Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dynamic ray tracing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dynamic ray tracing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dynamic ray tracing"
Kim, Woohan, und Vernon F. Cormier. „Vicinity ray tracing: an alternative to dynamic ray tracing“. Geophysical Journal International 103, Nr. 3 (Dezember 1990): 639–55. http://dx.doi.org/10.1111/j.1365-246x.1990.tb05677.x.
Der volle Inhalt der QuelleFazliddinovich, Mekhriddin Rakhimov, und Yalew Kidane Tolcha. „Parallel Processing of Ray Tracing on GPU with Dynamic Pipelining“. International Journal of Signal Processing Systems 4, Nr. 3 (Juni 2016): 209–13. http://dx.doi.org/10.18178/ijsps.4.3.209-213.
Der volle Inhalt der QuelleČervený, V., L. Klimeš und I. Pšenčík. „Applications of dynamic ray tracing“. Physics of the Earth and Planetary Interiors 51, Nr. 1-3 (Juni 1988): 25–35. http://dx.doi.org/10.1016/0031-9201(88)90019-2.
Der volle Inhalt der QuelleQuatresooz, Florian, Simon Demey und Claude Oestges. „Tracking of Interaction Points for Improved Dynamic Ray Tracing“. IEEE Transactions on Vehicular Technology 70, Nr. 7 (Juli 2021): 6291–301. http://dx.doi.org/10.1109/tvt.2021.3081766.
Der volle Inhalt der QuelleIversen, Einar, und Ivan Pšenčík. „Ray tracing and inhomogeneous dynamic ray tracing for anisotropy specified in curvilinear coordinates“. Geophysical Journal International 174, Nr. 1 (Juli 2008): 316–30. http://dx.doi.org/10.1111/j.1365-246x.2008.03812.x.
Der volle Inhalt der QuelleBakker, P. M. „Theory of anisotropic dynamic ray tracing in ray-centred coordinates“. Pure and Applied Geophysics PAGEOPH 148, Nr. 3-4 (1996): 583–89. http://dx.doi.org/10.1007/bf00874580.
Der volle Inhalt der QuelleIversen, Einar, Bjørn Ursin, Teemu Saksala, Joonas Ilmavirta und Maarten V. de Hoop. „Higher-order Hamilton–Jacobi perturbation theory for anisotropic heterogeneous media: dynamic ray tracing in ray-centred coordinates“. Geophysical Journal International 226, Nr. 2 (15.04.2021): 1262–307. http://dx.doi.org/10.1093/gji/ggab152.
Der volle Inhalt der QuelleSraj, Ihab, Alex C. Szatmary, David W. M. Marr und Charles D. Eggleton. „Dynamic ray tracing for modeling optical cell manipulation“. Optics Express 18, Nr. 16 (23.07.2010): 16702. http://dx.doi.org/10.1364/oe.18.016702.
Der volle Inhalt der QuelleKlimeš, Luděk. „Transformations for dynamic ray tracing in anisotropic media“. Wave Motion 20, Nr. 3 (November 1994): 261–72. http://dx.doi.org/10.1016/0165-2125(94)90051-5.
Der volle Inhalt der QuelleKlimeš, L. „Common-ray tracing and dynamic ray tracing for S waves in a smooth elastic anisotropic medium“. Studia Geophysica et Geodaetica 50, Nr. 3 (Juli 2006): 449–61. http://dx.doi.org/10.1007/s11200-006-0028-6.
Der volle Inhalt der QuelleDissertationen zum Thema "Dynamic ray tracing"
SANTOS, PAULO IVSON NETTO. „RAY TRACING DYNAMIC SCENES ON THE GPU“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=31443@1.
Der volle Inhalt der QuelleO objetivo deste trabalho é desenvolver uma solução completa para o traçado de raios de cenas dinâmicas utilizando a GPU. Para que este algoritmo atinja desempenho interativo, é necessário utilizar uma estrutura espacial para reduzir os testes de interseção entre raios e triângulos da cena. Observa-se que, quando há movimento na cena, é necessário atualizar esta estrutura de aceleração, seja alterando-a parcialmente ou reconstruindo-a inteiramente. Adotamos a segunda estratégia por ser capaz de tratar o caso geral de movimento não-estruturado. Como a construção da estrutura deve ser feita da forma mais eficiente possível, escolhemos utilizar uma Grade Uniforme como foco de nossa pesquisa. Suas vantagens incluem um algoritmo de construção simples e um percurso de raios eficiente. Para explorar o poder de processamento em paralelo de uma GPU, é necessário manter os dados da cena e da estrutura de aceleração dentro da placa gráfica, evitando transferências custosas de memória entre a GPU e a CPU. Propomos neste trabalho uma técnica para construir uma grade uniforme inteiramente na GPU. Usando nosso método, é possível reconstruir toda a estrutura em poucos milissegundos, enquanto mantém-se a alta qualidade da grade obtida. Além disso, propomos uma implementaçoes do algoritmo de traçado de raios de forma a aproveitar o processamento em paralelo da GPU. Nosso procedimento é implementado inteiramente dentro da placa gráfica, onde há acesso direto para os dados dos triângulos da cena, bem como as informações da grade uniforme construída. Utilizando a solução proposta, somos capazes de obter taxas de visualização interativas mesmo para cenas com movimentos não-estruturados, incluindo texturas, sombras e até mesmo reflexões.
We present a technique for ray tracing dynamic scenes using the GPU. In order to achieve interactive rendering rates, it is necessary to use a spatial structure to reduce the number of ray-triangle intersections performed. Whenever there is movement in the scene, this structure is entirely rebuilt. This way, it is possible to handle general unstructured motion. For this purpose, we have developed an algorithm for reconstructing Uniform Grids entirely inside the graphics hardware. In addition, we present ray-traversal and shading algorithms fully implemented on the GPU, including textures, shadows and reections. Combining these techniques, we demonstrate interactive ray tracing performance for dynamic scenes, even with unstructured motion and advanced shading effects.
Samothrakis, Stavros Nikolaou. „Acceleration techniques in ray tracing for dynamic scenes“. Thesis, University of Sussex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241671.
Der volle Inhalt der QuelleGünther, Johannes Verfasser], und Philipp [Akademischer Betreuer] [Slusallek. „Ray tracing of dynamic scenes / Johannes Günther. Betreuer: Philipp Slusallek“. Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2014. http://d-nb.info/1061022463/34.
Der volle Inhalt der QuelleChang, Chen Hao Jason. „The study of energy consumption of acceleration structures for dynamic CPU and GPU ray tracing“. Worcester, Mass. : Worcester Polytechnic Institute, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-010807-140122/.
Der volle Inhalt der QuelleSjöberg, Joakim, und Filip Zachrisson. „A Performance Comparison of Dynamic- and Inline Ray Tracing in DXR : An application in soft shadows“. Thesis, Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21833.
Der volle Inhalt der QuelleBakgrund. Strålspårning (ray tracing) är ett verktyg som kan användas för att öka kvalitén på grafiken i spel. En tillämpning i grafik som strålspårning utmärker sig i är när skuggor ska skapas eftersom att strålspårning lättare kan simulera hur skuggor skapas i verkligheten, vilket tidigare tekniker i rasterisering inte hade möjlighet för. Med ny hårdvara där det finns support för strålspårning inbyggt i grafikkorten finns det nu möjligheter att använda strålspårning i realtids-applikationer inom vissa gränser. Det är fortfarande tunga beräkningar som behöver slutföras och det är därav att det finns behov av förbättringar. Syfte. Denna uppsats kommer att utvärdera skillnaderna i prestanda mellan tre olika strålspårningsmetoder i DXR nivå 1.1, nämligen dynamisk strålspårning och två olika former av inline strålspårning. För att ge en bredare utredning på prestandan mellan strålspårningsmetoderna kommer mjuka skuggor att implementeras för att se om drivrutinen kan göra olika optimiseringar (beroende på valet av strålspårningsmetod) på de efterföljande och/eller föregående API anropen. Efter att dessa rörledningar (pipelines) är implementerade kommer prestandatester att utföras med olika grafikkort, scener, och antal ljus som kastar skuggor. Metod. Den vetenskapliga metoden är baserat på ett experimentellt tillvägagångssätt, som kommer innehålla både ett experiment och ett flertal prestandatester. Det experimentella tillvägagångssättet kommer att börja med att utöka en egenskapad DirectX 12 renderare. Utökningen kommer tillföra ny funktionalitet för att kunna hantera strålspårning så att hårda skuggor ska kunna genereras med både dynamisk och de olika formerna av inline strålspårning. Efter det kommer mjuka skuggor att skapas genom att implementera en väletablerad avbrusningsteknik med några modifikationer, vilket kommer att bli tillagt på varje strålspårningssteg. Till slut kommer olika prestandatester att mätas med olika grafikkort, olika antal ljus, och olika scener för att täcka olika scenarion som skulle kunna uppstå i ett spel och/eller i andra liknande applikationer. Resultat och Slutsatser. De resultat från testerna i detta experiment påvisar att under dessa förutsättningar så är AMD’s grafikkort snabbare på dynamisk strålspårning än på inline strålspårning, samtidigt som Nvidias grafikkort är snabbare på inline strålspårning än på den dynamiska varianten. Ökandet av ljus som kastar skuggor påvisade låg till ingen förändring förutom ett linjärt ökande av exekveringstiden i de flesta testerna. Slutligen så visade det sig även att tillägget av mjuka skuggor (efterföljande och föregående API interaktioner) hade låg till ingen påverkan på valet av strålspårningsmetod.
Minkara, Rania. „Locating wireless base stations within a dynamic indoor environment“. Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681053.
Der volle Inhalt der QuelleFrid, Kastrati Mattias. „Hybrid Ray-Traced Reflections in Real-Time : in OpenGL 4.3“. Thesis, Blekinge Tekniska Högskola, Institutionen för kreativa teknologier, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-10427.
Der volle Inhalt der QuelleHeidari, Mohammad. „Identification and modeling of the dynamic behavior of the direct path component in ToA-based indoor localization systems“. Worcester, Mass. : Worcester Polytechnic Institute, 2008. http://www.wpi.edu/Pubs/ETD/Available/etd-071508-195549/.
Der volle Inhalt der QuelleKeywords: Ray Tracing; Wideband Measurement; Dynamic Modeling of Ranging Error; ToA-Based Indoor Localization; NLoS Identification. Includes bibliographical references (leaves 147-159).
Loyet, Raphaël. „Dynamic sound rendering of complex environments“. Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00995328.
Der volle Inhalt der QuelleTurk, Jeffrey A. „Acceleration techniques for the radiative analysis of general computational fluid dynamics solutions using reverse Monte-Carlo ray tracing“. Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-09192008-063033/.
Der volle Inhalt der QuelleBücher zum Thema "Dynamic ray tracing"
Ray tracing optical analysis of offset solar collector for space station solar dynamic system. [Washington, DC]: National Aeronautics and Space Administration, 1988.
Den vollen Inhalt der Quelle findenTourneau, Thierry Le, Luis Caballero und Tsai Wei-Chuan. Right atrium. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0024.
Der volle Inhalt der QuelleBuchteile zum Thema "Dynamic ray tracing"
Reinhard, Erik, Brian Smits und Charles Hansen. „Dynamic Acceleration Structures for Interactive Ray Tracing“. In Eurographics, 299–306. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-6303-0_27.
Der volle Inhalt der QuelleBakker, P. M. „Theory of Anisotropic Dynamic Ray Tracing in Ray-centred Coordinates“. In Seismic Waves in Laterally Inhomogeneous Media Part II, 583–89. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9049-6_9.
Der volle Inhalt der QuelleZirr, Tobias, Hauke Rehfeld und Carsten Dachsbacher. „Object-Order Ray Tracing for Fully Dynamic Scenes“. In GPU Pro 360, 191–210. First edition. j Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018. j Includes bibliographical references and index.: A K Peters/CRC Press, 2018. http://dx.doi.org/10.1201/9781351052108-11.
Der volle Inhalt der QuelleGao, Tianhan, und Ying Li. „Real-Time Ray Tracing Algorithm for Dynamic Scene“. In Innovative Mobile and Internet Services in Ubiquitous Computing, 125–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22263-5_12.
Der volle Inhalt der QuelleMaurel, Hervé, Bruno Moisan, Jean Pierre Jessel, Y. Duthen und R. Caubet. „Dynamic Scenes Management for Animation with Ray-Tracing Rendering“. In Computer Animation ’91, 215–26. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-66890-9_15.
Der volle Inhalt der QuelleChea, Sam At, und Fuyan Liu. „Real-Time Ray Tracing Dynamic Scenes Based on WebGL“. In Lecture Notes in Electrical Engineering, 169–74. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4847-0_21.
Der volle Inhalt der QuelleYang, Chaozhi, Chunyi Chen, Xiaojuan Hu und Huamin Yang. „Dynamic Load Balancing Algorithm Based on Per-pixel Rendering Cost Estimation for Parallel Ray Tracing on PC Clusters“. In Image and Graphics Technologies and Applications, 591–601. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9917-6_56.
Der volle Inhalt der QuelleBoyd, John P. „The Equator as Wall: Coastally Trapped Waves and Ray-Tracing“. In Dynamics of the Equatorial Ocean, 87–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55476-0_5.
Der volle Inhalt der QuelleAlfonso, Peter J., Ben C. Watson und Thomas Baer. „Measuring Stutterers’ Dynamical Vocal Tract Characteristics by X-ray Microbeam Pallet Tracking“. In Speech Motor Dynamics in Stuttering, 141–50. Vienna: Springer Vienna, 1987. http://dx.doi.org/10.1007/978-3-7091-6969-8_8.
Der volle Inhalt der QuelleIshihara, Y., A. Sawada, Y. Miyabe, N. Mukumoto, M. Nakamura, N. Ueki, Y. Matsuo, T. Mizowaki, M. Kokubo und M. Hiraoka. „Development of four-dimensional Monte Carlo dose calculation system for dynamic tumor-tracking irradiation with a gimbaled X-ray head“. In IFMBE Proceedings, 1791–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_471.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dynamic ray tracing"
Navratil, Paul Arthur, Donald S. Fussell, Calvin Lin und William R. Mark. „Dynamic Ray Scheduling to Improve Ray Coherence and Bandwidth Utilization“. In IEEE/ EG Symposium on Interactive Ray Tracing 2007. IEEE, 2007. http://dx.doi.org/10.1109/rt.2007.4342596.
Der volle Inhalt der QuelleLauterbach, Christian, Sung-eui Yoon, Dinesh Manocha und David Tuft. „RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes using BVHs“. In 2006 IEEE Symposium on Interactive Ray Tracing. IEEE, 2006. http://dx.doi.org/10.1109/rt.2006.280213.
Der volle Inhalt der QuelleHarle, R. K., und A. Hopper. „Dynamic world models from ray-tracing“. In Second IEEE Annual Conference on Pervasive Computing and Communications, 2004. Proceedings of the. IEEE, 2004. http://dx.doi.org/10.1109/percom.2004.1276845.
Der volle Inhalt der QuelleBilibashi, D., E. M. Vitucci und V. Degli-Esposti. „Dynamic Ray Tracing: Introduction and Concept“. In 2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020. http://dx.doi.org/10.23919/eucap48036.2020.9135577.
Der volle Inhalt der QuelleBilibashi, D., E. M. Vitucci und V. Degli-Esposti. „Dynamic Ray Tracing: A 3D Formulation“. In 2020 International Symposium on Antennas and Propagation (ISAP). IEEE, 2021. http://dx.doi.org/10.23919/isap47053.2021.9391318.
Der volle Inhalt der QuelleIze, Thiago, Ingo Wald, Chelsea Robertson und Steven Parker. „An Evaluation of Parallel Grid Construction for Ray Tracing Dynamic Scenes“. In 2006 IEEE Symposium on Interactive Ray Tracing. IEEE, 2006. http://dx.doi.org/10.1109/rt.2006.280214.
Der volle Inhalt der QuelleIversen, Einar, und Ivan Pšenčík. „Ray tracing and inhomogeneous dynamic ray tracing for anisotropy specified in curvilinear coordinates“. In 10th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 2007. http://dx.doi.org/10.3997/2214-4609-pdb.172.sbgf0250_07.
Der volle Inhalt der QuelleIversen, Einar, und Ivan Pšenčíik. „Ray tracing and inhomogeneous dynamic ray tracing for anisotropy specified in curvilinear coordinates“. In 10th International Congress of the Brazilian Geophysical Society & EXPOGEF 2007, Rio de Janeiro, Brazil, 19-23 November 2007. Society of Exploration Geophysicists and Brazilian Geophysical Society, 2007. http://dx.doi.org/10.1190/sbgf2007-274.
Der volle Inhalt der QuelleIversen, Einar, Bjørn Ursin, Teemu Saksala, Joonas Ilmavirta und Maarten V. de Hoop. „Higher-order dynamic ray tracing in ray-centred coordinates“. In SEG Technical Program Expanded Abstracts 2019. Society of Exploration Geophysicists, 2019. http://dx.doi.org/10.1190/segam2019-3216331.1.
Der volle Inhalt der QuelleGaranzha, Kirill. „Efficient clustered BVH update algorithm for highly-dynamic models“. In 2008 IEEE Symposium on Interactive Ray Tracing (RT). IEEE, 2008. http://dx.doi.org/10.1109/rt.2008.4634632.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dynamic ray tracing"
Rueger, Andreas. Dynamic ray tracing and its application in triangulated media. Office of Scientific and Technical Information (OSTI), Juli 1993. http://dx.doi.org/10.2172/10188686.
Der volle Inhalt der QuelleDutheil, Yann. Spin dynamics modeling in the AGS based on a stepwise ray-tracing method. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/1351801.
Der volle Inhalt der Quelle