Auswahl der wissenschaftlichen Literatur zum Thema „Dye-Sensitized Photoelectrosynthetic Cell“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dye-Sensitized Photoelectrosynthetic Cell" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Dye-Sensitized Photoelectrosynthetic Cell"

1

Coppo, Rodolfo L., Byron H. Farnum, Benjamin D. Sherman, Neyde Y. Murakami Iha und Thomas J. Meyer. „The role of layer-by-layer, compact TiO2 films in dye-sensitized photoelectrosynthesis cells“. Sustainable Energy & Fuels 1, Nr. 1 (2017): 112–18. http://dx.doi.org/10.1039/c6se00022c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Farràs, P., C. Di Giovanni, J. N. Clifford, P. Garrido-Barros, E. Palomares und A. Llobet. „Light driven styrene epoxidation and hydrogen generation using H2O as an oxygen source in a photoelectrosynthesis cell“. Green Chemistry 18, Nr. 1 (2016): 255–60. http://dx.doi.org/10.1039/c5gc01589h.

Der volle Inhalt der Quelle
Annotation:
This proof-of-concept dye-sensitized photoelectrosynthesis cell is able to produce a high-value chemical by the epoxidation of an alkene in water using sunlight and, at the same time, produce a solar fuel such as hydrogen.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Orbelli Biroli, Alessio, Francesca Tessore, Gabriele Di Carlo, Maddalena Pizzotti, Elisabetta Benazzi, Francesca Gentile, Serena Berardi et al. „Fluorinated ZnII Porphyrins for Dye-Sensitized Aqueous Photoelectrosynthetic Cells“. ACS Applied Materials & Interfaces 11, Nr. 36 (20.08.2019): 32895–908. http://dx.doi.org/10.1021/acsami.9b08042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Luo, Hanlin, Wenjing Song, Paul G. Hoertz, Kenneth Hanson, Rudresh Ghosh, Sylvie Rangan, M. Kyle Brennaman et al. „A Sensitized Nb2O5 Photoanode for Hydrogen Production in a Dye-Sensitized Photoelectrosynthesis Cell“. Chemistry of Materials 25, Nr. 2 (28.12.2012): 122–31. http://dx.doi.org/10.1021/cm3027972.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Degao, Qing Huang, Weiqun Shi, Wei You und Thomas J. Meyer. „Application of Atomic Layer Deposition in Dye-Sensitized Photoelectrosynthesis Cells“. Trends in Chemistry 3, Nr. 1 (Januar 2021): 59–71. http://dx.doi.org/10.1016/j.trechm.2020.11.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wang, Degao, Byron H. Farnum, Matthew V. Sheridan, Seth L. Marquard, Benjamin D. Sherman und Thomas J. Meyer. „Inner Layer Control of Performance in a Dye-Sensitized Photoelectrosynthesis Cell“. ACS Applied Materials & Interfaces 9, Nr. 39 (02.03.2017): 33533–38. http://dx.doi.org/10.1021/acsami.7b00225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Brennaman, M. Kyle, Robert J. Dillon, Leila Alibabaei, Melissa K. Gish, Christopher J. Dares, Dennis L. Ashford, Ralph L. House, Gerald J. Meyer, John M. Papanikolas und Thomas J. Meyer. „Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells“. Journal of the American Chemical Society 138, Nr. 40 (03.10.2016): 13085–102. http://dx.doi.org/10.1021/jacs.6b06466.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Song, Wenjing, Zuofeng Chen, Christopher R. K. Glasson, Kenneth Hanson, Hanlin Luo, Michael R. Norris, Dennis L. Ashford, Javier J. Concepcion, M. Kyle Brennaman und Thomas J. Meyer. „Interfacial Dynamics and Solar Fuel Formation in Dye-Sensitized Photoelectrosynthesis Cells“. ChemPhysChem 13, Nr. 12 (19.06.2012): 2882–90. http://dx.doi.org/10.1002/cphc.201200100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Song, Wenjing, Aaron K. Vannucci, Byron H. Farnum, Alexander M. Lapides, M. Kyle Brennaman, Berç Kalanyan, Leila Alibabaei et al. „Visible Light Driven Benzyl Alcohol Dehydrogenation in a Dye-Sensitized Photoelectrosynthesis Cell“. Journal of the American Chemical Society 136, Nr. 27 (30.06.2014): 9773–79. http://dx.doi.org/10.1021/ja505022f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Xu, Bo, Lei Tian, Ahmed S. Etman, Junliang Sun und Haining Tian. „Solution-processed nanoporous NiO-dye-ZnO photocathodes: Toward efficient and stable solid-state p-type dye-sensitized solar cells and dye-sensitized photoelectrosynthesis cells“. Nano Energy 55 (Januar 2019): 59–64. http://dx.doi.org/10.1016/j.nanoen.2018.10.054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Dye-Sensitized Photoelectrosynthetic Cell"

1

Segalina, Alekos. „Computational modeling of photoactive materials and heterointerfaces for solar energy conversion“. Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0284.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, nous avons traité de la modélisation computationnelle des matériaux et des systèmes moléculaires utilisés dans les cellules solaires à colorant (DSSC) et les cellules photoélectrosynthétiques à colorant (DSPEC). En particulier, nous avons abordé l’étude des éléments composant ces dispositifs, à savoir les colorants, les semi-conducteurs et les interfaces au moyen de techniques de chimie computationnelle en accordant une attention particulière à la modélisation des propriétés de la structure dynamique, optique et électronique. La complexité des systèmes et des processus physiques impliqués nécessite la combinaison de différentes méthodologies théoriques, comme détaillé ci-dessous. Un diimide de pérylène (PDI) en solution a été étudié en combinant des méthodes basées sur la théorie de la fonctionnelle de la densité et des simulations de dynamique moléculaire (MD) classiques. En particulier, nous nous sommes concentrés sur les propriétés d’état excité de ses agrégats et sur la simulation de son spectre d’absorption électronique en prenant en compte les effets vibroniques. Dans ce contexte, pour avoir une description fiable de la surface d’énergie potentielle, nous avons utilisé un champ de force dérivé quantique-mécanique (QMD-FF) spécifiquement paramétré. Concernant les semi-conducteurs, nous avons étudié différentes phases de WO₃, c’est-à-dire un semi-conducteur de type n, en utilisant des méthodes basées sur les fonctions de Green afin de rationaliser le rôle de la distorsion du réseau cristallin sur la structure de bande et sur les propriétés électroniques et optiques. Enfin, nous avons étudié un modèle simplifié, quoique réaliste, d’une interface NiO sensibilisée aux colorants (C343@NiO(100)) en combinant des calculs de dynamique moléculaire ab initio (AIMD) et de GW pour décrire le rôle des effets thermiques et des molécules du solvant environnemental sur l’alignement interfacial du niveau d’énergie
In this thesis we have dealt with the computational modelling of materials and molecular systems that are used in dye-sensitized solar cells (DSSCs) and dye-sensitized photoelectrosynthetic cells (DSPECs). In particular, we have addressed the study of the elements composing these devices, i.e. dyes, semiconductors and interfaces, by means of computational chemistry techniques, paying special attention to the modelling of the dynamical, optical and electronic structure properties.The complexity of the systems and the physical processes involved requires the combined use of different theoretical methodologies, as detailed below. A perylene diimide (PDI) dye in solution has been investigated by combining Density Functional Theory based methods and classical molecular dynamics (MD) simulations. In particular, we focused on the excited state properties of its aggregates and on the simulation of its electronic absorption spectrum by taking into account vibronic effects. In this context, to have a reliable description of the potential energy surface we made use of a specifically parameterized Quantum-Mechanically Derived Force Field (QMD-FF). Regarding the semiconductors, we have studied different phases of WO₃, that is an n-type semiconductor, using methods based on the Green’s Functions in order to rationalize the role of the crystal lattice distortion on the band structure and on the electronic and optical properties. Lastly, we have studied a simplified, albeit realistic model, of a dye-sensitized NiO interface (C343@NiO(100)) by combining ab initio molecular dynamic (AIMD) and GW calculations to describe the role of thermal effects and of the environmental solvent molecules on the interfacial energy-level alignment
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Dye-Sensitized Photoelectrosynthetic Cell"

1

Alibabaei, Leila, M. Kyle Brennaman und Thomas J. Meyer. „Light-Driven Water Splitting in the Dye-Sensitized Photoelectrosynthesis Cell“. In Green Chemistry and Sustainable Technology, 229–57. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5924-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Coggins, Michael K., und Thomas J. Meyer. „Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: From Basic Science to Prototype Devices“. In Photoelectrochemical Solar Fuel Production, 513–48. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ielo, I., A. M. Cancelliere, A. Arrigo und G. La Ganga. „Metal-based chromophores for photochemical water oxidation“. In Photochemistry, 384–409. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781837672301-00384.

Der volle Inhalt der Quelle
Annotation:
The energy emergency is a severe criticality for the continuous growth of the world population. In this context, there are multiple demands to produce sustainable and carbon-neutral energy capable of meeting the needs of future generations, such as the production of systems for artificial photosynthesis (AP). Photosensitizers (PS) play a crucial role in light absorption and charge separation for AP materials, when suitably-designed for obtaining excellent tunability and performance. This review discusses the studies of the last 10 years on the synthesis of efficient and performing chromophores based on metal complexes for the photo-oxidation of water. In particular, photosensitizers in homogeneous and heterogeneous phase catalytic systems are discussed, whose design aimed to improve the understanding of the photo-oxidative mechanisms and promote higher efficiency and stability of photosynthetic systems. Recent advances in dyad and multicomponent systems both in homogeneous phases and when incorporated into polymeric matrices for heterogeneous catalysis are reviewed. Finally, the significant progress in developing highly performing photoanodes are discussed. Indeed, by varying the distance of the PS from the semiconductor surface and the distance from the catalyst (C), it was possible to study different methods and molecular approaches in the construction of photoanodes for dye-sensitized photoelectrosynthetic cells (DSPEC).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie