasing interest in the use of open quantum systems (OQS) formalism in the study of the in- QGP quarkonia dynamics. In particular, it has been shown that the Lindblad equation can result in semiclassical equations, which have been previously employed by several phenomenological models. In the first part of this thesis, we investigate the validity of the semiclassical approximation, and its ability to describe certain non-trivial quantum effects and reach the appropriate thermal limit. The second part of the thesis aims to address some theoretical challenges associated with the use of the OQS formalism in the study of in-QGP quarkonia dynamics. In particular, due to the dynamical aspect of the QGP and its time-dependent temperature, the dynamics of in- QGP quarkonia covers two different regimes of the OQS formalism, which are described by two different master equations, namely, the quantum Brownian and optical regimes. We first explore the transition between the two regimes and elucidate the link between their respective master equations. Secondly, in order to describe the complete in-QGP quarkonia time evolution with a single master equation, we apply the universal Lindblad equation (ULE) to the QGP-quarkonia system and derive a set of coupled singlet-octet universal equations
Mohammadighavam, S. (Shahram). „Hydrological and hydraulic design of peatland drainage and water treatment systems for optimal control of diffuse pollution“. Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526214511.
Der volle Inhalt der QuelleTiivistelmä Turvemaiden ojitus metsätaloutta, maataloutta ja turvetuotantoa varten lisää orgaanisen aineen, kiintoaineineen ja ravinteiden huuhtoutumista alapuolisiin vesistöihin. Lisääntyneellä kuormituksella voi olla merkittäviä vaikutuksia vesiekosysteemeihin, minkä vuoksi turvetuotannon ympäristöluvissa vaaditaan valumavesien puhdistamista mm. laskeutusaltaiden ja pintavalutuskenttien avulla. Tiukentuneiden vesiensuojelumääräysten vuoksi tarvitaan uusia vesiensuojelumenetelmiä sekä tulee tehostaa jo käytössä olevien menetelmien toimintaa. Tämän työn tavoitteena on suositella uusia menetelmiä perustuen I) entistä tarkempaan hydrologiseen tietoon valunnasta ja vesistökuormituksesta ja II) kemiallisen vesienpuhdistuksen yhteydessä käytettävien laskeutusaltaiden hydrauliseen suunnitteluun. Tämä väitöstyö rakentuu maastossa ja laboratoriossa tehtyjen tutkimusten sekä hydrologisen/hydraulisen mallinnuksen varaan. Valuma-alueiden hydrologiaa tutkittiin ja mallinnettiin kolmella turvemetsäalueella ja kahdella turvetuotantoalueella Pohjois-Suomessa. Ojituksen hydrologisten vaikutusten arviointiin käytettiin DRAINMOD 6.1 ohjelmaa, jonka kalibrointia ja validointia varten kerättiin jatkuvatoimisilla antureilla aineistoa pohjaveden pinnankorkeuksista ja virtaamasta useiden vuosien ajalta. Mallin avulla voitiin pohjaveden pinnan vaihtelut kuvata yleisesti melko hyvin kaikilla tutkimusalueilla yksittäisistä sadanta-valuntatapahtuminen yli- tai aliarvioinneista huolimatta. Saadut tulokset osoittavat, että DRAINMOD 6.1 ohjelmalla voidaan riittävällä tarkkuudella simuloida pohjaveden pinnan vaihteluita kylmässä ilmastossa, kuten Pohjois-Suomessa, mutta malli ei soveltunut hyvin ojitusalueelta lähtevän valunnan tarkkaan määrittämiseen. Kemiallisen vesienpuhdistusrakenteiden optimointiin käytettiin COMSOL Multiphysics 5.1 ohjelmaa, jolla voidaan toteuttaa ja laskea veden virtauksia kolmessa dimensiossa (computational fluid dynamic, CFD, model). Mallilla arvioitiin kemikalointialtaan tuloaukon rakenteen vaikutuksia tyypillisesti kemikaloinnissa käytetyn allasrakenteen puhdistustehokkuuteen. Lisäksi mallilla mitoitettiin virtausesteitä optimaalisen sekoittumisolosuhteiden saamiseksi ja puhdistustehokkuuden parantamiseksi painovoimaisesti toimivissa flokkausaltaissa (hidas sekoitus). Saadut tulokset osoittavat, että laskeutusaltaiden tuloaukon rakenteella on merkittävä vaikutus kemikaloinnissa saavutettuun puhdistustehokkuuteen. Lisäksi työssä esitettiin optimaalisia virtausesteiden mitoituksia (geometria, esteiden välinen etäisyys, virtaussyvyys yms.) puhdistuksen kannalta parhaiden mahdollisten sekoitusolosuhteiden saavuttamiseksi
DELIU, NINA. „Reinforcement learning in modern biostatistics: benefits, challenges and new proposals“. Doctoral thesis, 2021. http://hdl.handle.net/11573/1581572.
Der volle Inhalt der QuelleBücher zum Thema "Dynamic treatment regimes"
Tsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway und Eric B. Laber. Dynamic Treatment Regimes. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692.
Der volle Inhalt der QuelleChakraborty, Bibhas, und Erica E. M. Moodie. Statistical Methods for Dynamic Treatment Regimes. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7428-9.
Der volle Inhalt der QuelleChakraborty, Bibhas. Statistical methods for dynamic treatment regimes: Reinforcement learning, causal inference, and personalized medicine. New York, NY: Springer, 2013.
Den vollen Inhalt der Quelle findenTsiatis, Anastasios A. Dynamic Treatment Regimes. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway und Eric Laber. Introduction to Dynamic Treatment Regimes. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway und Eric B. Laber. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway und Eric B. Laber. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenDavidian, Marie, Anastasios A. Tsiatis, Shannon T. Holloway und Eric B. Laber. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenMoodie, Erica E. M., und Bibhas Chakraborty. Statistical Methods for Dynamic Treatment Regimes: Reinforcement Learning, Causal Inference, and Personalized Medicine. Springer New York, 2015.
Den vollen Inhalt der Quelle findenOrellana, Liliana del Carmen. Methodological challenges for the estimation of optimal dynamic treatment regimes from observational studies. 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Dynamic treatment regimes"
Qian, Min, Inbal Nahum-Shani und Susan A. Murphy. „Dynamic Treatment Regimes“. In Modern Clinical Trial Analysis, 127–48. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4322-3_5.
Der volle Inhalt der QuelleTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway und Eric B. Laber. „Introduction“. In Dynamic Treatment Regimes, 1–15. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-1.
Der volle Inhalt der QuelleTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway und Eric B. Laber. „Statistical Inference“. In Dynamic Treatment Regimes, 515–69. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-10.
Der volle Inhalt der QuelleTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway und Eric B. Laber. „Additional Topics“. In Dynamic Treatment Regimes, 571–76. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-11.
Der volle Inhalt der QuelleTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway und Eric B. Laber. „Preliminaries“. In Dynamic Treatment Regimes, 17–50. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-2.
Der volle Inhalt der QuelleTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway und Eric B. Laber. „Single Decision Treatment Regimes: Fundamentals“. In Dynamic Treatment Regimes, 51–97. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-3.
Der volle Inhalt der QuelleTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway und Eric B. Laber. „Single Decision Treatment Regimes: Additional Methods“. In Dynamic Treatment Regimes, 99–124. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-4.
Der volle Inhalt der QuelleTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway und Eric B. Laber. „Multiple Decision Treatment Regimes: Overview“. In Dynamic Treatment Regimes, 125–83. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-5.
Der volle Inhalt der QuelleTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway und Eric B. Laber. „Multiple Decision Treatment Regimes: Formal Framework“. In Dynamic Treatment Regimes, 185–243. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-6.
Der volle Inhalt der QuelleTsiatis, Anastasios A., Marie Davidian, Shannon T. Holloway und Eric B. Laber. „Optimal Multiple Decision Treatment Regimes“. In Dynamic Treatment Regimes, 245–323. Boca Raton : Chapman and Hall/CRC, 2020. | Series: Chapman & Hall/CRC monographs on statistics and applied probability: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429192692-7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dynamic treatment regimes"
Jain, Nishan, und James Baeder. „Assessment of Turbulence Model Length Scales based on Hybrid RANS-LES Modeling of Unsteady Flow Over Airfoil“. In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11393.
Der volle Inhalt der QuelleWang, Lu, Wenchao Yu, Xiaofeng He, Wei Cheng, Martin Renqiang Ren, Wei Wang, Bo Zong, Haifeng Chen und Hongyuan Zha. „Adversarial Cooperative Imitation Learning for Dynamic Treatment Regimes✱“. In WWW '20: The Web Conference 2020. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3366423.3380248.
Der volle Inhalt der QuelleJiang, Yushan, Wenchao Yu, Dongjin Song, Wei Cheng und Haifeng Chen. „Interpretable Skill Learning for Dynamic Treatment Regimes through Imitation“. In 2023 57th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2023. http://dx.doi.org/10.1109/ciss56502.2023.10089648.
Der volle Inhalt der QuelleLiu, Ying, Brent Logan, Ning Liu, Zhiyuan Xu, Jian Tang und Yangzhi Wang. „Deep Reinforcement Learning for Dynamic Treatment Regimes on Medical Registry Data“. In 2017 IEEE International Conference on Healthcare Informatics (ICHI). IEEE, 2017. http://dx.doi.org/10.1109/ichi.2017.45.
Der volle Inhalt der QuelleYin, Changchang, Ruoqi Liu, Jeffrey Caterino und Ping Zhang. „Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes“. In KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3534678.3539413.
Der volle Inhalt der QuelleLi, Mingyi, Xiao Zhang, Haochao Ying, Yang Li, Xu Han und Dongxiao Yu. „Data Quality Aware Hierarchical Federated Reinforcement Learning Framework for Dynamic Treatment Regimes“. In 2023 IEEE International Conference on Data Mining (ICDM). IEEE, 2023. http://dx.doi.org/10.1109/icdm58522.2023.00131.
Der volle Inhalt der QuelleAndryushchenko, Aleksei Dmitrievitch. „Halite Precipitation in Brine Reservoirs: Prediction and Control by Numerical Model, Optimization of the Fresh Water Treatments and Well Production Regimes“. In SPE Russian Petroleum Technology Conference. SPE, 2021. http://dx.doi.org/10.2118/206645-ms.
Der volle Inhalt der QuelleMcDonald, Dale B., und Joseph O. Falade. „Parameter Identification in Ecological Systems via Discontinuous and Singular Control Regimes“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86063.
Der volle Inhalt der QuelleAguiar, Janaina I. S., Antonio A. Pontifes, Jonathan Rogers und Amir Mahmoudkhani. „Selecting a Product for Wax Remediation: From Characterization of Field Wax Deposits to Improvement of Treatment Sustainability“. In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/30951-ms.
Der volle Inhalt der QuellePacaldo, Renato S., Miraç Aydın und Randell Keith Amarille. „Soil CO2 Effluxes in Post-fire and Undisturbed Pinus nigra Forests: A Soil Moisture Manipulation Study“. In 3rd International Congress on Engineering and Life Science. Prensip Publishing, 2023. http://dx.doi.org/10.61326/icelis.2023.41.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dynamic treatment regimes"
Neugebauer, Romain, Julie Schmittdiel, Oleg Sofrygin, Alyce Adams, Richard Grant und Mark van der Laan. Methods to Assess the Effect of Dynamic Treatment Regimens Using Electronic Health Records. Patient-Centered Outcomes Research Institute (PCORI), Juni 2020. http://dx.doi.org/10.25302/06.2020.me.140312506.
Der volle Inhalt der QuelleBanin, Amos, Joseph Stucki und Joel Kostka. Redox Processes in Soils Irrigated with Reclaimed Sewage Effluents: Field Cycles and Basic Mechanism. United States Department of Agriculture, Juli 2004. http://dx.doi.org/10.32747/2004.7695870.bard.
Der volle Inhalt der QuelleBobashev, Georgiy, John Holloway, Eric Solano und Boris Gutkin. A Control Theory Model of Smoking. RTI Press, Juni 2017. http://dx.doi.org/10.3768/rtipress.2017.op.0040.1706.
Der volle Inhalt der QuelleAnderson, Donald M., Lorraine C. Backer, Keith Bouma-Gregson, Holly A. Bowers, V. Monica Bricelj, Lesley D’Anglada, Jonathan Deeds et al. Harmful Algal Research & Response: A National Environmental Science Strategy (HARRNESS), 2024-2034. Woods Hole Oceanographic Institution, Juli 2024. http://dx.doi.org/10.1575/1912/69773.
Der volle Inhalt der QuelleOptional dynamic treatment regimes and partial welfare ordering. Cemmap, Oktober 2020. http://dx.doi.org/10.47004/wp.cem.2020.5020.
Der volle Inhalt der Quelle