Auswahl der wissenschaftlichen Literatur zum Thema „Dynamic full field optical coherence tomography“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dynamic full field optical coherence tomography" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Dynamic full field optical coherence tomography"

1

Thouvenin, Olivier, Mathias Fink und Albert Claude Boccara. „Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy“. Journal of Biomedical Optics 22, Nr. 02 (14.02.2017): 1. http://dx.doi.org/10.1117/1.jbo.22.2.026004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tian Haoying, 田浩颍, 汤丰锐 Tang Fengrui, 高万荣 Gao Wanrong und 朱越 Zhu Yue. „动态散射光测量在全场光学相干层析技术中的应用“. Chinese Journal of Lasers 49, Nr. 5 (2022): 0507202. http://dx.doi.org/10.3788/cjl202249.0507202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zhang, Jinze, Viacheslav Mazlin, Keyi Fei, Albert Claude Boccara, Jin Yuan und Peng Xiao. „Time-domain full-field optical coherence tomography (TD-FF-OCT) in ophthalmic imaging“. Therapeutic Advances in Chronic Disease 14 (Januar 2023): 204062232311701. http://dx.doi.org/10.1177/20406223231170146.

Der volle Inhalt der Quelle
Annotation:
Ocular imaging plays an irreplaceable role in the evaluation of eye diseases. Developing cellular-resolution ophthalmic imaging technique for more accurate and effective diagnosis and pathogenesis analysis of ocular diseases is a hot topic in the cross-cutting areas of ophthalmology and imaging. Currently, ocular imaging with traditional optical coherence tomography (OCT) is limited in lateral resolution and thus can hardly resolve cellular structures. Conventional OCT technology obtains ultra-high resolution at the expense of a certain imaging range and cannot achieve full field of view imaging. In the early years, Time-domain full-field OCT (TD-FF-OCT) has been mainly used for ex vivo ophthalmic tissue studies, limited by the low speed and low full-well capacity of existing two-dimensional (2D) cameras. The recent improvements in system design opened new imaging possibilities for in vivo applications thanks to its distinctive optical properties of TD-FF-OCT such as a spatial resolution almost insensitive to aberrations, and the possibility to control the curvature of the optical slice. This review also attempts to look at the future directions of TD-FF-OCT evolution, for example, the potential transfer of the functional-imaging dynamic TD-FF-OCT from the ex vivo into in vivo use and its expected benefit in basic and clinical ophthalmic research. Through non-invasive, wide-field, and cellular-resolution imaging, TD-FF-OCT has great potential to be the next-generation imaging modality to improve our understanding of human eye physiology and pathology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Leong-Hoi, Audrey, Paul C. Montgomery, Bruno Serio, Patrice Twardowski und Wilfried Uhring. „High-dynamic-range microscope imaging based on exposure bracketing in full-field optical coherence tomography“. Optics Letters 41, Nr. 7 (16.03.2016): 1313. http://dx.doi.org/10.1364/ol.41.001313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chen, Keyu, Stephanie Swanson und Kostadinka Bizheva. „Line-field dynamic optical coherence tomography platform for volumetric assessment of biological tissues“. Biomedical Optics Express 15, Nr. 7 (07.06.2024): 4162. http://dx.doi.org/10.1364/boe.527797.

Der volle Inhalt der Quelle
Annotation:
Dynamic optical coherence tomography (dOCT) utilizes time-dependent signal intensity fluctuations to enhance contrast in OCT images and indirectly probe physiological processes in cells. Majority of the dOCT studies published so far are based on acquisition of 2D images (B-scans or C-scans) by utilizing point-scanning Fourier domain (spectral or swept-source) OCT or full-field OCT respectively, primarily due to limitations in the image acquisition rate. Here we introduce a novel, high-speed spectral domain line-field dOCT (SD-LF-dOCT) system and image acquisition protocols designed for fast, volumetric dOCT imaging of biological tissues. The imaging probe is based on an exchangeable afocal lens pair that enables selection of combinations of transverse resolution (from 1.1 µm to 6.4 µm) and FOV (from 250 × 250 µm2 to 1.4 × 1.4 mm2), suitable for different biomedical applications. The system offers axial resolution of ∼ 1.9 µm in biological tissue, assuming an average refractive index of 1.38. Maximum sensitivity of 90.5 dB is achieved for 3.5 mW optical imaging power at the tissue surface and maximum camera acquisition rate of 2,000 fps. Volumetric dOCT images acquired with the SD-LF-dOCT system from plant tissue (cucumber), animal tissue (mouse liver) and human prostate carcinoma spheroids allow for volumetric visualization of the tissues’ cellular and sub-cellular structures and assessment of cellular motility.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Teston, Eliott, Marc Sautour, Léa Boulnois, Nicolas Augey, Abdellah Dighab, Christophe Guillet, Dea Garcia-Hermoso et al. „Label-Free Optical Transmission Tomography for Direct Mycological Examination and Monitoring of Intracellular Dynamics“. Journal of Fungi 10, Nr. 11 (26.10.2024): 741. http://dx.doi.org/10.3390/jof10110741.

Der volle Inhalt der Quelle
Annotation:
Live-cell imaging generally requires pretreatment with fluorophores to either monitor cellular functions or the dynamics of intracellular processes and structures. We have recently introduced full-field optical coherence tomography for the label-free live-cell imaging of fungi with potential clinical applications for the diagnosis of invasive fungal mold infections. While both the spatial resolution and technical set up of this technology are more likely designed for the histopathological analysis of tissue biopsies, there is to our knowledge no previous work reporting the use of a light interference-based optical technique for direct mycological examination and monitoring of intracellular processes. We describe the first application of dynamic full-field optical transmission tomography (D-FF-OTT) to achieve both high-resolution and live-cell imaging of fungi. First, D-FF-OTT allowed for the precise examination and identification of several elementary structures within a selection of fungal species commonly known to be responsible for invasive fungal infections such as Candida albicans, Aspergillus fumigatus, or Rhizopus arrhizus. Furthermore, D-FF-OTT revealed the intracellular trafficking of organelles and vesicles related to metabolic processes of living fungi, thus opening new perspectives in fast fungal infection diagnostics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Apelian, Clement, Fabrice Harms, Olivier Thouvenin und A. Claude Boccara. „Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis“. Biomedical Optics Express 7, Nr. 4 (24.03.2016): 1511. http://dx.doi.org/10.1364/boe.7.001511.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hrebesh, Molly Subhash, Razvan Dabu und Manabu Sato. „In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography“. Optics Communications 282, Nr. 4 (Februar 2009): 674–83. http://dx.doi.org/10.1016/j.optcom.2008.10.070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Quénéhervé, Lucille, Raphael Olivier, Michalina J. Gora, Céline Bossard, Jean-François Mosnier, Emilie Benoit a la Guillaume, Claude Boccara, Charlène Brochard, Michel Neunlist und Emmanuel Coron. „Full-field optical coherence tomography: novel imaging technique for extemporaneous high-resolution analysis of mucosal architecture in human gut biopsies“. Gut 70, Nr. 1 (23.05.2020): 6–8. http://dx.doi.org/10.1136/gutjnl-2020-321228.

Der volle Inhalt der Quelle
Annotation:
Full-field optical coherence tomography (FFOCT) is an imaging technique of biological tissue based on tissue light reflectance analysis. We evaluated the feasibility of imaging fresh digestive mucosal biopsies after a quick mounting procedure (5 min) using two distinct modalities of FFOCT. In static FFOCT mode, we gained high-resolution images of general gut tissue-specific architecture, such as oesophageal papillae, gastric pits, duodenal villi and colonic crypts. In dynamic FFOCT mode, we imaged individual epithelial cells of the mucosal lining with a cellular or subcellular resolution and identified cellular components of the lamina propria. FFOCT represents a promising dye-free imaging tool for on-site analysis of gut tissue remodelling.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yang, Houpu, Shuwei Zhang, Peng Liu, Lin Cheng, Fuzhong Tong, Hongjun Liu, Siyuan Wang et al. „Use of high‐resolution full‐field optical coherence tomography and dynamic cell imaging for rapid intraoperative diagnosis during breast cancer surgery“. Cancer 126, S16 (25.07.2020): 3847–56. http://dx.doi.org/10.1002/cncr.32838.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Dynamic full field optical coherence tomography"

1

Fergusson, James. „Full field swept source optical coherence tomography“. Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/49959/.

Der volle Inhalt der Quelle
Annotation:
Optical Coherence Tomography (OCT) is a non-invasive volumetric imaging technique that offers micron scale resolution over several millimetres of depth penetration in tissue. The aim of the project was to develop Full Field Swept Source OCT (FFSSOCT), charting the specifications of the system throughout and drawing comparisons with available Fourier domain OCT (FDOCT) systems. A super luminescent diode (SLD) light source was tuned to different optical frequencies using an acousto-optical tunable filter. The successive optical frequencies were distributed across the sample in parallel and the sequential interference spectra were recorded with a high speed digital camera. Using a 5mW optical source at 850nm, 70dB sensitivity was ultimately achieved in a single five second acquisition, improving the original performance by 5dB and increasing acquisition and processing time significantly. Ex vivo retinal images of rat and tree shrew were recorded with multiple layers visible. All software was custom written in Labview, improving the user interface and processing time over the existing Matlab code. To enhance the performance of the system, the camera was subsequently upgraded from 15 to 45% quantum efficiency and from 250k to 1.3M pixels. The light source was also upgraded to 20mW. The software was improved with spectral processing and dispersion compensation. 85dB sensitivity was ultimately achieved. Further ex vivo retinal images were taken, showing comparative image quality to those of the same retinal samples recorded with FDOCT. Further attempts to increase the system performance were limited by internal reflections and interfering surfaces within the FFSSOCT design leading to saturation of the digital camera. In vivo imaging was attempted using software based phase jitter compensation. Improvement could be seen with simple reflecting structures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Thouvenin, Olivier. „Optical 3D imaging of subcellular dynamics in biological cultures and tissues : applications to ophthalmology and neuroscience“. Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC169/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse a pour objectif l’étude d’un lien effectif potentiel entre la motilité cellulaire, la mécanique cellulaire, et l’activité biochimique de ces mêmes cellules. Ce couplage a été étudié dans divers systèmes biologiques, et aussi bien dans des cultures de cellules qu’à l’intérieur de tissus plus complexes. Notamment, nous avons particulièrement cherché à détecter un couplage électromécanique dans des neurones qui pourrait être impliqué dans la propagation du message nerveux.Pour ce faire, nous avons dû développer deux microscopes optiques à la sensibilité extrême. Ces microscopes se composent de deux parties principales. La première sert à détecter des mouvements axiaux plus petits que la longueur d’onde optique, soit en dessous de 100 nanomètres. La deuxième partie permet la détection d’un signal de fluorescence, offrant la possibilité de suivre l’évolution biochimique de la cellule. Avec ces deux microscopes multimodaux, il est donc possible de suivre de manière simultanée un contraste de motilité, un contraste mécanique, un contraste structurel et un contraste biochimique. Si l’un de ces systèmes est basé sur la tomographie de cohérence optique plein champ et permet de faire de telles mesures en 3-D et en profondeur dans les tissus biologiques, le second ne permet que des mesures dans des cultures de cellules, mais est bien plus robuste au bruit mécanique. Dans ce manuscrit, nous allons essentiellement décrire le développement de ces deux appareils, et préciser les contrastes auxquels ils sont sensibles spécifiquement.Nous développerons également deux des applications principales de ces microscopes que nous avons étudié dans le détail au cours de cette thèse. La première application développe l’intérêt d’un de nos microscopes pour la détection sans marquage des principaux composants cellulaires et structuraux de la cornée et de la rétine. La seconde application tend à détecter et à suivre des ondes électromécaniques dans des neurones de mammifères
This PhD project aims to explore the relationship that might exist between the dynamic motility and mechanical behavior of different biological systems and their biochemical activity. In particular,we were interested in detecting the electromechanical coupling that may happen in active neurons, and may assist in the propagation of the action potential. With this goal in mind, we have developed two highly sensitive optical microscopes that combine one modality that detects sub-wavelength axial displacements using optical phase imaging and another modality that uses a fluorescence path. Therefore, these multimodal microscopes can combine a motility, a mechanical,a structural and a biochemical contrast at the same time. One of this system is based ona multimodal combination of full-field optical coherence tomography (FF-OCT) and allows the observation of such contrast inside thick and scattering biological tissues. The other setup provides a higher displacement sensitivity, but is limited to measurements in cell cultures. In this manuscript, we mainly discuss the development of both systems and describe the various contrastst hey can reveal. Finally, we have largely used our systems to investigate diverse functions of the eye and to look for electromechanical waves in cell cultures. The thorough description of both biological applications is also provided in the manuscript
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Apelian, Clément. „Imagerie Optique Multimodale des tissus par Tomographie Optique Cohérente Plein Champ“. Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLET009/document.

Der volle Inhalt der Quelle
Annotation:
La tomographie de cohérence optique plein champ est une technique de microscopie permettant d’imager un plan d’intérêt en profondeur dans un milieu diffusant. Cette technique a été utilisée pour l’examen de pièces opératoires dans un but de diagnostic en cancérologie. L’utilisation de cette technique permettrait en effet de fournir un outil de diagnostic peropératoire rapide et fiable, évitant ainsi de nombreuses procédures de réopération. Ces réopérations peuvent survenir lorsque – lors du diagnostic final par analyse de coupes histologiques – le pathologiste décèle la présence de tissus cancéreux restant, non retirés au cours de l’opération.L’OCT plein champ a montré de bons résultats pour cette application. Néanmoins, cette technique ne fournit qu’un contraste morphologique des tissus, ne permettant pas d’utiliser des critères de qualification des pièces opératoires basées – par exemple – sur la morphologie ou la densité cellulaire.Nous avons développé une nouvelle modalité d’imagerie basée sur l’OCT plein champ permettant de révéler un contraste métabolique dans le tissu à une échelle subcellulaire. Ce contraste permet de révéler les cellules précédemment non distinguées en OCT plein champ. Nous avons également utilisé la mesure quantitative de cette modalité pour réaliser des outils d’aide au diagnostic utilisant des approches d’apprentissage par ordinateur
Full filed optical coherence tomography is a microscopy imaging technique allowing to image a specific slice in a scattering medium, in depth. This technique has been used for the diagnosis of biopsy in cancerology. This technique could be an efficient and fast way to diagnose excised tissues during surgery. This would avoid numerous reoperations procedures. These reoperations are necessary when a pathologist suspects cancerous tissue to still be present in the patient, based on histological slide examination.FFOCT has shown promising results for that purpose. Nevertheless, this technique only gives a morphological contrast of tissues, which is not enough for applying some diagnostic criteria such as cell morphology or cell density.We developed a new imaging modality based on FFOCT allowing to reveal metabolic contrast in tissues at the subcellular scale. This contrast reveals cells previously indistinguishable with FFOCT. We also used this quantitative metric to propose tools to facilitate diagnosis, using machine learning approaches
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Azzollini, Salvatore. „Developing live microscopy for retinal disease modeling“. Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS239.pdf.

Der volle Inhalt der Quelle
Annotation:
Mon projet de doctorat a été consacré à la conception et à l'application de techniques de microscopie optique non invasives, tridimensionnelles, sans marquage et en direct pour la modélisation des maladies rétiniennes à haute résolution. Aux frontières de la physique, de l'ingénierie et de la biologie, la principale question qui a motivé mon travail était de caractériser la santé de cellules dans des tissus complexes, avec une perturbation externe minimale. En particulier, j'ai contribué au développement d'une nouvelle modalité d'imagerie appelée tomographie par cohérence optique plein champ dynamique (DFFOCT), avec une attention particulière pour les échantillons rétiniens. Dans les deux premiers chapitres de mon manuscrit, je placerai cette modalité dans le contexte d'autres technologies alternatives et je décrirai le module que j'ai co-développé. Pendant mon doctorat, j'ai travaillé sur la transformation des besoins des biologistes en matière d'observation, de contrôle et d'optimisation de leurs modèles expérimentaux en solutions optiques et techniques. Les expériences et l'analyse des données ont été principalement réalisées sur des échantillons de rétine, y compris des organoïdes sains et malades, et des explants animaux. Des études longitudinales et tridimensionnelles de modélisation de la maladie in vitro ont été réalisées, en particulier sur la dystrophie rétinienne et la dégénérescence maculaire liée à l'âge (DMLA), pour lesquelles je présenterai des résultats préliminaires dans le chapitre 2. Bien que très puissant pour étudier la dynamique cellulaire dans les tissus complexes, le DFFOCT était initialement limité aux échantillons épais, ce qui empêchait son utilisation sur des cultures cellulaires en 2D. J'ai également contribué au développement d'une autre configuration optique qui permet d'imager des cellules à proximité de lamelles de verre. En utilisant un design auto-référencé, il est devenu possible d'imager des cultures cellulaires en 2D. J'ai contribué à la réalisation de la nouvelle installation et j'ai effectué une partie des expériences de preuve de concept sur des fibroblastes humains. De plus, cette modalité a été utilisée pour établir un nouveau pipeline de discrimination cellulaire en 2D, dont les premiers résultats sont présentés dans le troisième chapitre de ce manuscrit. Puisque le DFFOCT capture les mouvements intracellulaires pour quantifier l'activité cellulaire locale, nous nous sommes demandé si nous pouvions détecter des changements physiologiques par le biais d'un changement d'activité. En travaillant sur des échantillons de rétine, nous avons essayé de détecter la réponse DFFOCT à la photo-stimulation sur des organoïdes rétiniens naturels et génétiquement modifiés, ainsi que sur des explants rétiniens.Les résultats n'ont pas encore abouti à une conclusion claire, comme nous le verrons dans le chapitre 4. Cependant, le sujet est toujours étudié au sein du groupe, car d'autres membres de l'équipe tentent d'extraire des informations significatives des ensembles de données analysés. Comme dernière étape de mon projet de doctorat, j'ai construit un nouveau setup optique : un OCT à domaine spectral (SDOCT) à coupler au DFFOCT et au microscope, décrit dans le dernier chapitre de la thèse. Le but est d'ajouter une vue macroscopique perpendiculaire à basse résolution au système existant, afin d'avoir un balayage rapide de l'échantillon entier avant de passer à l'analyse à haute résolution avec le DFFOCT. Cela nous permettrait de cibler le domaine du dépistage à haut débit, étant donné que le balayage volumétrique DFFOCT, qui prend du temps, serait remplacé par une imagerie OCT hybride SD + FF. En outre, grâce à l'algorithme dynamique, il est possible de récupérer des informations métaboliques au niveau macroscopique, comme pour le FFOCT. Les applications futures du système impliquent l'automatisation du processus d'acquisition et, éventuellement, la détection de la réponse à la photo-stimulation
My PhD project was devoted to the conception and application of non-invasive, three-dimensional, label free, live optical microscopy techniques for retinal disease modelling at high resolution. At the frontiers between physics, engineering, and biology, the main question that motivated my work was how to characterize the health of single cells in complex tissues with minimal external perturbation. In particular, I contributed to the development of a new imaging modality named dynamic full field optical coherence tomography (DFFOCT) with a particular focus on retinal samples. This new modality enabled me to study the physiology of several state-of-the art biological models, including organoids, and advanced disease models. In the two first chapters of my manuscript, I will put this new modality in context of other alternative technologies, and describe a module that I co-developed.During my PhD, I worked on transforming the needs of biologists to observe, control and optimize their experimental models into optical and technical solutions. Experiments and data analysis were mainly performed on retinal samples, including healthy and diseased organoids, and animal explants. Longitudinal and three-dimensional disease modelling in vitro studies were performed, particularly on retinal dystrophy and age-related macular degeneration (AMD), on which I will present preliminary results in chapter 2. Although very powerful to study cell dynamics in complex tissues, DFFOCT was initially limited to thick specimens, which prevented its use on 2D cell cultures, preventing to make a direct link between 2D and 3D models. During my PhD, I also contributed to the development of another optical configuration that allows to image cells close to glass coverslips. By using a self-referenced design, 2D cell cultures attached to a coverslip have become possible to image. I contributed to the realization of the modified setup and carried out part of the proof-of-concept experiments on human fibroblasts. Moreover, this new modality was used to establish a new cell discrimination pipeline in 2D, with the first results shown in the third chapter of this manuscript. Since our imaging modality captures intracellular movements within cells to quantify their local activity, we asked the question whether we could detect physiological changes through a change in activity. Working on retinal samples, we tried to detect the DFFOCT response to photo-stimulation on natural and genetically modified retinal organoids, and retinal explants. The results did not lead to a clear conclusion during my PhD as will be covered in chapter 4. However, the topic is still deeply studied in the group, as other members of the team are trying to retrieve meaningful information from the analysed datasets. As the final step of my PhD project, I built a new additional part of the optical setup: a spectral domain OCT (SDOCT) to couple to the DFFOCT and to the microscope, consequently, described in the final chapter of the thesis. The aim of this association is to add a low-resolution macroscopic perpendicular view to the existing system, in order to have a quick scan of the whole sample before delving into high resolution analysis with the DFFOCT. This would allow us to target the high content screening domain, as the time consuming DFFOCT volumetric scanning would be replaced by a hybrid SD + FF OCT imaging. Moreover, with the implementation of a dynamic algorithm, it is possible to retrieve metabolic information at macroscopic level too, similarly to what is done with the FFOCT. Future applications of the aforementioned system involve automatization of the acquisition process and, possibly, detection of photo-stimulation response
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mandache, Diana. „Cancer Detection in Full Field Optical Coherence Tomography Images“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS370.

Der volle Inhalt der Quelle
Annotation:
Le cancer est une des principales cause de décès dans le monde et donc un problème majeur de santé publique. Plusieurs techniques d'imagerie biomédicale servent à la recherche et aux efforts cliniques pour améliorer le pronostic du patient. Nous étudions l'utilisation d'une nouvelle famille de techniques d'imagerie, la tomographie par cohérence optique plein champ statique et dynamique, qui permet une analyse du tissu plus rapide que la technique de référence en histopathologie. Afin de faciliter l'interprétation de cette nouvelle imagerie, nous développons plusieurs méthodes exploratoires basées sur des données issues d'études cliniques. Nous proposons une méthode analytique pour une meilleure caractérisation du signal interférométrique dynamique brut, ainsi que de multiples méthodes d'aide au diagnostic à partir des images. Pour cela, des réseaux neuronaux convolutifs ont été exploités sous différents paradigmes: (i) apprentissage entièrement supervisé, dont la capacité de prédiction dépasse la performance du pathologiste; (ii) apprentissage par instances multiples, qui permet de surmonter le manque d’annotations d’experts; (iii) apprentissage contrastif, qui exploite la multi-modalité des données. Nous portons une grande attention à la validation et au décryptage des modèles boîte noire pour garantir leur bonne généralisation et enfin trouver des biomarqueurs spécifiques
Cancer is a leading cause of death worldwide making it a major public health concern. Different biomedical imaging techniques accompany both research and clinical efforts towards improving patient outcome. In this work we explore the use of a new family of imaging techniques, static and dynamic full field optical coherence tomography, which allow for a faster tissue analysis than gold standard histology. In order to facilitate the interpretation of this new imaging, we develop several exploratory methods based on data curated from clinical studies. We propose an analytical method for a better characterization of the raw dynamic interferometric signal, as well as multiple diagnostic support methods for the images. Accordingly, convolutional neural networks were exploited under various paradigms: (i) fully supervised learning, whose prediction capability surpasses the pathologist performance; (ii) multiple instance learning, which accommodates the lack of expert annotations; (iii) contrastive learning, which exploits the multi-modality of the data. Moreover, we highly focus on method validation and decoding the trained "black box" models to ensure their good generalization and to ultimately find specific biomarkers
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Li, Chen. „Development of a simple full field optical coherence tomography system and its applications“. Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2044939/.

Der volle Inhalt der Quelle
Annotation:
Optical coherence tomography (OCT) is a versatile and powerful imaging technique widely used in biomedical applications. It employs non-destructive radiation and performs non-contact micrometre-scale cross-sectional imaging of the sample structure. However, classic OCT systems generally apply a single-point detection scheme, which creates inefficiencies in terms of the experimental alignment of system, the point-by-point signal acquisition process and the measurement speed. One of its variants, full-field optical coherence tomography (FF-OCT) employs parallel illumination and directly acquires en-face images with a complementary camera, hence omitting the need of electromechanical lateral scans as in classic OCT systems. Current FF-OCT systems could offer more efficient measurement procedures as well as superior imaging performance, however, they are neither economically viable nor universally applicable to different applications. There is a need for a simplified low cost system to make such a powerful technology readily available for a wide range of applications. In this thesis, the development of a low cost simple FF-OCT system is described from its system setup, experimental procedures, data analysis, and system performance. The system consists of only essential components including probing lens and a beam-splitter, together with a low cost infrared LED source and CMOS camera. During the measurement, the system only requires to control the axial movement of the sample arm and the image acquisition by the camera. For the imaging of a sample with a depth of 100 um, the FF-OCT measurement only takes less than two minutes. The time-efficient measurement with the simple system offers great advantage over the developed phase-shifting FF-OCT system, which requires lengthy measurement and excessive operations, despite the decoupling of signal strength and instantaneous phase with penetration depth. Therefore, compared to state-of-the-art systems, it has the advantage of being low-cost, fast image acquisition speed and simple experimental operations. For the data analysis of tomographic imaging, the axial position of a structural feature is determined by that of the envelope, which is obtained by processing raw FF-OCT signal with Hilbert transform. The imaging performance of the simple system is measured to have a spatial resolution of 3.6 x 10.3 um2 (axial x lateral) and a system sensitivity of 74 dB. The characterisation of small-size pharmaceutical pellet coatings, bovine corneal layers and paint films is to demonstrate the potential of the simple FF-OCT system for the tomographic imaging. The layered structures and internal morphology features can be revealed by analysing the measured FF-OCT B-scan images and A-scan signals. First of all, the simple FF-OCT system is capable of performing accurate and quick measurements of pellet coatings, which are validated by the XuCT technique. FF-OCT imaging can provide a spatial characterisation of coating layers, an accurate determination of coating thickness, and an estimation of coating uniformity and porosity, making the simple system a powerful tool for the coating evaluation of similar pharmaceutical pellets. Secondly, the simple system can detect corneal surfaces and the two anterior layers of bovine cornea. This could permit the prediction of the corneal oedematous state and epithelial erosions by the analysis of the FF-OCT results of the corneal structure. Thirdly, the simple system is capable of revealing the surface and subsurface of basecoat and clearcoat films. The measurement of their paint thicknesses is also verified by the reference profilometry results. FF-OCT imaging can provide further spatial evaluation of a paint film and the areal thickness map could be obtained. The study of these paint samples with the simple system might provide an indication for the FF-OCT measurement of industrial automotive paint. For the data analysis of the surface topography, the axial position of the surface is obtained by applying interpolation and a minimum search algorithm to the raw FF-OCT signal. This allows sub-micrometre depth precision to be obtained with the simple system. In the validation of the measurement of the surface topography, a less than 10 nm deviation of the FF-OCT measurement is found compared to the AFM measurement of a nanostructured step-like surface. The capability of the simple system for the surface topography is further illustrated by the determination of the electrode thickness of semiconductor microelectronics. By analysing the phase change upon reflections and the optical path lengths during the measurement, the step-like structure and the sandwich configuration can be revealed from the measured FF-OCT surface maps. The usefulness of the simple system is presented in the surface topography of PMMA models. It is demonstrated that the areal refractive power can be obtained by analysing the 2-D curvature of the FF-OCT measured surface map, which is useful in the identification of surface irregularity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhang, Jinke. „Development of time-domain full-field optical coherence tomography as a non-destructive testing method“. Thesis, University of Liverpool, 2017. http://livrepository.liverpool.ac.uk/3015759/.

Der volle Inhalt der Quelle
Annotation:
Optical coherence tomography (OCT) serves as a non-destructive and non-invasive technique that is capable of imaging the inner structure of optical scattering samples with a high spatial resolution and deep penetration depth. Full-field time-domain OCT (FF-TD-OCT) is an extension of time-domain OCT (TD-OCT) which uses a two-dimensional (2D) detector to capture a series of en-face images to reconstruct the inner structure of samples in three-dimension (3D). In pharmaceutical industry, the pellet or tablet coating performs an important role in the release of active pharmaceutical ingredients (API) and controlling the desired API absorption rate in human body. Therefore, the accurate evaluation of coating thickness is vital to the pharmaceutical coating process. Our FF-TD-OCT system was developed in this research to image the pharmaceutical coating of small size pellets with a high axial resolution of 3.9μm and lateral resolution of 4.4μm. We characterized two pellet samples: a two-layer pellet with one clear coating layer and one drug-loaded layer, and a three-layer pellet with one clear coating layer and two drug-load layers. The mean thickness of a two-layer pellet was precisely determined automatically as 39.7±7.3μm and 49.1±7.0μm for the outer and inner layers respectively. The mean thickness of a three-layer pellet were 26.5±2.3μm, 20.6±3.4μm and 57.3±7.2μm respectively. In addition, the particles in the drug-loaded layer can be clearly resolved form the cross-section image. The precise and power information of the human corneal surface is of significant benefit in corneal corrective surgeries. Our developed FF-TD-OCT was combined with an average back-vertex focal length and average powercalculation algorithm in order to measure and calculate the individual power of the corneal surface. Meanwhile, the angle of incident light was considered as an important parameter and the errors introduced by the paraxial approximation was reduced. We managed to measure six formalin-fixed and two fresh corneas and map the surface power information of them. In addition, the cross-section image of cornea generated from our FF-TD-OCT system showed its structure including epithelium, Bowman’s layer and stroma clearly and the features of the stroma. For automotive paint system, the metallic flakes in base coat has a significant effect on the appearance of automotive bodies. Precise evaluation of the properties of these flakes is important in the automotive painting system in the purpose for quality assurance. Our FF-TD-OCT system was combined with a 3D variational segmentation method to measure and segment the individual flakes within the base coat of automotive paint system in 3D for the first time. The properties of flakes, including number, size and orientation in 3D space, were precisely calculated, which cannot be achieved by current commercial methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cai, Yao. „Design and implementation of Adaptive Optics Full-Field Optical Coherence Tomography for in-vivo retinal imaging“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS685.

Der volle Inhalt der Quelle
Annotation:
La rétine, en tant que fenêtre sur le cerveau, est directement connectée au système nerveux central. L'imagerie rétinienne in vivo est prometteuse pour fournir des signes de maladies neurodégénératives à un stade précoce avec une imagerie cellulaire de haute résolution. Cependant, la présence de mouvements oculaires en 3D et d'aberrations oculaires dégrade le rapport signal/bruit et la résolution de l'image. La technique de tomographie par cohérence optique plein champ dans le domaine temporel (TDFFOCT) a démontré une résolution 3D élevée et une faible complexité du système pour l'imagerie rétinienne. Un avantage de la TDFFOCT est que la résolution latérale est presque deux fois supérieure à celle des systèmes d'imagerie standard. Néanmoins, la TDFFOCT présente une sensibilité relativement faible, qui peut être notablement compromise par les aberrations oculaires et les mouvements axiaux de la rétine. En particulier, ma thèse se concentre sur la conception et la mise en œuvre de systèmes avancés de TDFFOCT avec une sensibilité de détection améliorée pour l'imagerie rétinienne in vivo. Mon manuscrit de thèse est divisé en trois parties principales. Partie 1 est une partie introductive comprenant trois chapitres. Le Chapitre 1 est consacré à la présentation de l'œil humain d'un point de vue biologique et médical et introduit les principales perturbations oculaires. Le Chapitre 2 présente l’étendue des systèmes d'imagerie clinique et de recherche pour l'imagerie de la rétine in vivo, où l'optique adaptative (AO) a été largement utilisée. Enfin, le Chapitre 3 débute par la présentation de la technique OCT, en mettant l'accent sur la TDFFOCT. La TDFFOCT surpasse les autres systèmes d'imagerie rétinienne avancés grâce à sa haute résolution 3D, un grand FOV et une conception de système compacte, permettant des applications cliniques. Cependant, la faible sensibilité du système TDFFOCT le rend difficile pour l'imagerie rétinienne interne. La Partie 2 expose la caractérisation des performances du système TDFFOCT pour l'imagerie rétinienne in vivo. Dans le Chapitre 4, je présente ma mise en œuvre d'une TDFFOCT clinique à l'Hôpital National d'Ophtalmologie Quinze-Vingts à Paris. Cependant, il reste difficile d'imager une grande population ou les couches rétiniennes internes, principalement en raison des mouvements oculaires et des aberrations oculaires qui dégradent la sensibilité. Après cela, le Chapitre 5 se concentre sur la caractérisation du mouvement axial de la rétine pour faciliter une meilleure conception d'un système de suivi rétinien. En ce qui concerne l'impact des aberrations oculaires, le Chapitre 6, propose une méthode pour étudier les performances de la TDFFOCT en présence de diverses aberrations oculaires. Ayant examiné deux paramètres principaux (mouvement oculaire et aberrations oculaires) qui dégradent la sensibilité de détection dans la TDFFOCT, des solutions pour relever ces deux défis sont également proposées, concernant 1) la fréquence de boucle requise pour un suivi axial précis de la rétine, 2) le gain du rapport signal/bruit et de la résolution par correction des aberrations pour différentes populations. Enfin, je présente la mise en œuvre de ces solutions dans le système TDFFOCT pour améliorer la sensibilité. La Partie 3 présente la conception et la mise en œuvre du système TDFFOCT avancé avec une sensibilité améliorée. Dans cette partie, j'ai mis en œuvre trois nouvelles fonctionnalités principales : • Chapitre 7 présent la conception d'une approche AO sans capteur de front d'onde pour l'imagerie rétinienne in vivo en milieu clinique. • Pour explorer la plus grande sensibilité de la TDFFOCT, j'ai conçu et mis en œuvre un TDFFOCT AO avec un capteur de front d'onde dans le Chapitre 8. • Le Chapitre 9 démontre comment améliorer les performances de suivi axial concernant les mouvements de la rétine
Retina serves as a window to the brain, and in-vivo retinal imaging is promising to give signs of neurodegenerative disease at the early stage with high-resolution cellular imaging. However, the presence of 3D eye motion and ocular aberrations degrades the image signal-to-noise ratio (SNR) and resolution. The technique of time-domain full-field optical coherence tomography (TDFFOCT), developed by Claude Boccara’s team has demonstrated exhilarating performances for retinal imaging with 3D high resolution and low system complexity. One key advantage of TDFFOCT is that the lateral resolution is nearly twice of the standard imaging system, and it is more robust to the low-order symmetric aberrations, such as defocus and astigmatisms, which account for approximately 92% of wavefront error in ocular aberrations. However, TDFFOCT exhibits relatively low sensitivity, which can be notably compromised by ocular aberrations and axial retinal motions. In particular, my PhD focuses on the design and implementation of advanced TDFFOCT systems with enhanced detection sensitivity for in-vivo retinal imaging, especially the visualizations of inner retina features with low reflectivity. My thesis manuscript is divided into three main parts. Part 1 is an introductory part comprising three chapters. Chapter 1 is dedicated to presenting the human eye from a biological and medical perspective. This highlights the imaging requirements for achieving high-resolution in-vivo retinal imaging. Chapter 2 presents the zoology of clinical and research imaging systems to image retina in vivo, where adaptive optics (AO) have been widely applied. This chapter also highlights the limitations in current AO imaging systems, mainly due to a limited field of view (FOV) and complex system design, hindering its applications in clinics. Finally, Chapter 3 starts with the OCT technique, with a focus on time-domain FFOCT. TDFFOCT outperforms other advanced retinal imaging systems, with high 3D resolution and large FOV and a compact system design, enabling clinical applications. But the low sensitivity of TDFFOCT system makes it challenging for inner retinal imaging. Part 2 is based on the characterization of the performances of the TDFFOCT system for in-vivo retinal imaging. In Chapter 4, I show my implementation of a clinical TDFFOCT which I have optimized and installed at the Quinze-Vingts National Ophthalmology Hospital, following by in-vivo retinal imaging for patients. But it’s still challenging to image a large population or inner retinal layers mainly due to eye motion and ocular aberrations degrading the sensitivity. Following this, Chapter 5 focuses on the characterization of retinal axial motion to facilitate a better design of retinal tracking system. Regarding the impact of ocular aberrations, a novel method is proposed in Chapter 6 to investigate the performances of TDFFOCT under various ocular aberrations. Having investigated two main parameters (eye motion and ocular aberrations) that degrade the detection sensitivity in TDFFOCT, the solutions to address these two challenges are also proposed regarding the loop rate required for a precise axial retinal tracking and the gain of the SNR and resolution by aberration correction for different population. Next, I will implement these solutions into TDFFOCT system to enhance the sensitivity. Following this, Part 3 shows the design and implementation of the advanced TDFFOCT system with enhanced sensitivity. In this part, I have implemented three main new features: • Chapter 7 focuses on the design of an efficient SAO approach for in-vivo retinal imaging in clinics. • To explore the highest sensitivity in TDFFOCT, I have designed and implemented a sensor-based AO TDFFOCT in Chapter 8. • Chapter 9 demonstrates how to improve the axial retinal tracking performance to facilitate more efficient frame accumulations for image averaging to improve image signal-to-noise ratio
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Perrin, Stephane. „Development and characterization of an optical coherence tomography micro-system : Application to dermatology“. Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2002/document.

Der volle Inhalt der Quelle
Annotation:
Ce manuscrit de thèse de doctorat présente la conception et la réalisation d’un système d’imageriepour le diagnostic précoce des pathologies de la peau. Un diagnostic précoce permet de réduire lesactes chirurgicaux inutiles. Il est important de mettre en avant que seulement 20% des pathologiesfaisant office d’une opération chirurgicale, sont malignes. De plus, les pronostics de l’année 2015avançaient trois millions de nouveaux cas de cancer de la peau diagnostiqués aux ´ Etats-Unis. Basésur la tomographie par cohérence optique à balayage en longueur d’onde et une configuration pleinchamp et multi-canaux, le système d’imagerie médicale est capable d’imager en volume les couchesinternes de la peau et donc de fournir un diagnostic médical pour le professionnel de santé. Pourune fabrication en série du système portatif, les composants optiques sont micro-fabriqués sur dessubstrats et assemblés verticalement. Ces micro-composants optiques requièrent une caractérisationspécifique. Pour cela, deux systèmes ont ainsi été développés pour estimer leurs performancesoptiques. Ce travail a été réalisé dans le cadre du projet Européen VIAMOS (Vertically IntegratedArray-type Mirau-based OCT System)
The manuscript concerns the optical design and the development of a non-invasive new imagingsystem for the early diagnosis of skin pathologies. Indeed, an early diagnosis can make the differencebetween malignant and benign skin lesion in order to minimize unnecessary surgical procedure.Furthermore, prognosis for the year 2015 was that more than three millions new skin cancer caseswill be diagnosed in the United States. Based on the swept source optical coherence tomographytechnique in full-field and multiple channels configuration, the imaging system is able to perform avolumetric image of the subsurface of the skin, and thus can help in taking a better medical decision.Furthermore, for a batch-fabrication of the hand-held device, micro-optical components were made atwafer-level and vertically assembled using multi-wafer bonding. This miniaturized system requiresspecific characterization. Thus, two systems were also developed for imaging quality evaluation ofmicro-optical elements. This work has been supported by the VIAMOS (Vertically Integrated ArraytypeMirau-based OCT System) European project
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lullin, Justine. „Design, simulation and fabrication of a vertical microscanner for phase modulation interferometry - Application to optical coherence tomography system for skin imaging“. Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2010/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse décrit le design, la simulation et la fabrication d’une matrice 4x4 de micro-miroirs actionnée verticalement et munie d’un capteur de position. Le micro-scanneur vertical a pour vocation à être intégré au sein d’un micro-interféromètre de Mirau de type matriciel, réalisé àbase de composants micro-optiques fabriqués grâce à des méthodes collectives. Le mouvement du micro-scanneur, développé dans cette thèse, génère un signal de référence utilisé pour l’implémentation de l’interférométrie à modulation de phase dans un système de tomographie par cohérence optique (OCT). Dans un premier temps, la thèse introduit le besoin d’un système d’imagerie adapté pour la détection précoce des cancers de la peau et établit les spécifications optiques requises par cette application. A partir de ces spécifications, le design du système OCT basé sur le micro-interféromètre de Mirau est présenté. En parallèle, l’état de l’art des technologies de micro-actionnement est décrit et un actionnement électrostatique à base de peignes interdigités est choisi pour actionner et lire la position de la matrice de micro-miroirs. En effet ce type d’actionnement bénéficie d’une bonne compatibilité avec le design du micro-interféromètre de Mirau. Dans un second temps, le cœur de la thèse expose le développement du micro-scanneur vertical, c.à.d le design et les simulations ainsi que la fabrication et la caractérisation
This thesis describes the design, simulation and fabrication of a vertically actuated 4x4 array ofmicromirrors with embedded position sensing function. The vertical microscanner is meant to beintegrated within an array-type Mirau microinterferometer realized with optical microcomponentsfabricated using collective techniques. The microscanner, developed in this thesis, provides areference signal that is used for the implementation of phase modulation interferometery in an opticalcoherence tomography (OCT) system. This thesis first introduces the need for adapted imagingsystems for the early diagnosis of skin cancer and establishes the optical specifications requiredby this specific application. Based on these specifications, the design of the OCT system based onthe Mirau microinterferometer is presented. In parallel, the state of the art of the microactuationtechnologies is discussed and comb drive electrostatic actuation is chosen, for its compatibilitywith the design of the Mirau microinterferometer, to actuate and sense the position of the array ofmicromirrors. Then, the core of the thesis deals with the development of the vertical microscanner,i.e. its design and simulations, its fabrication and its characterization
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Dynamic full field optical coherence tomography"

1

Dubois, A., und A. C. Boccara. „Full-Field Optical Coherence Tomography“. In Optical Coherence Tomography, 565–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77550-8_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Harms, Fabrice, Anne Latrive und A. Claude Boccara. „Time Domain Full Field Optical Coherence Tomography Microscopy“. In Optical Coherence Tomography, 791–812. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dalimier, Eugénie, Osnath Assayag, Fabrice Harms und A. Claude Boccara. „Assessment of Breast, Brain and Skin Pathological Tissue Using Full Field OCM“. In Optical Coherence Tomography, 813–38. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_27.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Moreau, Julien. „Chapter 14 Spectroscopic Full-Field Optical Coherence Tomography“. In Handbook of Full-Field Optical Coherence Microscopy, 519–32. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing Pte. Ltd., 2016. http://dx.doi.org/10.1201/9781315364889-15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Potcoava, Mariana C., Nilanthi Warnasooriya, Lingfeng Yu und Myung K. Kim. „Chapter 15 Multiwavelength Full-Field Optical Coherence Tomography“. In Handbook of Full-Field Optical Coherence Microscopy, 533–64. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing Pte. Ltd., 2016. http://dx.doi.org/10.1201/9781315364889-16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Leitgeb, Rainer A., Abhishek Kumar und Wolfgang Drexler. „Chapter 8 Frequency Domain Full-Field Optical Coherence Tomography“. In Handbook of Full-Field Optical Coherence Microscopy, 303–22. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing Pte. Ltd., 2016. http://dx.doi.org/10.1201/9781315364889-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Karamata, Boris, Marcel Leutenegger und Theo Lasser. „Chapter 4 Cross Talk in Full-Field Optical Coherence Tomography“. In Handbook of Full-Field Optical Coherence Microscopy, 131–82. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing Pte. Ltd., 2016. http://dx.doi.org/10.1201/9781315364889-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Heise, Bettina. „Chapter 7 Toward Single-Shot Imaging in Full-Field Optical Coherence Tomography“. In Handbook of Full-Field Optical Coherence Microscopy, 267–302. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing Pte. Ltd., 2016. http://dx.doi.org/10.1201/9781315364889-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ha Lee, Byeong, Woo June Choi, Kwan Seob Park und Gihyeon Min. „Chapter 6 High-Speed Image Acquisition Techniques of Full-Field Optical Coherence Tomography“. In Handbook of Full-Field Optical Coherence Microscopy, 223–66. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing Pte. Ltd., 2016. http://dx.doi.org/10.1201/9781315364889-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mehta, Dalip Singh, Vishal Srivastava, Sreyankar Nandy, Azeem Ahmad und Vishesh Dubey. „Chapter 10 Full-Field Optical Coherence Tomography and Microscopy Using Spatially Incoherent Monochromatic Light“. In Handbook of Full-Field Optical Coherence Microscopy, 357–92. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing Pte. Ltd., 2016. http://dx.doi.org/10.1201/9781315364889-11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Dynamic full field optical coherence tomography"

1

Loukili, Inès, Laurent Mugnier, Vincent Michau, Kate Grieve, Pedro Mecê und Serge Meimon. „Modeling of aberrations and spatial coherence for retinal imaging with full-field optical coherence tomography“. In Adaptive Optics: Methods, Analysis and Applications, OTh5E.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/aopt.2024.oth5e.2.

Der volle Inhalt der Quelle
Annotation:
We propose a condensed wave-optics model to simultaneously study the influence of aberrations and spatial coherence of the illumination on the resolution of a full-field optical coherence tomography imaging system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Azzollini, Salvatore, Tual Monfort, Nate Norberg, Olivier Thouvenin und Kate Grieve. „Combining spectral domain and full field optical coherence tomography for macro-to-micro in vitro imaging“. In Optical Coherence Tomography. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/oct.2024.cm3e.1.

Der volle Inhalt der Quelle
Annotation:
We present a novel approach combining dynamic spectral domain and dynamic full field OCT coupled to a commercial microscope. We show the custom-made setup built and we introduce the possible applications in high content screening.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Apelian, Clement, Fabrice Harms, Olivier Thouvenin und Claude Boccara. „Dynamic full field OCT: metabolic contrast at subcellular level (Conference Presentation)“. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX, herausgegeben von Joseph A. Izatt, James G. Fujimoto und Valery V. Tuchin. SPIE, 2016. http://dx.doi.org/10.1117/12.2214557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Park, Soongho, Thine Nguyen, John Mutersbaugh und Amir H. Gandjbakhche. „Quantitative Analysis of Cellular Dynamics: Unveiling the Impact of Varying Oxygen Saturations through High-Speed Optical Interferometric Imaging“. In Optical Coherence Tomography. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/oct.2024.cs1e.3.

Der volle Inhalt der Quelle
Annotation:
Utilizing dynamic full-field optical coherence microscopy, we analyzed intracellular movement in aerobic cells with varying oxygen saturations. Employing a deep learning algorithm, we classified dynamic activities based on oxygen saturation, revealing insightful trends.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Azzollini, Salvatore, Tual Monfort, Olivier Thouvenin und Kate F. Grieve. „A dynamic full field optical coherence tomography module for in vitro retinal and corneal imaging“. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII, herausgegeben von Joseph A. Izatt und James G. Fujimoto. SPIE, 2023. http://dx.doi.org/10.1117/12.2651674.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Groux, Kassandra, Jules Scholler, Anna Verschueren, Marie Darche, Leyna Boucherit, Pedro Mecê, Valérie Fradot et al. „Dynamic full-field optical coherence tomography of retinal pigment epithelium cell cultures to model degenerative diseases“. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV, herausgegeben von Joseph A. Izatt und James G. Fujimoto. SPIE, 2021. http://dx.doi.org/10.1117/12.2581048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Scholler, Jules, Pedro Mecê, Kassandra Groux, Viacheslav Mazlin, Claude Boccara und Kate Grieve. „Motion artifact removal and signal enhancement to achieve in vivo dynamic full field OCT (Conference Presentation)“. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV, herausgegeben von Joseph A. Izatt und James G. Fujimoto. SPIE, 2020. http://dx.doi.org/10.1117/12.2542635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Monfort, Tual, Salvatore Azzollini, Kate F. Grieve und Olivier Thouvenin. „Interface self-referencing dynamic full-field optical coherence tomography for 3D live imaging of samples on glass slides“. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII, herausgegeben von Joseph A. Izatt und James G. Fujimoto. SPIE, 2023. http://dx.doi.org/10.1117/12.2652207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Spahr, Hendrik, Dierck Hillmann, Carola Hain, Clara Pfäffle, Helge M. Sudkamp, Gesa L. Franke und Gereon Hüttmann. „Imaging vascular dynamics in human retina using full-field swept-source optical coherence tomography (Conference Presentation)“. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX, herausgegeben von Joseph A. Izatt, James G. Fujimoto und Valery V. Tuchin. SPIE, 2016. http://dx.doi.org/10.1117/12.2214303.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Leong-Hoï, A., R. Claveau, P. C. Montgomery, B. Serio, W. Uhring, F. Anstotz und M. Flury. „High-resolution full-field optical coherence tomography using high dynamic range image processing“. In SPIE Photonics Europe, herausgegeben von Christophe Gorecki, Anand K. Asundi und Wolfgang Osten. SPIE, 2016. http://dx.doi.org/10.1117/12.2227114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie