Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Dynamic ray tracing.

Zeitschriftenartikel zum Thema „Dynamic ray tracing“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Dynamic ray tracing" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kim, Woohan, und Vernon F. Cormier. „Vicinity ray tracing: an alternative to dynamic ray tracing“. Geophysical Journal International 103, Nr. 3 (Dezember 1990): 639–55. http://dx.doi.org/10.1111/j.1365-246x.1990.tb05677.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fazliddinovich, Mekhriddin Rakhimov, und Yalew Kidane Tolcha. „Parallel Processing of Ray Tracing on GPU with Dynamic Pipelining“. International Journal of Signal Processing Systems 4, Nr. 3 (Juni 2016): 209–13. http://dx.doi.org/10.18178/ijsps.4.3.209-213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Červený, V., L. Klimeš und I. Pšenčík. „Applications of dynamic ray tracing“. Physics of the Earth and Planetary Interiors 51, Nr. 1-3 (Juni 1988): 25–35. http://dx.doi.org/10.1016/0031-9201(88)90019-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Quatresooz, Florian, Simon Demey und Claude Oestges. „Tracking of Interaction Points for Improved Dynamic Ray Tracing“. IEEE Transactions on Vehicular Technology 70, Nr. 7 (Juli 2021): 6291–301. http://dx.doi.org/10.1109/tvt.2021.3081766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Iversen, Einar, und Ivan Pšenčík. „Ray tracing and inhomogeneous dynamic ray tracing for anisotropy specified in curvilinear coordinates“. Geophysical Journal International 174, Nr. 1 (Juli 2008): 316–30. http://dx.doi.org/10.1111/j.1365-246x.2008.03812.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bakker, P. M. „Theory of anisotropic dynamic ray tracing in ray-centred coordinates“. Pure and Applied Geophysics PAGEOPH 148, Nr. 3-4 (1996): 583–89. http://dx.doi.org/10.1007/bf00874580.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Iversen, Einar, Bjørn Ursin, Teemu Saksala, Joonas Ilmavirta und Maarten V. de Hoop. „Higher-order Hamilton–Jacobi perturbation theory for anisotropic heterogeneous media: dynamic ray tracing in ray-centred coordinates“. Geophysical Journal International 226, Nr. 2 (15.04.2021): 1262–307. http://dx.doi.org/10.1093/gji/ggab152.

Der volle Inhalt der Quelle
Annotation:
SUMMARY Dynamic ray tracing is a robust and efficient method for computation of amplitude and phase attributes of the high-frequency Green’s function. A formulation of dynamic ray tracing in Cartesian coordinates was recently extended to higher orders. Extrapolation of traveltime and geometrical spreading was demonstrated to yield significantly higher accuracy—for isotropic as well as anisotropic heterogeneous 3-D models of an elastic medium. This is of value in mapping, modelling and imaging, where kernel operations are based on extrapolation or interpolation of Green’s function attributes to densely sampled 3-D grids. We introduce higher-order dynamic ray tracing in ray-centred coordinates, which has certain advantages: (1) such coordinates fit naturally with wave propagation; (2) they lead to a reduction of the number of ordinary differential equations; (3) the initial conditions are simple and intuitive and (4) numerical errors due to redundancies are less likely to influence the computation of the Green’s function attributes. In a 3-D numerical example, we demonstrate that paraxial extrapolation based on higher-order dynamic ray tracing in ray-centred coordinates yields results highly consistent with those obtained using Cartesian coordinates. Furthermore, in a 2-D example we show that interpolation of dynamic ray tracing quantities along a wavefront can be done with much better consistency in ray-centred coordinates than in Cartesian coordinates. In both examples we measure consistency by means of constraints on the dynamic ray tracing quantities in the 3-D position space and in the 6-D phase space.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sraj, Ihab, Alex C. Szatmary, David W. M. Marr und Charles D. Eggleton. „Dynamic ray tracing for modeling optical cell manipulation“. Optics Express 18, Nr. 16 (23.07.2010): 16702. http://dx.doi.org/10.1364/oe.18.016702.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Klimeš, Luděk. „Transformations for dynamic ray tracing in anisotropic media“. Wave Motion 20, Nr. 3 (November 1994): 261–72. http://dx.doi.org/10.1016/0165-2125(94)90051-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Klimeš, L. „Common-ray tracing and dynamic ray tracing for S waves in a smooth elastic anisotropic medium“. Studia Geophysica et Geodaetica 50, Nr. 3 (Juli 2006): 449–61. http://dx.doi.org/10.1007/s11200-006-0028-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Iversen, Einar, Bjørn Ursin, Teemu Saksala, Joonas Ilmavirta und Maarten V. de Hoop. „Higher-order Hamilton–Jacobi perturbation theory for anisotropic heterogeneous media: transformation between Cartesian and ray-centred coordinates“. Geophysical Journal International 226, Nr. 2 (15.04.2021): 893–927. http://dx.doi.org/10.1093/gji/ggab151.

Der volle Inhalt der Quelle
Annotation:
SUMMARY Within the field of seismic modelling in anisotropic media, dynamic ray tracing is a powerful technique for computation of amplitude and phase properties of the high-frequency Green’s function. Dynamic ray tracing is based on solving a system of Hamilton–Jacobi perturbation equations, which may be expressed in different 3-D coordinate systems. We consider two particular coordinate systems; a Cartesian coordinate system with a fixed origin and a curvilinear ray-centred coordinate system associated with a reference ray. For each system we form the corresponding 6-D phase spaces, which encapsulate six degrees of freedom in the variation of position and momentum. The formulation of (conventional) dynamic ray tracing in ray-centred coordinates is based on specific knowledge of the first-order transformation between Cartesian and ray-centred phase-space perturbations. Such transformation can also be used for defining initial conditions for dynamic ray tracing in Cartesian coordinates and for obtaining the coefficients involved in two-point traveltime extrapolation. As a step towards extending dynamic ray tracing in ray-centred coordinates to higher orders we establish detailed information about the higher-order properties of the transformation between the Cartesian and ray-centred phase-space perturbations. By numerical examples, we (1) visualize the validity limits of the ray-centred coordinate system, (2) demonstrate the transformation of higher-order derivatives of traveltime from Cartesian to ray-centred coordinates and (3) address the stability of function value and derivatives of volumetric parameters in a higher-order representation of the subsurface model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Hubral, Peter, Jorg Schleicher und Martin Tygel. „Three‐dimensional primary zero‐offset reflections“. GEOPHYSICS 58, Nr. 5 (Mai 1993): 692–702. http://dx.doi.org/10.1190/1.1443453.

Der volle Inhalt der Quelle
Annotation:
Zero‐offset reflections resulting from point sources are often computed on a large scale in three‐dimensional (3-D) laterally inhomogeneous isotropic media with the help of ray theory. The geometrical‐spreading factor and the number of caustics that determine the shape of the reflected pulse are then generally obtained by integrating the so‐called dynamic ray‐tracing system down and up to the two‐way normal incidence ray. Assuming that this ray is already known, we show that one integration of the dynamic ray‐tracing system in a downward direction with only the initial condition of a point source at the earth’s surface is in fact sufficient to obtain both results. To establish the Fresnel zone of the zero‐offset reflection upon the reflector requires the same single downward integration. By performing a second downward integration (using the initial conditions of a plane wave at the earth’s surface) the complete Fresnel volume around the two‐way normal ray can be found. This should be known to ascertain the validity of the computed zero‐offset event. A careful analysis of the problem as performed here shows that round‐trip integrations of the dynamic ray‐tracing system following the actually propagating wavefront along the two‐way normal ray need never be considered. In fact some useful quantities related to the two‐way normal ray (e.g., the normal‐moveout velocity) require only one single integration in one specific direction only. Finally, a two‐point ray tracing for normal rays can be derived from one‐way dynamic ray tracing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Sun, Jianguo, und Dirk Gajewski. „True‐amplitude common‐shot migration revisited“. GEOPHYSICS 62, Nr. 4 (Juli 1997): 1250–59. http://dx.doi.org/10.1190/1.1444226.

Der volle Inhalt der Quelle
Annotation:
In Kirchhoff‐type migration, two dynamic ray‐tracing computations are usually needed for computing the complex weighting (Green's) functions necessary for recovering the source pulse with true amplitude. One computation is from the source point to the image point, the other is from the receiver point to the image point. Since it is a time‐consuming procedure, dynamic ray tracing is a main factor slowing down the performance speed of weighted diffraction stack migration. Here, the known weighting function for a common‐shot configuration is revisited and a new, alternative formula is developed. Because only the takeoff angles of rays are involved in this alternative formula, the module of the complex weighting function can be computed solely by kinematic ray tracing. Further, it is shown that the phase (caustic) correction is not essential for the stack process. As a consequence, the weighted diffraction stack migration can be implemented without using dynamic ray tracing at all. In other words, the subsurface structure can be imaged without using any Green's function. Therefore, using the new formula may accelerate the performance of the Kirchhoff‐type migration, especially in 3-D cases. In addition, the new formula may affect the model smoothing process necessary for using some traveltime computing methods based on ray tracing. As is known, kinematic quantities associated with a given ray are less sensitive to the velocity distribution than the dynamic ones. Thus, the new formula allows one to use a model less smoothed than that demanded for using dynamic ray tracing. As a result, less smoothing operation is needed by building a velocity model without interfaces. The latter points are vital for the accuracy and efficiency of the ray tracers for computing the traveltime of point‐diffracted rays.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Filpo, Eduardo, Jessé Costa und Jörg Schleicher. „Image-guided ray tracing and its applications“. GEOPHYSICS 86, Nr. 3 (21.04.2021): U39—U47. http://dx.doi.org/10.1190/geo2020-0642.1.

Der volle Inhalt der Quelle
Annotation:
Eikonal solvers have important applications in seismic data processing and inversion, the so-called image-guided methods. To this day, in image-guided applications, the solution of the eikonal equation is implemented using partial-differential-equation solvers, such as fast-marching or fast-sweeping methods. We have found that alternatively, one can numerically integrate the dynamic Hamiltonian system defined by the image-guided eikonal equation and reconstruct the solution with image-guided rays. We evaluate interesting applications of image-guided ray tracing to seismic data processing, demonstrating the use of the resulting rays in image-guided interpolation and smoothing, well-log interpolation, image flattening, and residual-moveout picking. Some of these applications make use of properties of the ray-tracing system that are not directly obtained by eikonal solvers, such as ray position, ray density, wavefront curvature, and ray curvature. These ray properties open space for a different set of applications of the image-guided eikonal equation, beyond the original motivation of accelerating the construction of minimum distance tables. We stress that image-guided ray tracing is an embarrassingly parallel problem that makes its implementation highly efficient on massively parallel platforms. Image-guided ray tracing is advantageous for most applications involving the tracking of seismic events and imaging-guided interpolation. Our numerical experiments using synthetic and real data sets indicate the efficiency and robustness of image-guided rays for the selected applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Wald, Ingo, Solomon Boulos und Peter Shirley. „Ray tracing deformable scenes using dynamic bounding volume hierarchies“. ACM Transactions on Graphics 26, Nr. 1 (Januar 2007): 6. http://dx.doi.org/10.1145/1189762.1206075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Naruse, Tadashi, Mikio Shinya und Takafumi Saito. „Ray tracing using dynamic subtree—algorithm and speed evaluation“. Systems and Computers in Japan 24, Nr. 4 (1993): 65–77. http://dx.doi.org/10.1002/scj.4690240407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Harper, Sterling M., Paul K. Romano, Benoit Forget und Kord S. Smith. „Threadsafe Dynamic Neighbor Lists for Monte Carlo Ray Tracing“. Nuclear Science and Engineering 194, Nr. 11 (13.02.2020): 1009–15. http://dx.doi.org/10.1080/00295639.2020.1719765.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Pulliam, Jay, und Roel Snieder. „Ray perturbation theory, dynamic ray tracing and the determination of Fresnel zones“. Geophysical Journal International 135, Nr. 2 (November 1998): 463–69. http://dx.doi.org/10.1046/j.1365-246x.1998.00667.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Lesev, Hristo, und Alexander Penev. „A Framework for Visual Dynamic Analysis of Ray Tracing Algorithms“. Cybernetics and Information Technologies 14, Nr. 2 (15.07.2014): 38–49. http://dx.doi.org/10.2478/cait-2014-0018.

Der volle Inhalt der Quelle
Annotation:
Abstract A novel approach is presented for recording high volume data about ray tracing rendering systems' runtime state and its subsequent dynamic analysis and interactive visualization in the algorithm computational domain. Our framework extracts light paths traced by the system and leverages on a powerful filtering subsystem, helping interactive visualization and exploration of the desired subset of recorded data. We introduce a versatile data logging format and acceleration structures for easy access and filtering. We have implemented a plugin based framework and a tool set that realize all ideas presented in this paper. The framework provides data logging API for instrumenting production-ready, multithreaded, distributed renderers. The framework visualization tool enables deeper understanding of the ray tracing algorithms for novices, as well as for experts.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Beydoun, Wafik B., und Timothy H. Keho. „The paraxial ray method“. GEOPHYSICS 52, Nr. 12 (Dezember 1987): 1639–53. http://dx.doi.org/10.1190/1.1442281.

Der volle Inhalt der Quelle
Annotation:
The paraxial ray method is an economical way of computing approximate Green’s functions in heterogeneous media. The method uses information from the standard dynamic ray‐tracing method to extrapolate the seismic wave field at receivers in the neighborhood of a ray so that two‐point ray tracing is not required. Applicability conditions are explicit: they define where asymptotic (high‐frequency) methods are valid, and how far away from the ray the extrapolation remains accurate. Increasing the density of the ray fan improves accuracy but increases computation time. However, since reasonable accuracy is obtained with relatively few rays, the method yields results similar to the two‐point ray‐tracing method, but at a fraction of the cost. Examples of wave‐field extrapolation from a ray to neighboring receivers show that traveltime extrapolation is more accurate than amplitude extrapolation. Accuracy, robustness, and efficiency tests, comparing paraxial ray synthetic seismograms with acoustic finite‐difference and elastic discrete‐wavenumber synthetics, are judged very satisfactory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kildal, P. S. „Synthesis of multireflector antennas by kinematic and dynamic ray tracing“. IEEE Transactions on Antennas and Propagation 38, Nr. 10 (1990): 1587–99. http://dx.doi.org/10.1109/8.59772.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Bakker, P. M. „Theory of edge diffraction in terms of dynamic ray tracing“. Geophysical Journal International 102, Nr. 1 (Juli 1990): 177–89. http://dx.doi.org/10.1111/j.1365-246x.1990.tb00539.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Tian, Yue, S. H. Hung, Guust Nolet, Raffaella Montelli und F. A. Dahlen. „Dynamic ray tracing and traveltime corrections for global seismic tomography“. Journal of Computational Physics 226, Nr. 1 (September 2007): 672–87. http://dx.doi.org/10.1016/j.jcp.2007.04.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Červený, V. „A note on dynamic ray tracing in ray-centered coordinates in anisotropic inhomogeneous media“. Studia Geophysica et Geodaetica 51, Nr. 3 (Juli 2007): 411–22. http://dx.doi.org/10.1007/s11200-007-0023-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Zhu, Tianfei, Samuel H. Gray und Daoliu Wang. „Prestack Gaussian-beam depth migration in anisotropic media“. GEOPHYSICS 72, Nr. 3 (Mai 2007): S133—S138. http://dx.doi.org/10.1190/1.2711423.

Der volle Inhalt der Quelle
Annotation:
Gaussian-beam depth migration is a useful alternative to Kirchhoff and wave-equation migrations. It overcomes the limitations of Kirchhoff migration in imaging multipathing arrivals, while retaining its efficiency and its capability of imaging steep dips with turning waves. Extension of this migration method to anisotropic media has, however, been hampered by the difficulties in traditional kinematic and dynamic ray-tracing systems in inhomogeneous, anisotropic media. Formulated in terms of elastic parameters, the traditional anisotropic ray-tracing systems aredifficult to implement and inefficient for computation, especially for the dynamic ray-tracing system. They may also result inambiguity in specifying elastic parameters for a given medium.To overcome these difficulties, we have reformulated the ray-tracing systems in terms of phase velocity.These reformulated systems are simple and especially useful for general transversely isotropic and weak orthorhombic media, because the phase velocities for these two types of media can be computed with simple analytic expressions. These two types of media also represent the majority of anisotropy observed in sedimentary rocks. Based on these newly developed ray-tracing systems, we have extended prestack Gaussian-beam depth migration to general transversely isotropic media. Test results with synthetic data show that our anisotropic, prestack Gaussian-beam migration is accurate and efficient. It produces images superior to those generated by anisotropic, prestack Kirchhoff migration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Muniz, F. J., und E. J. Zaluska. „Parallel Ray-Tracing on Mimd Machine Using Dynamic Load-Balancing Mechanisms“. IFAC Proceedings Volumes 29, Nr. 5 (November 1996): 149–50. http://dx.doi.org/10.1016/s1474-6670(17)46372-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Iversen, E. „Reformulated Kinematic and Dynamic Ray Tracing Systems for Arbitrarily Anisotropic Media“. Studia Geophysica et Geodaetica 48, Nr. 1 (Januar 2004): 1–20. http://dx.doi.org/10.1023/b:sgeg.0000015583.34422.80.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Lee, Jinyoung, Woo-Nam Chung, Tae-Hyoung Lee, Jae-Ho Nah, Youngsik Kim und Woo-Chan Park. „Load Balancing Algorithm for Real-Time Ray Tracing of Dynamic Scenes“. IEEE Access 8 (2020): 165003–9. http://dx.doi.org/10.1109/access.2020.3019075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Yin, Mingqiang, und Shiqi Li. „Fast BVH construction and refit for ray tracing of dynamic scenes“. Multimedia Tools and Applications 72, Nr. 2 (03.05.2013): 1823–39. http://dx.doi.org/10.1007/s11042-013-1476-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Lee, Sang Joon, Han Wook Park und Sung Yong Jung. „Usage of CO2microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows“. Journal of Synchrotron Radiation 21, Nr. 5 (31.07.2014): 1160–66. http://dx.doi.org/10.1107/s1600577514013423.

Der volle Inhalt der Quelle
Annotation:
X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2gas were mechanically agitated to fabricate CO2microbubbles. The optimal fabricating conditions of CO2microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Lambert, Sébastien, und François Guillet. „Application of the X-ray tracing method to powder diffraction line profiles“. Journal of Applied Crystallography 41, Nr. 1 (16.01.2008): 153–60. http://dx.doi.org/10.1107/s0021889807055069.

Der volle Inhalt der Quelle
Annotation:
An X-ray tracing program was developed to simulate the instrument function of a high-resolution X-ray powder diffractometer. The optics of this laboratory instrument consist of a conventional X-ray tube, a single flat Ge monochromator, slits, the powder sample and finally a curved position-sensitive detector. Such a setup provides an interesting case study in order to assess X-ray tracing, which has seldom been used in the case of laboratory equipment. The simulation reported in this paper covers different aspects of optics simulation, ranging from straightforward kinematic diffraction to dynamic diffraction by single crystals or learned detector response function. The comparison between the simulation and the profiles measured using the NIST line profile standard SRM 660a LaB6shows a good agreement. This result provides the basis for discussing the opportunity of using X-ray tracing in diagram-refinement software.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Anciferov, S., A. Karachevceva und L. Sivachenko. „DESIGN AND PRODUCT DESIGN IN CAD/CAM/CAE NX SYSTEM MANAGED BY TEAMCENTER PLM SYSTEM“. Technical Aesthetics and Design Research 1, Nr. 2 (24.12.2020): 45–52. http://dx.doi.org/10.34031/2687-0878-2019-1-2-45-52.

Der volle Inhalt der Quelle
Annotation:
The article discusses a system widely implemented in the designing of equipment for the NX construction industry. Along with this system, a modern automation tool was used. The most common and most used products are Siemens products: PLM-system "Teamcenter". The functionality of this configuration is huge, it includes such applications a "Manager of Structure", "Classifier", "Advanced Studio", "Ray Tracing Studio", etc. For example, it is possible to create a single product structure with various configurations, machine components and assemblies, using the "Structure Manager". This structure allows to simplify the introduction of changes and the development of a digital electronic model. For the final visualization and rendering, the NX system provides a certain set of tools, which includes "Extended Studio" and "Ray Tracing Studio". "Advanced Studio" is an application allowing to get high-quality image, including the effects of materials, textures, lighting, shadows and reflections for the product in the CAD/CAM/CAE NX system. "Ray Tracing Studio" allows to get the rendering of the future product. In the Ray Tracing Studio editor, it is possible to configure such parameters as dynamic tracing setting, real-time ray tracing setting, display static high-quality tracing setting, and general display settings. Creation of a product in this system can be considered by the example of a digital electronic model of a roller support.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Iversen, Einar. „Amplitude, Fresnel zone, and NMO velocity for PP and SS normal-incidence reflections“. GEOPHYSICS 71, Nr. 2 (März 2006): W1—W14. http://dx.doi.org/10.1190/1.2187814.

Der volle Inhalt der Quelle
Annotation:
Inspired by recent ray-theoretical developments, the theory of normal-incidence rays is generalized to accommodate P- and S-waves in layered isotropic and anisotropic media. The calculation of the three main factors contributing to the two-way amplitude — i.e., geometric spreading, phase shift from caustics, and accumulated reflection/transmission coefficients — is formulated as a recursive process in the upward direction of the normal-incidence rays. This step-by-step approach makes it possible to implement zero-offset amplitude modeling as an efficient one-way wavefront construction process. For the purpose of upward dynamic ray tracing, the one-way eigensolution matrix is introduced, having as minors the paraxial ray-tracing matrices for the wavefronts of two hypothetical waves, referred to by Hubral as the normal-incidence point (NIP) wave and the normal wave. Dynamic ray tracing expressed in terms of the one-way eigensolution matrix has two advantages: The formulas for geometric spreading, phase shift from caustics, and Fresnel zone matrix become particularly simple, and the amplitude and Fresnel zone matrix can be calculated without explicit knowledge of the interface curvatures at the point of normal-incidence reflection.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

LI, Jing, Wen-Cheng WANG und En-Hua WU. „Ray Tracing of Dynamic Scenes by Managing Empty Regions in Adaptive Boxes“. Chinese Journal of Computers 32, Nr. 6 (12.08.2009): 1172–82. http://dx.doi.org/10.3724/sp.j.1016.2009.01172.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Kildal, P. S. „Analysis of numerically specified multireflector antennas by kinematic and dynamic ray tracing“. IEEE Transactions on Antennas and Propagation 38, Nr. 10 (1990): 1600–1606. http://dx.doi.org/10.1109/8.59773.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Lu, Chungu, und John P. Boyd. „Rossby Wave Ray Tracing in a Barotropic Divergent Atmosphere“. Journal of the Atmospheric Sciences 65, Nr. 5 (01.05.2008): 1679–91. http://dx.doi.org/10.1175/2007jas2537.1.

Der volle Inhalt der Quelle
Annotation:
Abstract The effects of divergence on low-frequency Rossby wave propagation are examined by using the two-dimensional Wentzel–Kramers–Brillouin (WKB) method and ray tracing in the framework of a linear barotropic dynamic system. The WKB analysis shows that the divergent wind decreases Rossby wave frequency (for wave propagation northward in the Northern Hemisphere). Ray tracing shows that the divergent wind increases the zonal group velocity and thus accelerates the zonal propagation of Rossby waves. It also appears that divergence tends to feed energy into relatively high wavenumber waves, so that these waves can propagate farther downstream. The present theory also provides an estimate of a phase angle between the vorticity and divergence centers. In a fully developed Rossby wave, vorticity and divergence display a π/2 phase difference, which is consistent with the observed upper-level structure of a mature extratropical cyclone. It is shown that these theoretical results compare well with observations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Xu, Qianru, und Weijian Mao. „An efficient ray-tracing method and its application to Gaussian beam migration in complex multilayered anisotropic media“. GEOPHYSICS 83, Nr. 5 (01.09.2018): T281—T289. http://dx.doi.org/10.1190/geo2017-0402.1.

Der volle Inhalt der Quelle
Annotation:
We have developed a fast ray-tracing method for multiple layered inhomogeneous anisotropic media, based on the generalized Snell’s law. Realistic geologic structures continuously varying with embedded discontinuities are parameterized by adopting cubic B-splines with nonuniformly spaced nodes. Because the anisotropic characteristic is often closely related to the interface configuration, this model parameterization scheme containing the natural inclination of the corresponding layer is particularly suitable for tilted transverse isotropic models whose symmetry axis is generally perpendicular to the direction of the layers. With this model parameterization, the first- and second-order spatial derivatives of the velocity within the interfaces can be effectively obtained, which facilitates the amplitude computation in dynamic ray tracing. By using complex initial conditions for the dynamic ray system and taking the multipath effect into consideration, our method is applicable to Gaussian beam migration. Numerical experiments of our method have been used to verify its effectiveness, practicability, and efficiency in memory storage and computation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Hu, Jiangtao, Junxing Cao, Huazhong Wang, Shaoyong Liu und Xingjian Wang. „3D traveltime computation for quasi-P-wave in orthorhombic media using dynamic programming“. GEOPHYSICS 83, Nr. 1 (01.01.2018): C27—C35. http://dx.doi.org/10.1190/geo2016-0558.1.

Der volle Inhalt der Quelle
Annotation:
A fractured area, such as a fault area, usually induces orthorhombic anisotropy. Ignoring orthorhombic anisotropy may degrade the subsurface image by creating a well mistie and blurring the image. Traveltime computation is essential for many processing techniques, such as depth imaging and tomography. Solving the ray-tracing system and eikonal equation are two popular methods for traveltime computation in isotropic media. However, because the ray-tracing system becomes complex and the eikonal equation becomes highly nonlinear, their applications in orthorhombic media become complex. We have developed an alternative 3D traveltime computation method in orthorhombic media based on dynamic programming. To avoid solving the complex ray-tracing system and nonlinear eikonal equation, it adopts an explicitly expressed group velocity from the moveout approximation to describe the propagation of the wavepath and computes the traveltime by Fermat’s principle. Similar to depth extrapolation, it computes the traveltime from one depth to the next depth and does not suffer from a shadow zone. Besides, three strategies of traveltime computation are proposed to deal with different geologic scenarios. Because classic dynamic programming (i.e., the first strategy) computes all possible wavepaths (i.e., 24 wavepaths) across one spatial location, it may be computationally intensive. Based on the idea of wavefield decomposition (e.g., upgoing and downgoing), the second and third strategies simplify the traveltime computation and reduce the computational cost. Numerical examples on the vertical and tilted orthorhombic models indicate that the traveltime contour obtained by our method matches well with the wavefront extrapolated from the wave equation. Our method can be applied in depth imaging and tomography.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Garanzha, Kirill. „The Use of Precomputed Triangle Clusters for Accelerated Ray Tracing in Dynamic Scenes“. Computer Graphics Forum 28, Nr. 4 (Juni 2009): 1199–206. http://dx.doi.org/10.1111/j.1467-8659.2009.01497.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Shevtsov, Maxim, Alexei Soupikov und Alexander Kapustin. „Highly Parallel Fast KD-tree Construction for Interactive Ray Tracing of Dynamic Scenes“. Computer Graphics Forum 26, Nr. 3 (September 2007): 395–404. http://dx.doi.org/10.1111/j.1467-8659.2007.01062.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Waheed, Umair bin, Ivan Pšenčík, Vlastislav Červený, Einar Iversen und Tariq Alkhalifah. „Two-point paraxial traveltime formula for inhomogeneous isotropic and anisotropic media: Tests of accuracy“. GEOPHYSICS 78, Nr. 5 (01.09.2013): WC65—WC80. http://dx.doi.org/10.1190/geo2012-0406.1.

Der volle Inhalt der Quelle
Annotation:
On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points [Formula: see text] and [Formula: see text] located in the vicinity of points [Formula: see text] and [Formula: see text] on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The two-point paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points [Formula: see text] and [Formula: see text] on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between [Formula: see text] and [Formula: see text] (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic ([Formula: see text] and [Formula: see text] anisotropy) media only. On tests, in which we estimated two-point traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Khemraev, K. A. „THE USE OF REFRACTED WAVES IN SURFACE-CONSISTENT PROCEDURES OF DYNAMIC CORRECTION“. Russian Journal of geophysical technologies, Nr. 2 (29.01.2019): 4–13. http://dx.doi.org/10.18303/2619-1563-2018-2-1.

Der volle Inhalt der Quelle
Annotation:
In the given paper a three factor decomposition of the field of refracted waves is considered with help of ray-tracing. Due to the fact that the solution obtained on the basis of the mathematical model is unstable, a condition is proposed that regularizes the solution. The possibility of applying the considered mathematical model is demonstrated in case of refraction and buried objects.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

SUZUKI, Ken-ichi, Yoshiyuki KAERIYAMA, Kazuhiko KOMATSU, Ryusuke EGAWA, Nobuyuki OHBA und Hiroaki KOBAYASHI. „A Fast Ray-Tracing Using Bounding Spheres and Frustum Rays for Dynamic Scene Rendering“. IEICE Transactions on Information and Systems E93-D, Nr. 4 (2010): 891–902. http://dx.doi.org/10.1587/transinf.e93.d.891.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Gajewski, Dirk, und Ivan Pšenčik. „Vertical seismic profile synthetics by dynamic ray tracing in laterally varying layered anisotropic structures“. Journal of Geophysical Research 95, B7 (1990): 11301. http://dx.doi.org/10.1029/jb095ib07p11301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Mizrahi, Oren S., Mohammadreza F. Imani, K. Parker Trofatter, Jonah N. Gollub und David R. Smith. „2D Ray Tracing Analysis of a Dynamic Metasurface Antenna as a Smart Motion Detector“. IEEE Access 7 (2019): 159674–87. http://dx.doi.org/10.1109/access.2019.2949739.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Červený, Vlastislav, und Mirian A. de Castro. „Application of dynamic ray tracing in the 3-D inversion of seismic-reflection data“. Geophysical Journal International 113, Nr. 3 (Juni 1993): 776–79. http://dx.doi.org/10.1111/j.1365-246x.1993.tb04668.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Houghton, C., C. Bloomer und L. Alianelli. „Modelling the effects of optical vibrations on photon beam parameters using ray-tracing software“. Journal of Synchrotron Radiation 28, Nr. 5 (12.08.2021): 1357–63. http://dx.doi.org/10.1107/s1600577521007013.

Der volle Inhalt der Quelle
Annotation:
A method to simulate beam properties observed at the beamline sample-point in the presence of motion of optical components has been developed at Diamond Light Source. A series of stationary ray-tracing simulations are used to model the impact on the beam stability caused by dynamic motion of optical elements. Ray-tracing simulations using SHADOW3 in OASYS, completed over multiple iterations and stitched together, permit the modelling of a pseudo-dynamic beamline. As beamline detectors operating at higher frequencies become more common, beam stability is crucial. Synchrotron ring upgrades to low-emittance lattices require increased stability of beamlines in order to conserve beam brightness. By simulating the change in beam size and position, an estimate of the impact the motion of various components have on stability is possible. The results presented in this paper focus on modelling the physical vibration of optical elements. Multiple beam parameters can be analysed in succession without manual input. The simulation code is described and the initial results obtained are presented. This method can be applied during beamline design and operation for the identification of optical elements that may introduce large errors in the beam properties at the sample-point.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Chen, Zhibin, Ming Cai, Feng Li und Weijia Ye. „Dynamic Simulation of Traffic Noise by Applying Ray Tracing Method based on Indoor Space Partitioning“. Acta Acustica united with Acustica 100, Nr. 3 (01.05.2014): 467–76. http://dx.doi.org/10.3813/aaa.918727.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Delgado, Carlos, und Manuel Felipe Catedra. „Efficient Generation of Macro Basis Functions for Radiation Problems Using Ray-Tracing Derived Dynamic Thresholds“. IEEE Transactions on Antennas and Propagation 66, Nr. 6 (Juni 2018): 3231–36. http://dx.doi.org/10.1109/tap.2018.2816779.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Cormier, Vernon F., und Thomas S. Anderson. „Efficiency of Lg Propagation from SmS Dynamic Ray Tracing in Three-dimensionally Varying Crustal Waveguides“. Pure and Applied Geophysics 161, Nr. 8 (01.08.2004): 1613–33. http://dx.doi.org/10.1007/s00024-004-2524-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie