Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dynamic encoding“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dynamic encoding" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dynamic encoding"
Megason, Sean G. „Dynamic Encoding in the Notch Pathway“. Developmental Cell 44, Nr. 4 (Februar 2018): 411–12. http://dx.doi.org/10.1016/j.devcel.2018.02.006.
Der volle Inhalt der QuelleSchraudolph, Nicol N., und Richard K. Belew. „Dynamic Parameter Encoding for genetic algorithms“. Machine Learning 9, Nr. 1 (Juni 1992): 9–21. http://dx.doi.org/10.1007/bf00993252.
Der volle Inhalt der QuelleFRANK, SCHMIEDLE, GU¨NTHER WOLFANG und DRECHSLER R. „Dynamic Re-Encoding During MDD Minimization“. Multiple-Valued Logic 8, Nr. 5-6 (01.01.2002): 625–43. http://dx.doi.org/10.1080/10236620215303.
Der volle Inhalt der QuellePyles, J. A., und M. J. Tarr. „Neural mechanisms of dynamic object encoding“. Journal of Vision 13, Nr. 9 (25.07.2013): 492. http://dx.doi.org/10.1167/13.9.492.
Der volle Inhalt der QuelleChen, Kevin S. „Optimal Population Coding for Dynamic Input by Nonequilibrium Networks“. Entropy 24, Nr. 5 (25.04.2022): 598. http://dx.doi.org/10.3390/e24050598.
Der volle Inhalt der QuelleChen, Kevin S. „Optimal Population Coding for Dynamic Input by Nonequilibrium Networks“. Entropy 24, Nr. 5 (25.04.2022): 598. http://dx.doi.org/10.3390/e24050598.
Der volle Inhalt der QuelleChen, Kevin S. „Optimal Population Coding for Dynamic Input by Nonequilibrium Networks“. Entropy 24, Nr. 5 (25.04.2022): 598. http://dx.doi.org/10.3390/e24050598.
Der volle Inhalt der QuelleDay, Mitchell L., Brent Doiron und John Rinzel. „Subthreshold K+ Channel Dynamics Interact With Stimulus Spectrum to Influence Temporal Coding in an Auditory Brain Stem Model“. Journal of Neurophysiology 99, Nr. 2 (Februar 2008): 534–44. http://dx.doi.org/10.1152/jn.00326.2007.
Der volle Inhalt der QuellePARK, Youngsu, Jong-Wook KIM, Johwan KIM und Sang Woo KIM. „New Encoding Method of Parameter for Dynamic Encoding Algorithm for Searches (DEAS)“. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E94-A, Nr. 9 (2011): 1804–16. http://dx.doi.org/10.1587/transfun.e94.a.1804.
Der volle Inhalt der QuelleStaten, Henry. „Dynamic Encoding in a Simple Autogenic System“. Biosemiotics 14, Nr. 3 (Dezember 2021): 583–87. http://dx.doi.org/10.1007/s12304-021-09465-5.
Der volle Inhalt der QuelleDissertationen zum Thema "Dynamic encoding"
Xie, Fujun. „Improving non-constant luminance color encoding efficiency for high dynamic range video applications“. Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62132.
Der volle Inhalt der QuelleApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Al, Zadjali Hanaa. „Compressing labels of dynamic XML data using Base-9 scheme and Fibonacci encoding“. Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/18571/.
Der volle Inhalt der QuelleKim, Dan. „Dynamic Encoding Is Neither Necessary Nor Sufficient For Logarithmic Compression In Number Estimation“. The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437057644.
Der volle Inhalt der QuelleFröhlich, Jan [Verfasser], und Daniel [Akademischer Betreuer] Weiskopf. „Encoding high dynamic range and wide color gamut imagery / Jan Fröhlich ; Betreuer: Daniel Weiskopf“. Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2017. http://d-nb.info/1153769905/34.
Der volle Inhalt der QuelleQiu, Peiwen. „Variability in the Pinna Motions of Hipposiderid Bats, Hipposideros Pratti“. Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/96483.
Der volle Inhalt der QuelleMaster of Science
Sensors have been developed for a long time, and they can be used to detect the environments and then deliver the required sensing information. There are many different types of sensors, such as vision-based sensors (infrared camera and laser scanner) and sound-based sensors (sonar and radar). Ultrasonic transducers are one of the sound-based sensors, and they are more stable and reliable in environments where smoke or steam is present. Similar to human-made ultrasonic transducers, bats have developed highly capable biosonar systems that consist of one ultrasonic emitter (nose or mouth) and two ultrasonic receivers (ears), and these biosonar systems enable them to fly and hunt in cluttered environments. Some bats, e.g. rhinolophid and hipposiderid bats, have dynamic noseleaves (elaborate baffle shapes surrounding the nostrils) and pinna (outer ear), and these could enhance the sensing abilities of bats. Hence, the purpose of this thesis has been to investigate this variability to improve the human-made sensors by focusing on the dynamic pinna of the bats. It has been shown that bats have two distinct categories of pinna motions: rigid motions which change only the orientation of the pinna, and non-rigid motions which change also the shape of the pinna. However, the variability within the rigid and non-rigid pinna motions has received little attention. Therefore, the present work has investigated the variability in the rigid pinna motions and in the non-rigid pinna motions. Landmark points were placed on the pinna of certain bats and the pinna motions were tracked by high-speed video cameras. The rigid pinna motions exhibit a large continuous variation in where the pinna is orientated during rotation. Distributions of clusters of the landmarks on the pinna have shown that the non-rigid pinna motions fall into at least two subgroups. The acoustic impacts of the rigid pinna motions have been studied by a biomimetic pinna which reproduced the observed range of the rigid pinna motions. Ultrasonic signals mimicking the bats were emitted to be received by the biomimetic pinna. Based on these signals, it has been shown that different rotation axes and even small changes can provide over 50% new sensory information. These findings give engineers a potential way to improve the human-made sensors.
Chen, Yingwen. „XQuery Query Processing in Relational Systems“. Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1201.
Der volle Inhalt der QuelleCreutzig, Felix. „Sufficient encoding of dynamical systems“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15817.
Der volle Inhalt der QuelleThis thesis consists of two parts. In the first part, I investigate the coding of communication signal in a bursting interneuron in the auditory system of the grasshopper Chorthippus biguttulus. The intra-burst spike count codes one temporal feature of the communication signal - pause duration. I show that this code can be understood by a model of parallel fast excitation and slow inhibition. Furthermore, temporal integration of the spike train of this bursting interneuron results in a desirable time-scale invariant read-out of the communication signal. This mechanism can be integrated into a more comprehensive model that can explain behavioural response of grasshoppers. In the second part of this thesis, I combine concepts from information theory and linear system theory to operationalize the notion of ''predictive information''. In the simple case of predicting the next time-step of a signal in an information-theoretic optimal sense, I obtain a description by eigenvectors that are identical to another established algorith, the so-called ''Slow Feature Analysis''. In the general case I optimize a dynamical system such that the predictive information in the input past about the output future is optimalle compressed into the state space. Thereby, I obtain an information-theoretically optimal characterization of reduced system, based on the eigenvectors of the conditional covariance matrix between input past and output future.
Santos-Pata, Diogo. „The Dynamics of hippocampal encoding: beyond the spatial metaphor“. Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/587163.
Der volle Inhalt der QuelleTots els animals del nostre planeta passegen mentre busquen alguna cosa. Ja sigui per trobar menjar, parella o un lloc per viure, la nave- gacio` `es un dels comportaments cognitius més realitzats en la natura. No obstant, la nostra comprensió de com el cervell és capaç de resoldre aquest senzill problema − moure’s d’un punt a un altre − encara és incompleta. La descomposició de la navegació en diferents components cognitius revela la complexitat d’aquest comportament. Per assolir un objectiu, hom ha de primer conèixer la seva posició, llavors estimar la posició destí, seguidament identificar una ruta o camí fins a aquesta i, finalment, orquestrar un conjunt d’accions motores que portin fins a la posició desitjada. L’àmplia recerca de l’hipocamp en mamífers ha revelat el seu paper fonamental en la navegació espacial, la memòria i l’aprenentatge. Tot i això, els mecanismes de codificació de la memòria espacial, la representació episódica i els seus homólegs encara no s’han pogut entendre completament. Tanmateix, encara no sabem si els mecanismes involucrats en la representació espacial també escalen des d’un domini purament espacial a la representació de conceptes, com ara les necessitats cognitives d’una tasca. En aquesta tesi presentem un conjunt d’estudis centrats en la representació espacial i cognitiva en el cervell d’insectes i mamífers. Mostrem que el problema de la representació espacial requereix de solucions amb múltiples nivells treballant simultàniament: des dels mecanismes neuronals biofísics fins als aspectes conductuals de la navegació. Per últim, a partir d’estudis fisiológics del lobul temporal mitjà de l’ésser humà, proposem que els mecanismes involucrats en la representació espacial també s’extenen a representacions cognitives d’alt nivell, suggerint que l’hipocamp s’encarrega de la informació independentment de la seva dimensió.
Yarger, Alexandra Mead. „Inertial encoding mechanisms and flight dynamics of dipteran insects“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1585688085360805.
Der volle Inhalt der QuelleBorresen, Jon Carl. „Dynamical encoding in systems of globally coupled oscillators“. Thesis, University of Exeter, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421576.
Der volle Inhalt der QuelleBücher zum Thema "Dynamic encoding"
G, Seetharaman, Feng G. L und United States. National Aeronautics and Space Administration., Hrsg. Communications and information research: Improved space link performance via concatenated forward error correction coding : program report on NASA subcontract. [Washington, DC: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenVancura, Bert. Hippocampal Interneuron Dynamics Supporting Memory Encoding and Consolidation. [New York, N.Y.?]: [publisher not identified], 2022.
Den vollen Inhalt der Quelle findenWiertlewski, Michaël. Reproduction of Tactual Textures: Transducers, Mechanics and Signal Encoding. London: Springer London, 2013.
Den vollen Inhalt der Quelle findenCavanagh, Patrick, Lorella Battelli und Alex Holcombe. Dynamic Attention. Herausgegeben von Anna C. (Kia) Nobre und Sabine Kastner. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199675111.013.016.
Der volle Inhalt der QuelleWolff, Phillip. Force Dynamics. Herausgegeben von Michael R. Waldmann. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199399550.013.13.
Der volle Inhalt der QuelleMcCarroll, Christopher. Being Faithful to the Past. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190674267.003.0002.
Der volle Inhalt der QuelleQuadt, Lisa, Hugo D. Critchley und Sarah N. Garfinkel. Interoception and emotion: Shared mechanisms and clinical implications. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198811930.003.0007.
Der volle Inhalt der QuelleCraik, Fergus I. M. Remembering. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895226.001.0001.
Der volle Inhalt der QuelleWiertlewski, Michaël. Reproduction of Tactual Textures: Transducers, Mechanics and Signal Encoding. Springer, 2015.
Den vollen Inhalt der Quelle findenEliasmith, Chris. Neurocomputational Models: Theory, Application, Philosophical Consequences. Herausgegeben von John Bickle. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780195304787.003.0014.
Der volle Inhalt der QuelleBuchteile zum Thema "Dynamic encoding"
Dietsch, Daniel, Marius Greitschus, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz, Andreas Podelski, Christian Schilling und Tanja Schindler. „Ultimate Taipan with Dynamic Block Encoding“. In Tools and Algorithms for the Construction and Analysis of Systems, 452–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89963-3_31.
Der volle Inhalt der QuellePrestwich, Steven. „Full Dynamic Substitutability by SAT Encoding“. In Principles and Practice of Constraint Programming – CP 2004, 512–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30201-8_38.
Der volle Inhalt der QuelleFall, Andrew. „Sparse term encoding for dynamic taxonomies“. In Lecture Notes in Computer Science, 277–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61534-2_18.
Der volle Inhalt der QuelleSurynek, Pavel, und Roman Barták. „Encoding HTN Planning as a Dynamic CSP“. In Principles and Practice of Constraint Programming - CP 2005, 868. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11564751_106.
Der volle Inhalt der QuelleOmar, Mehnuma Tabassum, und K. M. Azharul Hasan. „An Efficient Encoding Scheme for Dynamic Multidimensional Datasets“. In Lecture Notes in Computer Science, 517–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69900-4_66.
Der volle Inhalt der QuelleSu, Bing, Jiahuan Zhou, Xiaoqing Ding, Hao Wang und Ying Wu. „Hierarchical Dynamic Parsing and Encoding for Action Recognition“. In Computer Vision – ECCV 2016, 202–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46493-0_13.
Der volle Inhalt der QuellePaxian, Tobias, Sven Reimer und Bernd Becker. „Dynamic Polynomial Watchdog Encoding for Solving Weighted MaxSAT“. In Theory and Applications of Satisfiability Testing – SAT 2018, 37–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94144-8_3.
Der volle Inhalt der QuelleFoo, Norman, Dongmo Zhang, Yan Zhang, Samir Chopra und Bao Quoc Vo. „Encoding Solutions of the Frame Problem in Dynamic Logic“. In Logic Programming and Nonmotonic Reasoning, 240–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45402-0_18.
Der volle Inhalt der QuelleMuzaffar, Shahzad, und Ibrahim M. Elfadel. „Pulsed Decimal Encoding for IoT Single-Channel Dynamic Signaling“. In VLSI-SoC: Opportunities and Challenges Beyond the Internet of Things, 112–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15663-3_6.
Der volle Inhalt der QuelleDai, Qiang, Xi Cheng und Li Zhang. „Multi-spectral Dynamic Feature Encoding Network for Image Demoiréing“. In Lecture Notes in Computer Science, 151–62. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-15937-4_13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dynamic encoding"
Huo, Niu, und Dong Shen. „Dynamic Encoding-Decoding-Based Quantized Iterative Learning Control“. In 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), 777–82. IEEE, 2024. http://dx.doi.org/10.1109/ddcls61622.2024.10606894.
Der volle Inhalt der QuelleXue, Tianbao, und Quanxiang Lan. „Enhanced image encryption technique utilizing chaotic mapping and dynamic DNA encoding“. In International Conference on Algorithms, High Performance Computing and Artificial Intelligence, herausgegeben von Pavel Loskot und Liang Hu, 33. SPIE, 2024. http://dx.doi.org/10.1117/12.3051381.
Der volle Inhalt der QuelleYu, Francis T. S., A. W. Mayers und X. X. Chen. „Two-step pseudocolor encoding“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wk6.
Der volle Inhalt der QuelleLi, Jianjun, Zhenjiang Wang, Chenggang Wu, Wei-Chung Hsu und Di Xu. „Dynamic and Adaptive Calling Context Encoding“. In Annual IEEE/ACM International Symposium. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2581122.2544167.
Der volle Inhalt der QuelleLi, Jianjun, Zhenjiang Wang, Chenggang Wu, Wei-Chung Hsu und Di Xu. „Dynamic and Adaptive Calling Context Encoding“. In CGO '14: 12th Annual IEEE/ACM International Symposium on Code Generation and Optimization. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2544137.2544167.
Der volle Inhalt der QuelleXiaodong Gu und Hongjiang Zhang. „Implementing dynamic GOP in video encoding“. In 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698). IEEE, 2003. http://dx.doi.org/10.1109/icme.2003.1220926.
Der volle Inhalt der QuelleKitbumrung, Phattarin, und Benchaphon Limthanmaphon. „ECC dynamic point encoding on mobile device“. In 2015 Second International Conference on Computing Technology and Information Management (ICCTIM). IEEE, 2015. http://dx.doi.org/10.1109/icctim.2015.7224590.
Der volle Inhalt der QuelleShu, Fangxun, und Xuelin Yang. „Lossless Image Compression Using Dynamic Block Encoding“. In 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). IEEE, 2020. http://dx.doi.org/10.1109/icsip49896.2020.9339275.
Der volle Inhalt der QuelleWard, Greg, und Maryann Simmons. „Subband encoding of high dynamic range imagery“. In ACM SIGGRAPH 2004 Sketches. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1186223.1186309.
Der volle Inhalt der QuelleMantiuk, Rafal, Grzegorz Krawczyk, Karol Myszkowski und Hans-Peter Seidel. „Perception-motivated high dynamic range video encoding“. In ACM SIGGRAPH 2004 Papers. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1186562.1015794.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dynamic encoding"
Lemon, T., und S. Cheshire. Encoding Long Options in the Dynamic Host Configuration Protocol (DHCPv4). RFC Editor, November 2002. http://dx.doi.org/10.17487/rfc3396.
Der volle Inhalt der QuelleStapp, M., T. Lemon und A. Gustafsson. A DNS Resource Record (RR) for Encoding Dynamic Host Configuration Protocol (DHCP) Information (DHCID RR). RFC Editor, Oktober 2006. http://dx.doi.org/10.17487/rfc4701.
Der volle Inhalt der Quellede Abreu, Jonas, und Mariana Cunha e Melo. Extending Pix: An approach to offline Dynamic QR Code generation. Center for Technology and Public Interest, SL, April 2023. http://dx.doi.org/10.59262/9qu6ex.
Der volle Inhalt der QuellePichersky, Eran, Alexander Vainstein und Natalia Dudareva. Scent biosynthesis in petunia flowers under normal and adverse environmental conditions. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7699859.bard.
Der volle Inhalt der QuelleSternberg, Saul. The Dynamics of Visual Representation, Attention, Encoding, and Retrieval Processes. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1991. http://dx.doi.org/10.21236/ada243031.
Der volle Inhalt der Quelle