Auswahl der wissenschaftlichen Literatur zum Thema „Dynamic ray tracing“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dynamic ray tracing" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Dynamic ray tracing"

1

Kim, Woohan, und Vernon F. Cormier. „Vicinity ray tracing: an alternative to dynamic ray tracing“. Geophysical Journal International 103, Nr. 3 (Dezember 1990): 639–55. http://dx.doi.org/10.1111/j.1365-246x.1990.tb05677.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fazliddinovich, Mekhriddin Rakhimov, und Yalew Kidane Tolcha. „Parallel Processing of Ray Tracing on GPU with Dynamic Pipelining“. International Journal of Signal Processing Systems 4, Nr. 3 (Juni 2016): 209–13. http://dx.doi.org/10.18178/ijsps.4.3.209-213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Červený, V., L. Klimeš und I. Pšenčík. „Applications of dynamic ray tracing“. Physics of the Earth and Planetary Interiors 51, Nr. 1-3 (Juni 1988): 25–35. http://dx.doi.org/10.1016/0031-9201(88)90019-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Quatresooz, Florian, Simon Demey und Claude Oestges. „Tracking of Interaction Points for Improved Dynamic Ray Tracing“. IEEE Transactions on Vehicular Technology 70, Nr. 7 (Juli 2021): 6291–301. http://dx.doi.org/10.1109/tvt.2021.3081766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Iversen, Einar, und Ivan Pšenčík. „Ray tracing and inhomogeneous dynamic ray tracing for anisotropy specified in curvilinear coordinates“. Geophysical Journal International 174, Nr. 1 (Juli 2008): 316–30. http://dx.doi.org/10.1111/j.1365-246x.2008.03812.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bakker, P. M. „Theory of anisotropic dynamic ray tracing in ray-centred coordinates“. Pure and Applied Geophysics PAGEOPH 148, Nr. 3-4 (1996): 583–89. http://dx.doi.org/10.1007/bf00874580.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Iversen, Einar, Bjørn Ursin, Teemu Saksala, Joonas Ilmavirta und Maarten V. de Hoop. „Higher-order Hamilton–Jacobi perturbation theory for anisotropic heterogeneous media: dynamic ray tracing in ray-centred coordinates“. Geophysical Journal International 226, Nr. 2 (15.04.2021): 1262–307. http://dx.doi.org/10.1093/gji/ggab152.

Der volle Inhalt der Quelle
Annotation:
SUMMARY Dynamic ray tracing is a robust and efficient method for computation of amplitude and phase attributes of the high-frequency Green’s function. A formulation of dynamic ray tracing in Cartesian coordinates was recently extended to higher orders. Extrapolation of traveltime and geometrical spreading was demonstrated to yield significantly higher accuracy—for isotropic as well as anisotropic heterogeneous 3-D models of an elastic medium. This is of value in mapping, modelling and imaging, where kernel operations are based on extrapolation or interpolation of Green’s function attributes to densely sampled 3-D grids. We introduce higher-order dynamic ray tracing in ray-centred coordinates, which has certain advantages: (1) such coordinates fit naturally with wave propagation; (2) they lead to a reduction of the number of ordinary differential equations; (3) the initial conditions are simple and intuitive and (4) numerical errors due to redundancies are less likely to influence the computation of the Green’s function attributes. In a 3-D numerical example, we demonstrate that paraxial extrapolation based on higher-order dynamic ray tracing in ray-centred coordinates yields results highly consistent with those obtained using Cartesian coordinates. Furthermore, in a 2-D example we show that interpolation of dynamic ray tracing quantities along a wavefront can be done with much better consistency in ray-centred coordinates than in Cartesian coordinates. In both examples we measure consistency by means of constraints on the dynamic ray tracing quantities in the 3-D position space and in the 6-D phase space.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sraj, Ihab, Alex C. Szatmary, David W. M. Marr und Charles D. Eggleton. „Dynamic ray tracing for modeling optical cell manipulation“. Optics Express 18, Nr. 16 (23.07.2010): 16702. http://dx.doi.org/10.1364/oe.18.016702.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Klimeš, Luděk. „Transformations for dynamic ray tracing in anisotropic media“. Wave Motion 20, Nr. 3 (November 1994): 261–72. http://dx.doi.org/10.1016/0165-2125(94)90051-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Klimeš, L. „Common-ray tracing and dynamic ray tracing for S waves in a smooth elastic anisotropic medium“. Studia Geophysica et Geodaetica 50, Nr. 3 (Juli 2006): 449–61. http://dx.doi.org/10.1007/s11200-006-0028-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Dynamic ray tracing"

1

SANTOS, PAULO IVSON NETTO. „RAY TRACING DYNAMIC SCENES ON THE GPU“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=31443@1.

Der volle Inhalt der Quelle
Annotation:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
O objetivo deste trabalho é desenvolver uma solução completa para o traçado de raios de cenas dinâmicas utilizando a GPU. Para que este algoritmo atinja desempenho interativo, é necessário utilizar uma estrutura espacial para reduzir os testes de interseção entre raios e triângulos da cena. Observa-se que, quando há movimento na cena, é necessário atualizar esta estrutura de aceleração, seja alterando-a parcialmente ou reconstruindo-a inteiramente. Adotamos a segunda estratégia por ser capaz de tratar o caso geral de movimento não-estruturado. Como a construção da estrutura deve ser feita da forma mais eficiente possível, escolhemos utilizar uma Grade Uniforme como foco de nossa pesquisa. Suas vantagens incluem um algoritmo de construção simples e um percurso de raios eficiente. Para explorar o poder de processamento em paralelo de uma GPU, é necessário manter os dados da cena e da estrutura de aceleração dentro da placa gráfica, evitando transferências custosas de memória entre a GPU e a CPU. Propomos neste trabalho uma técnica para construir uma grade uniforme inteiramente na GPU. Usando nosso método, é possível reconstruir toda a estrutura em poucos milissegundos, enquanto mantém-se a alta qualidade da grade obtida. Além disso, propomos uma implementaçoes do algoritmo de traçado de raios de forma a aproveitar o processamento em paralelo da GPU. Nosso procedimento é implementado inteiramente dentro da placa gráfica, onde há acesso direto para os dados dos triângulos da cena, bem como as informações da grade uniforme construída. Utilizando a solução proposta, somos capazes de obter taxas de visualização interativas mesmo para cenas com movimentos não-estruturados, incluindo texturas, sombras e até mesmo reflexões.
We present a technique for ray tracing dynamic scenes using the GPU. In order to achieve interactive rendering rates, it is necessary to use a spatial structure to reduce the number of ray-triangle intersections performed. Whenever there is movement in the scene, this structure is entirely rebuilt. This way, it is possible to handle general unstructured motion. For this purpose, we have developed an algorithm for reconstructing Uniform Grids entirely inside the graphics hardware. In addition, we present ray-traversal and shading algorithms fully implemented on the GPU, including textures, shadows and reections. Combining these techniques, we demonstrate interactive ray tracing performance for dynamic scenes, even with unstructured motion and advanced shading effects.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Samothrakis, Stavros Nikolaou. „Acceleration techniques in ray tracing for dynamic scenes“. Thesis, University of Sussex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241671.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Günther, Johannes Verfasser], und Philipp [Akademischer Betreuer] [Slusallek. „Ray tracing of dynamic scenes / Johannes Günther. Betreuer: Philipp Slusallek“. Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2014. http://d-nb.info/1061022463/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chang, Chen Hao Jason. „The study of energy consumption of acceleration structures for dynamic CPU and GPU ray tracing“. Worcester, Mass. : Worcester Polytechnic Institute, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-010807-140122/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sjöberg, Joakim, und Filip Zachrisson. „A Performance Comparison of Dynamic- and Inline Ray Tracing in DXR : An application in soft shadows“. Thesis, Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21833.

Der volle Inhalt der Quelle
Annotation:
Background. Ray tracing is a tool that can be used to increase the quality of the graphics in games. One application in graphics that ray tracing excels in is generating shadows because ray tracing can simulate how shadows are generated in real life more accurately than rasterization techniques can. With the release of GPUs with hardware support for ray tracing, it can now be used in real-time graphics applications to some extent. However, it is still a computationally heavy task requiring performance improvements. Objectives. This thesis will evaluate the difference in performance of three raytracing methods in DXR Tier 1.1, namely dynamic ray tracing and two forms of inline ray tracing. To further investigate the ray-tracing performance, soft shadows will be implemented to see if the driver can perform optimizations differently (depending on the choice of ray-tracing method) on the subsequent and/or preceding API interactions. With the pipelines implemented, benchmarks will be performed using different GPUs, scenes, and a varying amount of shadow-casting lights. Methods. The scientific method is based on an experimental approach, using both implementation and performance tests. The experimental approach will begin by extending an in-house DirectX 12 renderer. The extension includes ray-tracing functionality, so that hard shadows can be generated using both dynamic- and the inline forms ray tracing. Afterwards, soft shadows are generated by implementing a state-of-the-art-denoiser with some modifications, which will be added to each ray-tracing method. Finally, the renderer is used to perform benchmarks of various scenes with varying amounts of shadow-casting lights and object complexity to cover a broad area of scenarios that could occur in a game and/or in other similar applications. Results and Conclusions. The results gathered in this experiment suggest that under the experimental conditions of the chosen scenes, objects, and number of lights, AMD’s GPUs were faster in performance when using dynamic ray tracing than using inline ray tracing, whilst Nvidia’s GPUs were faster when using inline ray tracing compared to when using dynamic ray tracing. Also, with an increasing amount of shadow-casting lights, the choice of ray-tracing method had low to no impact except for linearly increasing the execution time in each test. Finally, adding soft shadows(subsequent and preceding API interactions) also had low to no relative impact on the results depending on the different ray-tracing methods.
Bakgrund. Strålspårning (ray tracing) är ett verktyg som kan användas för att öka kvalitén på grafiken i spel. En tillämpning i grafik som strålspårning utmärker sig i är när skuggor ska skapas eftersom att strålspårning lättare kan simulera hur skuggor skapas i verkligheten, vilket tidigare tekniker i rasterisering inte hade möjlighet för. Med ny hårdvara där det finns support för strålspårning inbyggt i grafikkorten finns det nu möjligheter att använda strålspårning i realtids-applikationer inom vissa gränser. Det är fortfarande tunga beräkningar som behöver slutföras och det är därav att det finns behov av förbättringar.  Syfte. Denna uppsats kommer att utvärdera skillnaderna i prestanda mellan tre olika strålspårningsmetoder i DXR nivå 1.1, nämligen dynamisk strålspårning och två olika former av inline strålspårning. För att ge en bredare utredning på prestandan mellan strålspårningsmetoderna kommer mjuka skuggor att implementeras för att se om drivrutinen kan göra olika optimiseringar (beroende på valet av strålspårningsmetod) på de efterföljande och/eller föregående API anropen. Efter att dessa rörledningar (pipelines) är implementerade kommer prestandatester att utföras med olika grafikkort, scener, och antal ljus som kastar skuggor. Metod. Den vetenskapliga metoden är baserat på ett experimentellt tillvägagångssätt, som kommer innehålla både ett experiment och ett flertal prestandatester. Det experimentella tillvägagångssättet kommer att börja med att utöka en egenskapad DirectX 12 renderare. Utökningen kommer tillföra ny funktionalitet för att kunna hantera strålspårning så att hårda skuggor ska kunna genereras med både dynamisk och de olika formerna av inline strålspårning. Efter det kommer mjuka skuggor att skapas genom att implementera en väletablerad avbrusningsteknik med några modifikationer, vilket kommer att bli tillagt på varje strålspårningssteg. Till slut kommer olika prestandatester att mätas med olika grafikkort, olika antal ljus, och olika scener för att täcka olika scenarion som skulle kunna uppstå i ett spel och/eller i andra liknande applikationer.  Resultat och Slutsatser. De resultat från testerna i detta experiment påvisar att under dessa förutsättningar så är AMD’s grafikkort snabbare på dynamisk strålspårning än på inline strålspårning, samtidigt som Nvidias grafikkort är snabbare på inline strålspårning än på den dynamiska varianten. Ökandet av ljus som kastar skuggor påvisade låg till ingen förändring förutom ett linjärt ökande av exekveringstiden i de flesta testerna. Slutligen så visade det sig även att tillägget av mjuka skuggor (efterföljande och föregående API interaktioner) hade låg till ingen påverkan på valet av strålspårningsmetod.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Minkara, Rania. „Locating wireless base stations within a dynamic indoor environment“. Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681053.

Der volle Inhalt der Quelle
Annotation:
The mobility that wireless communication offers to users, added to the ease of installation have increased the demand on such communication systems. However, the main drawback of wireless communication is the degradation of the signal as it travels through the channel due to the different propagation mechanisms the signal undergoes. To minimise the effect of the channel and get the best service, the base stations must be appropriately located within the environment. This requires proper knowledge of the channel characteristics. Ray tracing software is used throughout this work to generate the channel characteristics of an indoor environment. After getting the channel characteristics, a novel cost function is defined based on the path loss values and it is then optimised. Once the optimal base stations’ positions are found, the minimal amount of power required to cover a predefined percentage of the possible receivers’ locations is calculated. On the other hand, a receiver’s position acquiring enough field strength does not necessarily enjoy the service. This depends on the time dispersion parameters values relative to the symbol rate. The time dispersion parameters have always been ignored in the literature while finding the optimal base stations’ locations. Three cost functions that take into consideration both the path loss and rms delay spread, for the first time in the literature, are therefore defined. The cost functions are optimised and their corresponding results are compared. Furthermore, indoor environments have always been considered static which is never realistic. They are subject to continuous changes such as opening doors and windows as well as the presence of people. The first detailed analysis and quantified results of the effect of a dynamic environment on the optimal base stations’ positions and minimal emitted power are presented. It is shown that the optimal base stations’ locations and minimal emitted power are sensitive to such environment changes. The environment changes can also disturb the service for active receivers. Three techniques to overcome the effect of environment changes and bring the disturbed service back to receivers are proposed. The first two techniques rely on increasing the emitted power or changing the antenna polarisation. The third technique is a novel technique that gives the base station the ability to automatically move in various directions within a limited distance. The techniques are tested and their efficiency and limitations are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Frid, Kastrati Mattias. „Hybrid Ray-Traced Reflections in Real-Time : in OpenGL 4.3“. Thesis, Blekinge Tekniska Högskola, Institutionen för kreativa teknologier, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-10427.

Der volle Inhalt der Quelle
Annotation:
Context. Reaching photo realistic results when rendering 3D graphics in real-time is a hard computational task. Ray-tracing gives results close to this but is too expensive to be run at real-time frame rates. On the other hand rasterized methods such as deferred rendering are able to keep the tight time constraints with the support of modern hardware. Objectives. The basic objective is to merge deferred rendering and ray-tracing into one rasterized pipeline for dynamic scenes. In the thesis the proposed method is explained and compared to the methods it merges. Image quality, execution time and VRAM usage impact are investigated. Methods. The proposed method uses deferred rendering to render the result of the primary rays. Some pixels are marked, based on material properties for further rendering with ray-tracing. Only reflections are presented in the thesis but it has been proven that other global illumination effects can be implemented in the ray-tracing framework used. Results and Conclusions. The hybrid method is proved through experiments to be between 2.49 to 4.19 times faster than pure ray-tracing in the proposed pipeline. For smaller scenes it can be run at frame rates close to real-time, but, for larger scenes such as the Crytek Sponza scene the real-time feeling is lost. However, interactivity is never lost. It is also proved that a simple adjustment to the original framework can save almost 2/3 of the memory spent on A-buffers. Image comparisons prove that the technique can compete with offline ray tracers in terms of image quality.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Heidari, Mohammad. „Identification and modeling of the dynamic behavior of the direct path component in ToA-based indoor localization systems“. Worcester, Mass. : Worcester Polytechnic Institute, 2008. http://www.wpi.edu/Pubs/ETD/Available/etd-071508-195549/.

Der volle Inhalt der Quelle
Annotation:
Dissertation (Ph.D.)--Worcester Polytechnic Institute.
Keywords: Ray Tracing; Wideband Measurement; Dynamic Modeling of Ranging Error; ToA-Based Indoor Localization; NLoS Identification. Includes bibliographical references (leaves 147-159).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Loyet, Raphaël. „Dynamic sound rendering of complex environments“. Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00995328.

Der volle Inhalt der Quelle
Annotation:
De nombreuses études ont été menées lors des vingt dernières années dans le domaine de l'auralisation.Elles consistent à rendre audible les résultats d'une simulation acoustique. Ces études se sont majoritairementfocalisées sur les algorithmes de propagation et la restitution du champ acoustique dans desenvironnements complexes. Actuellement, de nombreux travaux portent sur le rendu sonore en tempsréel.Cette thèse aborde la problématique du rendu sonore dynamique d'environnements complexes selonquatre axes : la propagation des ondes sonores, le traitement du signal, la perception spatiale du son etl'optimisation informatique. Dans le domaine de la propagation, une méthode permettant d'analyser lavariété des algorithmes présents dans la bibliographie est proposée. A partir de cette méthode d'analyse,deux algorithmes dédiés à la restitution en temps réel des champs spéculaires et diffus ont été extraits.Dans le domaine du traitement du signal, la restitution est réalisée à l'aide d'un algorithme optimisé despatialisation binaurale pour les chemins spéculaires les plus significatifs et un algorithme de convolutionsur carte graphique pour la restitution du champ diffus. Les chemins les plus significatifs sont extraitsgrace à un modèle perceptif basé sur le masquage temporel et spatial des contributions spéculaires.Finalement, l'implémentation de ces algorithmes sur des architectures parallèles récentes en prenant encompte les nouvelles architectures multi-coeurs et les nouvelles cartes graphiques est présenté.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Turk, Jeffrey A. „Acceleration techniques for the radiative analysis of general computational fluid dynamics solutions using reverse Monte-Carlo ray tracing“. Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-09192008-063033/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Dynamic ray tracing"

1

Ray tracing optical analysis of offset solar collector for space station solar dynamic system. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tourneau, Thierry Le, Luis Caballero und Tsai Wei-Chuan. Right atrium. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0024.

Der volle Inhalt der Quelle
Annotation:
The right atrium (RA) is located on the upper right-hand side of the heart and has relatively thin walls. From an anatomical point of view, the RA comprises three basic parts, the appendage, the vestibule of the tricuspid valve, and the venous component (superior and inferior vena cava, and the coronary sinus) receiving the deoxygenated blood. The RA is a dynamic structure dedicated to receive blood and to assist right ventricular (RV) filling. The three components of atrial function are the reservoir function during ventricular systole, the conduit function which consists in passive blood transfer from veins to the RV in diastole, and the booster pump function in relation to atrial contraction in late diastole to complete ventricular filling. Right atrial function depends on cardiac rhythm (sinus or atrial fibrillation), pericardial integrity, RV load and function, and tricuspid function. Right atrial dimension assessment is limited in two-dimensional (2D) echocardiography. Right atrial planimetry in the apical four-chamber view is commonly used with an upper normal value of 18-20 cm2. Minor and major diameters can also be measured. Three-dimensional (3D) echocardiography could overcome the limitation of conventional echocardiography in assessing RA size. Right atrial function has been poorly explored by echocardiography both in physiological and pathological contexts. Although tricuspid inflow and tissue Doppler imaging of tricuspid annulus can be used in the exploration of RA function, 2D speckle tracking and 3D echocardiography appear promising tools to dissect RA function and to overcome the limitations of standard echocardiography.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Dynamic ray tracing"

1

Reinhard, Erik, Brian Smits und Charles Hansen. „Dynamic Acceleration Structures for Interactive Ray Tracing“. In Eurographics, 299–306. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-6303-0_27.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bakker, P. M. „Theory of Anisotropic Dynamic Ray Tracing in Ray-centred Coordinates“. In Seismic Waves in Laterally Inhomogeneous Media Part II, 583–89. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9049-6_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zirr, Tobias, Hauke Rehfeld und Carsten Dachsbacher. „Object-Order Ray Tracing for Fully Dynamic Scenes“. In GPU Pro 360, 191–210. First edition. j Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018. j Includes bibliographical references and index.: A K Peters/CRC Press, 2018. http://dx.doi.org/10.1201/9781351052108-11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gao, Tianhan, und Ying Li. „Real-Time Ray Tracing Algorithm for Dynamic Scene“. In Innovative Mobile and Internet Services in Ubiquitous Computing, 125–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22263-5_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Maurel, Hervé, Bruno Moisan, Jean Pierre Jessel, Y. Duthen und R. Caubet. „Dynamic Scenes Management for Animation with Ray-Tracing Rendering“. In Computer Animation ’91, 215–26. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-66890-9_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chea, Sam At, und Fuyan Liu. „Real-Time Ray Tracing Dynamic Scenes Based on WebGL“. In Lecture Notes in Electrical Engineering, 169–74. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4847-0_21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yang, Chaozhi, Chunyi Chen, Xiaojuan Hu und Huamin Yang. „Dynamic Load Balancing Algorithm Based on Per-pixel Rendering Cost Estimation for Parallel Ray Tracing on PC Clusters“. In Image and Graphics Technologies and Applications, 591–601. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9917-6_56.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Boyd, John P. „The Equator as Wall: Coastally Trapped Waves and Ray-Tracing“. In Dynamics of the Equatorial Ocean, 87–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55476-0_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Alfonso, Peter J., Ben C. Watson und Thomas Baer. „Measuring Stutterers’ Dynamical Vocal Tract Characteristics by X-ray Microbeam Pallet Tracking“. In Speech Motor Dynamics in Stuttering, 141–50. Vienna: Springer Vienna, 1987. http://dx.doi.org/10.1007/978-3-7091-6969-8_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ishihara, Y., A. Sawada, Y. Miyabe, N. Mukumoto, M. Nakamura, N. Ueki, Y. Matsuo, T. Mizowaki, M. Kokubo und M. Hiraoka. „Development of four-dimensional Monte Carlo dose calculation system for dynamic tumor-tracking irradiation with a gimbaled X-ray head“. In IFMBE Proceedings, 1791–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_471.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Dynamic ray tracing"

1

Navratil, Paul Arthur, Donald S. Fussell, Calvin Lin und William R. Mark. „Dynamic Ray Scheduling to Improve Ray Coherence and Bandwidth Utilization“. In IEEE/ EG Symposium on Interactive Ray Tracing 2007. IEEE, 2007. http://dx.doi.org/10.1109/rt.2007.4342596.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lauterbach, Christian, Sung-eui Yoon, Dinesh Manocha und David Tuft. „RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes using BVHs“. In 2006 IEEE Symposium on Interactive Ray Tracing. IEEE, 2006. http://dx.doi.org/10.1109/rt.2006.280213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Harle, R. K., und A. Hopper. „Dynamic world models from ray-tracing“. In Second IEEE Annual Conference on Pervasive Computing and Communications, 2004. Proceedings of the. IEEE, 2004. http://dx.doi.org/10.1109/percom.2004.1276845.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bilibashi, D., E. M. Vitucci und V. Degli-Esposti. „Dynamic Ray Tracing: Introduction and Concept“. In 2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020. http://dx.doi.org/10.23919/eucap48036.2020.9135577.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bilibashi, D., E. M. Vitucci und V. Degli-Esposti. „Dynamic Ray Tracing: A 3D Formulation“. In 2020 International Symposium on Antennas and Propagation (ISAP). IEEE, 2021. http://dx.doi.org/10.23919/isap47053.2021.9391318.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ize, Thiago, Ingo Wald, Chelsea Robertson und Steven Parker. „An Evaluation of Parallel Grid Construction for Ray Tracing Dynamic Scenes“. In 2006 IEEE Symposium on Interactive Ray Tracing. IEEE, 2006. http://dx.doi.org/10.1109/rt.2006.280214.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Iversen, Einar, und Ivan Pšenčík. „Ray tracing and inhomogeneous dynamic ray tracing for anisotropy specified in curvilinear coordinates“. In 10th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 2007. http://dx.doi.org/10.3997/2214-4609-pdb.172.sbgf0250_07.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Iversen, Einar, und Ivan Pšenčíik. „Ray tracing and inhomogeneous dynamic ray tracing for anisotropy specified in curvilinear coordinates“. In 10th International Congress of the Brazilian Geophysical Society & EXPOGEF 2007, Rio de Janeiro, Brazil, 19-23 November 2007. Society of Exploration Geophysicists and Brazilian Geophysical Society, 2007. http://dx.doi.org/10.1190/sbgf2007-274.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Iversen, Einar, Bjørn Ursin, Teemu Saksala, Joonas Ilmavirta und Maarten V. de Hoop. „Higher-order dynamic ray tracing in ray-centred coordinates“. In SEG Technical Program Expanded Abstracts 2019. Society of Exploration Geophysicists, 2019. http://dx.doi.org/10.1190/segam2019-3216331.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Garanzha, Kirill. „Efficient clustered BVH update algorithm for highly-dynamic models“. In 2008 IEEE Symposium on Interactive Ray Tracing (RT). IEEE, 2008. http://dx.doi.org/10.1109/rt.2008.4634632.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Dynamic ray tracing"

1

Rueger, Andreas. Dynamic ray tracing and its application in triangulated media. Office of Scientific and Technical Information (OSTI), Juli 1993. http://dx.doi.org/10.2172/10188686.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dutheil, Yann. Spin dynamics modeling in the AGS based on a stepwise ray-tracing method. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/1351801.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie