Zeitschriftenartikel zum Thema „Durotaxie“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Durotaxie.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Durotaxie" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Sunyer, Raimon, und Xavier Trepat. „Durotaxis“. Current Biology 30, Nr. 9 (Mai 2020): R383—R387. http://dx.doi.org/10.1016/j.cub.2020.03.051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Huang, Yuxing, Jing Su, Jiayong Liu, Xin Yi, Fang Zhou, Jiaran Zhang, Jiaxiang Wang, Xuan Meng, Lu Si und Congying Wu. „YAP Activation in Promoting Negative Durotaxis and Acral Melanoma Progression“. Cells 11, Nr. 22 (09.11.2022): 3543. http://dx.doi.org/10.3390/cells11223543.

Der volle Inhalt der Quelle
Annotation:
Directed cell migration towards a softer environment is called negative durotaxis. The mechanism and pathological relevance of negative durotaxis in tumor progression still requires in-depth investigation. Here, we report that YAP promotes the negative durotaxis of melanoma. We uncovered that the RhoA-myosin II pathway may underlie the YAP enhanced negative durotaxis of melanoma cells. Acral melanoma is the most common subtype of melanoma in non-Caucasians and tends to develop in a stress-bearing area. We report that acral melanoma patients exhibit YAP amplification and increased YAP activity. We detected a decreasing stiffness gradient from the tumor to the surrounding area in the acral melanoma microenvironment. We further identified that this stiffness gradient could facilitate the negative durotaxis of melanoma cells. Our study advanced the understanding of mechanical force and YAP in acral melanoma and we proposed negative durotaxis as a new mechanism for melanoma dissemination.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Puleo, Julieann I., Sara S. Parker, Mackenzie R. Roman, Adam W. Watson, Kiarash Rahmani Eliato, Leilei Peng, Kathylynn Saboda et al. „Mechanosensing during directed cell migration requires dynamic actin polymerization at focal adhesions“. Journal of Cell Biology 218, Nr. 12 (08.10.2019): 4215–35. http://dx.doi.org/10.1083/jcb.201902101.

Der volle Inhalt der Quelle
Annotation:
The mechanical properties of a cell’s microenvironment influence many aspects of cellular behavior, including cell migration. Durotaxis, the migration toward increasing matrix stiffness, has been implicated in processes ranging from development to cancer. During durotaxis, mechanical stimulation by matrix rigidity leads to directed migration. Studies suggest that cells sense mechanical stimuli, or mechanosense, through the acto-myosin cytoskeleton at focal adhesions (FAs); however, FA actin cytoskeletal remodeling and its role in mechanosensing are not fully understood. Here, we show that the Ena/VASP family member, Ena/VASP-like (EVL), polymerizes actin at FAs, which promotes cell-matrix adhesion and mechanosensing. Importantly, we show that EVL regulates mechanically directed motility, and that suppression of EVL expression impedes 3D durotactic invasion. We propose a model in which EVL-mediated actin polymerization at FAs promotes mechanosensing and durotaxis by maturing, and thus reinforcing, FAs. These findings establish dynamic FA actin polymerization as a central aspect of mechanosensing and identify EVL as a crucial regulator of this process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Style, R. W., Y. Che, S. J. Park, B. M. Weon, J. H. Je, C. Hyland, G. K. German et al. „Patterning droplets with durotaxis“. Proceedings of the National Academy of Sciences 110, Nr. 31 (24.06.2013): 12541–44. http://dx.doi.org/10.1073/pnas.1307122110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hartman, Christopher D., Brett C. Isenberg, Samantha G. Chua und Joyce Y. Wong. „Vascular smooth muscle cell durotaxis depends on extracellular matrix composition“. Proceedings of the National Academy of Sciences 113, Nr. 40 (19.09.2016): 11190–95. http://dx.doi.org/10.1073/pnas.1611324113.

Der volle Inhalt der Quelle
Annotation:
Mechanical compliance has been demonstrated to be a key determinant of cell behavior, directing processes such as spreading, migration, and differentiation. Durotaxis, directional migration from softer to more stiff regions of a substrate, has been observed for a variety of cell types. Recent stiffness mapping experiments have shown that local changes in tissue stiffness in disease are often accompanied by an altered ECM composition in vivo. However, the importance of ECM composition in durotaxis has not yet been explored. To address this question, we have developed and characterized a polyacrylamide hydrogel culture platform featuring highly tunable gradients in mechanical stiffness. This feature, together with the ability to control ECM composition, allows us to isolate the effects of mechanical and biological signals on cell migratory behavior. Using this system, we have tracked vascular smooth muscle cell migration in vitro and quantitatively analyzed differences in cell migration as a function of ECM composition. Our results show that vascular smooth muscle cells undergo durotaxis on mechanical gradients coated with fibronectin but not on those coated with laminin. These findings indicate that the composition of the adhesion ligand is a critical determinant of a cell’s migratory response to mechanical gradients.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yuehua, YANG, und JIANG Hongyuan. „Research Advances in Cell Durotaxis“. 应用数学和力学 42, Nr. 10 (2021): 999–1007. http://dx.doi.org/10.21656/1000-0887.420265.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bueno, Jesus, Yuri Bazilevs, Ruben Juanes und Hector Gomez. „Wettability control of droplet durotaxis“. Soft Matter 14, Nr. 8 (2018): 1417–26. http://dx.doi.org/10.1039/c7sm01917c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Doering, Charles R., Xiaoming Mao und Leonard M. Sander. „Random walker models for durotaxis“. Physical Biology 15, Nr. 6 (11.09.2018): 066009. http://dx.doi.org/10.1088/1478-3975/aadc37.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Stefanoni, Filippo, Maurizio Ventre, Francesco Mollica und Paolo A. Netti. „A numerical model for durotaxis“. Journal of Theoretical Biology 280, Nr. 1 (Juli 2011): 150–58. http://dx.doi.org/10.1016/j.jtbi.2011.04.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Parida, Lipika, und Venkat Padmanabhan. „Durotaxis in Nematode Caenorhabditis elegans“. Biophysical Journal 111, Nr. 3 (August 2016): 666–74. http://dx.doi.org/10.1016/j.bpj.2016.06.030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

DuChez, Brian J., Andrew D. Doyle, Emilios K. Dimitriadis und Kenneth M. Yamada. „Durotaxis by Human Cancer Cells“. Biophysical Journal 116, Nr. 4 (Februar 2019): 670–83. http://dx.doi.org/10.1016/j.bpj.2019.01.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Moriyama, Kousuke, und Satoru Kidoaki. „Cellular Durotaxis Revisited: Initial-Position-Dependent Determination of the Threshold Stiffness Gradient to Induce Durotaxis“. Langmuir 35, Nr. 23 (19.09.2018): 7478–86. http://dx.doi.org/10.1021/acs.langmuir.8b02529.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Feng, Jingchen, Herbert Levine, Xiaoming Mao und Leonard M. Sander. „Cell motility, contact guidance, and durotaxis“. Soft Matter 15, Nr. 24 (2019): 4856–64. http://dx.doi.org/10.1039/c8sm02564a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Novikova, Elizaveta A., Matthew Raab, Dennis E. Discher und Cornelis Storm. „Cellular Durotaxis from Differentially Persistent Motility“. Biophysical Journal 112, Nr. 3 (Februar 2017): 436a. http://dx.doi.org/10.1016/j.bpj.2016.11.2327.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Lazopoulos, Konstantinos A., und Dimitrije Stamenović. „Durotaxis as an elastic stability phenomenon“. Journal of Biomechanics 41, Nr. 6 (2008): 1289–94. http://dx.doi.org/10.1016/j.jbiomech.2008.01.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Gomez, Hector, und Mirian Velay-Lizancos. „Thin-film model of droplet durotaxis“. European Physical Journal Special Topics 229, Nr. 2-3 (Februar 2020): 265–73. http://dx.doi.org/10.1140/epjst/e2019-900127-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Wei, Jie, Xiaofeng Chen und Bin Chen. „Harnessing structural instability for cell durotaxis“. Acta Mechanica Sinica 35, Nr. 2 (21.03.2019): 355–64. http://dx.doi.org/10.1007/s10409-019-00853-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Raab, Matthew, Joe Swift, P. C. Dave P. Dingal, Palak Shah, Jae-Won Shin und Dennis E. Discher. „Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain“. Journal of Cell Biology 199, Nr. 4 (05.11.2012): 669–83. http://dx.doi.org/10.1083/jcb.201205056.

Der volle Inhalt der Quelle
Annotation:
On rigid surfaces, the cytoskeleton of migrating cells is polarized, but tissue matrix is normally soft. We show that nonmuscle MIIB (myosin-IIB) is unpolarized in cells on soft matrix in 2D and also within soft 3D collagen, with rearward polarization of MIIB emerging only as cells migrate from soft to stiff matrix. Durotaxis is the tendency of cells to crawl from soft to stiff matrix, and durotaxis of primary mesenchymal stem cells (MSCs) proved more sensitive to MIIB than to the more abundant and persistently unpolarized nonmuscle MIIA (myosin-IIA). However, MIIA has a key upstream role: in cells on soft matrix, MIIA appeared diffuse and mobile, whereas on stiff matrix, MIIA was strongly assembled in oriented stress fibers that MIIB then polarized. The difference was caused in part by elevated phospho-S1943–MIIA in MSCs on soft matrix, with site-specific mutants revealing the importance of phosphomoderated assembly of MIIA. Polarization is thus shown to be a highly regulated compass for mechanosensitive migration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Liu, Yang, Jiwen Cheng, Hui Yang und Guang-Kui Xu. „Rotational constraint contributes to collective cell durotaxis“. Applied Physics Letters 117, Nr. 21 (23.11.2020): 213702. http://dx.doi.org/10.1063/5.0031846.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Harland, Ben, Sam Walcott und Sean X. Sun. „Adhesion dynamics and durotaxis in migrating cells“. Physical Biology 8, Nr. 1 (01.02.2011): 015011. http://dx.doi.org/10.1088/1478-3975/8/1/015011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Harland, Ben, Sam Walcott und Sean X. Sun. „Adhesion Dynamics and Durotaxis in Migrating Cells“. Biophysical Journal 100, Nr. 3 (Februar 2011): 303a. http://dx.doi.org/10.1016/j.bpj.2010.12.1855.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Jain, Gaurav, Andrew J. Ford und Padmavathy Rajagopalan. „Opposing Rigidity-Protein Gradients Reverse Fibroblast Durotaxis“. ACS Biomaterials Science & Engineering 1, Nr. 8 (30.07.2015): 621–31. http://dx.doi.org/10.1021/acsbiomaterials.5b00229.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

McKenzie, Andrew J., Kathryn V. Svec, Tamara F. Williams und Alan K. Howe. „Protein kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis“. Molecular Biology of the Cell 31, Nr. 1 (01.01.2020): 45–58. http://dx.doi.org/10.1091/mbc.e19-03-0131.

Der volle Inhalt der Quelle
Annotation:
Here, we show that localized PKA activity in migrating cells is regulated by cell–matrix tension, correlates with cellular traction forces, is enhanced by acute mechanical stimulation, and is required for durotaxis. This establishes PKA as an effector of cellular mechanotransduction and as a regulator of mechanically guided cell migration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Riaz, Maryam, Marie Versaevel und Sylvain Gabriele. „On the Mechanism of Durotaxis in Motile Cells“. Biophysical Journal 106, Nr. 2 (Januar 2014): 571a. http://dx.doi.org/10.1016/j.bpj.2013.11.3167.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Escribano, Jorge, Raimon Sunyer, María Teresa Sánchez, Xavier Trepat, Pere Roca-Cusachs und José Manuel García-Aznar. „A hybrid computational model for collective cell durotaxis“. Biomechanics and Modeling in Mechanobiology 17, Nr. 4 (02.03.2018): 1037–52. http://dx.doi.org/10.1007/s10237-018-1010-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Wieland, Annalena, Pamela L. Strissel, Hannah Schorle, Ezgi Bakirci, Dieter Janzen, Matthias W. Beckmann, Markus Eckstein, Paul D. Dalton und Reiner Strick. „Brain and Breast Cancer Cells with PTEN Loss of Function Reveal Enhanced Durotaxis and RHOB Dependent Amoeboid Migration Utilizing 3D Scaffolds and Aligned Microfiber Tracts“. Cancers 13, Nr. 20 (14.10.2021): 5144. http://dx.doi.org/10.3390/cancers13205144.

Der volle Inhalt der Quelle
Annotation:
Background: Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. Methods: 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. Results: In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. Conclusions: This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Wieland, Annalena, Pamela L. Strissel, Hannah Schorle, Ezgi Bakirci, Dieter Janzen, Matthias W. Beckmann, Markus Eckstein, Paul D. Dalton und Reiner Strick. „Brain and Breast Cancer Cells with PTEN Loss of Function Reveal Enhanced Durotaxis and RHOB Dependent Amoeboid Migration Utilizing 3D Scaffolds and Aligned Microfiber Tracts“. Cancers 13, Nr. 20 (14.10.2021): 5144. http://dx.doi.org/10.3390/cancers13205144.

Der volle Inhalt der Quelle
Annotation:
Background: Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. Methods: 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. Results: In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. Conclusions: This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Vicente-Manzanares, Miguel. „Cell Migration: Cooperation between Myosin II Isoforms in Durotaxis“. Current Biology 23, Nr. 1 (Januar 2013): R28—R29. http://dx.doi.org/10.1016/j.cub.2012.11.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Vicente-Manzanares, Miguel. „Cell Migration: Cooperation between Myosin II Isoforms in Durotaxis“. Current Biology 23, Nr. 5 (März 2013): 441. http://dx.doi.org/10.1016/j.cub.2013.02.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Shellard, Adam, und Roberto Mayor. „Collective durotaxis along a self-generated stiffness gradient in vivo“. Nature 600, Nr. 7890 (08.12.2021): 690–94. http://dx.doi.org/10.1038/s41586-021-04210-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Sunyer, R., V. Conte, J. Escribano, A. Elosegui-Artola, A. Labernadie, L. Valon, D. Navajas et al. „Collective cell durotaxis emerges from long-range intercellular force transmission“. Science 353, Nr. 6304 (08.09.2016): 1157–61. http://dx.doi.org/10.1126/science.aaf7119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Martinez, Jessica S., Ali M. Lehaf, Joseph B. Schlenoff und Thomas C. S. Keller. „Cell Durotaxis on Polyelectrolyte Multilayers with Photogenerated Gradients of Modulus“. Biomacromolecules 14, Nr. 5 (02.04.2013): 1311–20. http://dx.doi.org/10.1021/bm301863a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Vincent, Ludovic G., Yu Suk Choi, Baldomero Alonso-Latorre, Juan C. del Álamo und Adam J. Engler. „Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength“. Biotechnology Journal 8, Nr. 4 (28.02.2013): 472–84. http://dx.doi.org/10.1002/biot.201200205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Pamonag, Michael, Abigail Hinson, Elisha J. Burton, Nojan Jafari, Dominic Sales, Sarah Babcock, Rozlan Basha, Xiaofeng Hu und Kristopher E. Kubow. „Individual cells generate their own self-reinforcing contact guidance cues through local matrix fiber remodeling“. PLOS ONE 17, Nr. 3 (25.03.2022): e0265403. http://dx.doi.org/10.1371/journal.pone.0265403.

Der volle Inhalt der Quelle
Annotation:
Directed cell migration arises from cells following a microenvironmental gradient (e.g. of a chemokine) or polarizing feature (e.g. a linear structure). However cells not only follow, but in many cases, also generate directionality cues by modifying their microenvironment. This bi-directional relationship is seen in the alignment of extracellular matrix (ECM) fibers ahead of invading cell masses. The forces generated by many migrating cells cause fiber alignment, which in turn promotes further migration in the direction of fiber alignment via contact guidance and durotaxis. While this positive-feedback relationship has been widely described for cells invading en masse, single cells are also able to align ECM fibers, as well as respond to contact guidance and durotaxis cues, and should therefore exhibit the same relationship. In this study, we directly tested this hypothesis by studying the migration persistence of individual HT-1080 fibrosarcoma cells migrating in photocrosslinked collagen matrices with limited remodeling potential. Our results demonstrate that this positive-feedback relationship is indeed a fundamental aspect of cell migration in fibrillar environments. We observed that the cells’ inability to align and condense fibers resulted in a decrease in persistence relative to cells in native collagen matrices and even relative to isotropic (glass) substrates. Further experiments involving 2D collagen and electrospun polymer scaffolds suggest that substrates composed of rigid, randomly oriented fibers reduce cells’ ability to follow another directionality cue by forcing them to meander to follow the available adhesive area (i.e. fibers). Finally, our results demonstrate that the bi-directional relationship between cell remodeling and migration is not a “dimensionality” effect, but a fundamental effect of fibrous substrate structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Aubry, D., M. Gupta, B. Ladoux und R. Allena. „Mechanical link between durotaxis, cell polarity and anisotropy during cell migration“. Physical Biology 12, Nr. 2 (17.04.2015): 026008. http://dx.doi.org/10.1088/1478-3975/12/2/026008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Isenberg, Brett C., Paul A. DiMilla, Matthew Walker, Sooyoung Kim und Joyce Y. Wong. „Vascular Smooth Muscle Cell Durotaxis Depends on Substrate Stiffness Gradient Strength“. Biophysical Journal 97, Nr. 5 (September 2009): 1313–22. http://dx.doi.org/10.1016/j.bpj.2009.06.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Kuntanawat, P., C. Wilkinson und M. Riehle. „Observation of durotaxis on a well-defined continuous gradient of stiffness“. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 146, Nr. 4 (April 2007): S192. http://dx.doi.org/10.1016/j.cbpa.2007.01.421.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Wormer, Duncan B., Kevin A. Davis, James H. Henderson und Christopher E. Turner. „The Focal Adhesion-Localized CdGAP Regulates Matrix Rigidity Sensing and Durotaxis“. PLoS ONE 9, Nr. 3 (14.03.2014): e91815. http://dx.doi.org/10.1371/journal.pone.0091815.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Ebata, Hiroyuki, Kousuke Moriyama, Thasaneeya Kuboki und Satoru Kidoaki. „General cellular durotaxis induced with cell-scale heterogeneity of matrix-elasticity“. Biomaterials 230 (Februar 2020): 119647. http://dx.doi.org/10.1016/j.biomaterials.2019.119647.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Shellard, Adam, und Roberto Mayor. „Publisher Correction: Collective durotaxis along a self-generated stiffness gradient in vivo“. Nature 601, Nr. 7894 (12.01.2022): E33. http://dx.doi.org/10.1038/s41586-021-04367-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Budde, Ilka, David Ing, Albrecht Schwab und Zoltan Denes Petho. „Mechanosensitive ion channels are essential for the durotaxis of pancreatic stellate cells“. Biophysical Journal 121, Nr. 3 (Februar 2022): 314a. http://dx.doi.org/10.1016/j.bpj.2021.11.1181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Alert, Ricard, und Jaume Casademunt. „Role of Substrate Stiffness in Tissue Spreading: Wetting Transition and Tissue Durotaxis“. Langmuir 35, Nr. 23 (03.10.2018): 7571–77. http://dx.doi.org/10.1021/acs.langmuir.8b02037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Allena, R., M. Scianna und L. Preziosi. „A Cellular Potts Model of single cell migration in presence of durotaxis“. Mathematical Biosciences 275 (Mai 2016): 57–70. http://dx.doi.org/10.1016/j.mbs.2016.02.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Malik, Adam A., und Philip Gerlee. „Mathematical modelling of cell migration: stiffness dependent jump rates result in durotaxis“. Journal of Mathematical Biology 78, Nr. 7 (10.04.2019): 2289–315. http://dx.doi.org/10.1007/s00285-019-01344-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Whang, Minji, und Jungwook Kim. „Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds“. Tissue Engineering and Regenerative Medicine 13, Nr. 2 (April 2016): 126–39. http://dx.doi.org/10.1007/s13770-016-0026-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Marzban, Bahador, Xin Yi und Hongyan Yuan. „A minimal mechanics model for mechanosensing of substrate rigidity gradient in durotaxis“. Biomechanics and Modeling in Mechanobiology 17, Nr. 3 (22.01.2018): 915–22. http://dx.doi.org/10.1007/s10237-018-1001-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Zhang, Zhiwen, Phoebus Rosakis, Thomas Y. Hou und Guruswami Ravichandran. „A minimal mechanosensing model predicts keratocyte evolution on flexible substrates“. Journal of The Royal Society Interface 17, Nr. 166 (Mai 2020): 20200175. http://dx.doi.org/10.1098/rsif.2020.0175.

Der volle Inhalt der Quelle
Annotation:
A mathematical model is proposed for shape evolution and locomotion of fish epidermal keratocytes on elastic substrates. The model is based on mechanosensing concepts: cells apply contractile forces onto the elastic substrate, while cell shape evolution depends locally on the substrate stress generated by themselves or external mechanical stimuli acting on the substrate. We use the level set method to study the behaviour of the model numerically, and predict a number of distinct phenomena observed in experiments, such as (i) symmetry breaking from the stationary centrosymmetric to the well-known steadily propagating crescent shape, (ii) asymmetric bipedal oscillations and travelling waves in the lamellipodium leading edge, (iii) response to remote mechanical stress externally applied to the substrate (tensotaxis) and (iv) changing direction of motion towards an interface with a rigid substrate (durotaxis).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Lachowski, Dariusz, Ernesto Cortes, Benjamin Robinson, Alistair Rice, Krista Rombouts und Armando E. Del Río Hernández. „FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis“. FASEB Journal 32, Nr. 2 (03.01.2018): 1099–107. http://dx.doi.org/10.1096/fj.201700721r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Walker, Matthew L., David House, Margrit Betke und Joyce Y. Wong. „Using Automated Cell Tracking Software to Quantifying Durokinesis and Durotaxis in Real Time“. Biophysical Journal 96, Nr. 3 (Februar 2009): 633a. http://dx.doi.org/10.1016/j.bpj.2008.12.3347.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Sunyer, Raimon, Albert J. Jin, Ralph Nossal und Dan L. Sackett. „Fabrication of Hydrogels with Gradient of Compliance: Application to Cell Mechanotaxis and Durotaxis“. Biophysical Journal 102, Nr. 3 (Januar 2012): 565a. http://dx.doi.org/10.1016/j.bpj.2011.11.3077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie