Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dye-loaded polymeric nanoparticles“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dye-loaded polymeric nanoparticles" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dye-loaded polymeric nanoparticles"
Tumpa, Naz Fathma, Mingyeong Kang, Jiae Yoo, Sunju Kim und Minseok Kwak. „Rylene Dye-Loaded Polymeric Nanoparticles for Photothermal Eradication of Harmful Dinoflagellates, Akashiwo sanguinea and Alexandrium pacificum“. Bioengineering 9, Nr. 4 (11.04.2022): 170. http://dx.doi.org/10.3390/bioengineering9040170.
Der volle Inhalt der QuelleZerrillo, Luana, Karthick Babu Sai Sankar Gupta, Fons A. W. M. Lefeber, Candido G. Da Silva, Federica Galli, Alan Chan, Andor Veltien et al. „Novel Fluorinated Poly (Lactic-Co-Glycolic acid) (PLGA) and Polyethylene Glycol (PEG) Nanoparticles for Monitoring and Imaging in Osteoarthritis“. Pharmaceutics 13, Nr. 2 (07.02.2021): 235. http://dx.doi.org/10.3390/pharmaceutics13020235.
Der volle Inhalt der QuelleMelnychuk, Nina, Pichandi Ashokkumar, Ilya O. Aparin und Andrey S. Klymchenko. „Pre- and Postfunctionalization of Dye-Loaded Polymeric Nanoparticles for Preparation of FRET-Based Nanoprobes“. ACS Applied Polymer Materials 4, Nr. 1 (08.12.2021): 44–53. http://dx.doi.org/10.1021/acsapm.1c00819.
Der volle Inhalt der QuelleEgloff, Sylvie, Nina Melnychuk, Elisabete Cruz Da Silva, Andreas Reisch, Sophie Martin und Andrey S. Klymchenko. „Amplified Fluorescence in Situ Hybridization by Small and Bright Dye-Loaded Polymeric Nanoparticles“. ACS Nano 16, Nr. 1 (20.12.2021): 1381–94. http://dx.doi.org/10.1021/acsnano.1c09409.
Der volle Inhalt der QuelleMelnychuk, Nina, und Andrey S. Klymchenko. „DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids“. Journal of the American Chemical Society 140, Nr. 34 (August 2018): 10856–65. http://dx.doi.org/10.1021/jacs.8b05840.
Der volle Inhalt der QuelleGuastaferro, Mariangela, Lucia Baldino, Vincenzo Vaiano, Stefano Cardea und Ernesto Reverchon. „Supercritical Phase Inversion to Produce Photocatalytic Active PVDF-coHFP_TiO2 Composites for the Degradation of Sudan Blue II Dye“. Materials 15, Nr. 24 (13.12.2022): 8894. http://dx.doi.org/10.3390/ma15248894.
Der volle Inhalt der QuelleObinu, Antonella, Elisabetta Gavini, Giovanna Rassu, Federica Riva, Alberto Calligaro, Maria Cristina Bonferoni, Marcello Maestri und Paolo Giunchedi. „Indocyanine Green Loaded Polymeric Nanoparticles: Physicochemical Characterization and Interaction Studies with Caco-2 Cell Line by Light and Transmission Electron Microscopy“. Nanomaterials 10, Nr. 1 (11.01.2020): 133. http://dx.doi.org/10.3390/nano10010133.
Der volle Inhalt der QuelleLei, Tingjun, Alicia Fernandez-Fernandez, Romila Manchanda, Yen-Chih Huang und Anthony J. McGoron. „Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating“. Beilstein Journal of Nanotechnology 5 (18.03.2014): 313–22. http://dx.doi.org/10.3762/bjnano.5.35.
Der volle Inhalt der QuelleKumar, Piyush, Tim Van Treuren, Amalendu P. Ranjan, Pankaj Chaudhary und Jamboor K. Vishwanatha. „In vivo imaging and biodistribution of near infrared dye loaded brain-metastatic-breast-cancer-cell-membrane coated polymeric nanoparticles“. Nanotechnology 30, Nr. 26 (15.04.2019): 265101. http://dx.doi.org/10.1088/1361-6528/ab0f46.
Der volle Inhalt der QuelleGupta, Priya. „Abstract A031: Development of poly lactic acid based biodegradable nanoparticles for co-delivery of pirarubicin and gemcitabine for synergistic anti-tumor efficacy“. Molecular Cancer Therapeutics 22, Nr. 12_Supplement (01.12.2023): A031. http://dx.doi.org/10.1158/1535-7163.targ-23-a031.
Der volle Inhalt der QuelleDissertationen zum Thema "Dye-loaded polymeric nanoparticles"
Jana, Subha. „Biodetection using fluorescence energy transfer from Quantum dot excited whispering gallery modes to fluorescent acceptors“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS081.
Der volle Inhalt der QuelleQuantification of specific biomarkers is an important diagnostic tool. Standard immunoassays such as ELISA require extensive washing steps and signal amplification, in particular when the biomarker of interest is only present at very low concentrations. On the other hand, non-radiative Förster resonance energy transfer (FRET) has been used to design one-step homogenous bioassays which do not require any washing steps, where the biomarker enables the formation of a sandwich complex involving donor-labeled and acceptor-labeled antibodies. FRET from the donor to the acceptor then provides an optical signature of the complex formation, hence of the biomarker of interest. However, FRET which is highly sensitive to the donor-acceptor distance, only occurs in a significant rate when the distance between the donor and acceptor is less than 10 nanometers; thus the large size of many biological complexes limits the efficiency of energy transfer, preventing sensitive detection. Here I propose a novel energy transfer modality that uses solution-phase optical microcavities to enhance energy transfer. Following that, I describe a bio-sensing scheme designed to detect a cancer biomarker DNA in solution.To this aim, I have designed microcavity structures in which fluorescent colloidal quantum dots are located inside dielectric polymer microspheres to enable strong coupling of their fluorescence emission with the cavity resonance modes or whispering gallery modes (WGMs) of the microspheres. A detailed study was carried out to comprehend the structural and optical properties of these optical microcavities. I also characterized the energy transfer between these modes and acceptor dye-loaded nanoparticles present in the evanescent field, within a few tens of nanometers above the microsphere surface. An analytical model was constructed to provide insights into the WGM mediated energy transfer (WGET) mechanisms. Moreover, a comparison between WGET and FRET revealed the superiority of WGET in the context of building sensors with improved sensitivity and longer range of detection. In the last part of the thesis, a strategy is discussed in detail to provide biological functionalities to these optical microcavities which would enable them to interact with target analytes such as DNA, RNA, and proteins with high specificity, and moreover to reduce non-specific interactions. This strategy then was adapted to attach DNA capture probes onto the WGM enabled microcavities. Using the DNA attached microspheres as optical donor in combination with probe-DNA functionalized dye nanoparticles as optical acceptors, a biosensing assay has been successfully demonstrated to detect a cancer biomarker DNA called survivin in the solution phase. This assay did not only show good sensitivity towards the target, but also it has proven to be highly specific. The detection scheme has been demonstrated in a sophisticated confocal microscope at the single microsphere level, then successfully translated to a much simpler spectrofluorometer that measures fluorescence from the whole sample solution; the signature of the sandwich complex formation was also effectively detected.In conclusion, I demonstrated that microcavity-assisted energy transfer has several advantages over regular FRET assays. A real bio-sensing assay based on the WGET principle has also been successfully designed to detect cancer biomarkers with high sensitivity and specificity. This study thus opens up many possibilities to design high-performing and more accurate assays to detect varieties of biological entities
Konferenzberichte zum Thema "Dye-loaded polymeric nanoparticles"
Yakovliev, A., L. O. Vretik, R. Ziniuk, J. L. Briks, Yu L. Slominskii, L. Qu und T. Y. Ohulchanskyy. „Polymeric Nanoparticles Loaded with Organic Dye for Optical Bioimaging in Near-Infrared Range“. In International Conference on Photonics and Imaging in Biology and Medicine. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/pibm.2017.w3a.108.
Der volle Inhalt der Quelle