Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dualité de Pontryagin“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dualité de Pontryagin" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dualité de Pontryagin"
Lim, Johnny. „Analytic Pontryagin duality“. Journal of Geometry and Physics 145 (November 2019): 103483. http://dx.doi.org/10.1016/j.geomphys.2019.103483.
Der volle Inhalt der QuelleChasco, M. J., und E. Mart�n-Peinador. „Binz-Butzmann duality versus Pontryagin duality“. Archiv der Mathematik 63, Nr. 3 (September 1994): 264–70. http://dx.doi.org/10.1007/bf01189829.
Der volle Inhalt der QuelleBanaszczyk, Wojciech, María Jesús Chasco und Elena Martin-Peinador. „Open subgroups and Pontryagin duality“. Mathematische Zeitschrift 215, Nr. 1 (Januar 1994): 195–204. http://dx.doi.org/10.1007/bf02571709.
Der volle Inhalt der QuelleChasco, M. J. „Pontryagin duality for metrizable groups“. Archiv der Mathematik 70, Nr. 1 (01.01.1998): 22–28. http://dx.doi.org/10.1007/s000130050160.
Der volle Inhalt der QuelleShtern, A. I. „Duality between compactness and discreteness beyond pontryagin duality“. Proceedings of the Steklov Institute of Mathematics 271, Nr. 1 (Dezember 2010): 212–27. http://dx.doi.org/10.1134/s0081543810040164.
Der volle Inhalt der QuelleMelnikov, Alexander. „Computable topological groups and Pontryagin duality“. Transactions of the American Mathematical Society 370, Nr. 12 (03.05.2018): 8709–37. http://dx.doi.org/10.1090/tran/7355.
Der volle Inhalt der QuelleHern�ndez, Salvador. „Pontryagin duality for topological Abelian groups“. Mathematische Zeitschrift 238, Nr. 3 (01.11.2001): 493–503. http://dx.doi.org/10.1007/s002090100263.
Der volle Inhalt der QuelleVan Daele, A., und Shuanhong Wang. „Pontryagin duality for bornological quantum hypergroups“. manuscripta mathematica 131, Nr. 1-2 (18.11.2009): 247–63. http://dx.doi.org/10.1007/s00229-009-0318-8.
Der volle Inhalt der QuelleHernández, Salvador, und Vladimir Uspenskij. „Pontryagin Duality for Spaces of Continuous Functions“. Journal of Mathematical Analysis and Applications 242, Nr. 2 (Februar 2000): 135–44. http://dx.doi.org/10.1006/jmaa.1999.6627.
Der volle Inhalt der QuelleGabriyelyan, S. S. „Groups of quasi-invariance and the Pontryagin duality“. Topology and its Applications 157, Nr. 18 (Dezember 2010): 2786–802. http://dx.doi.org/10.1016/j.topol.2010.08.018.
Der volle Inhalt der QuelleDissertationen zum Thema "Dualité de Pontryagin"
Artusa, Marco. „Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Der volle Inhalt der QuelleThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Del, Gatto Davide. „Analisi di Fourier sui Gruppi“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18784/.
Der volle Inhalt der QuelleChis, Cristina. „Bounded sets in topological groups“. Doctoral thesis, Universitat Jaume I, 2010. http://hdl.handle.net/10803/10502.
Der volle Inhalt der QuelleIn the second part of the paper, we apply duality methods in order to obtain estimations of the size of a local base for an important class of groups. This translation, which has been widely exhibited in the Pontryagin-van Kampen duality theory of locally compact abelian groups, is often very relevant and has been extended by many authors to more general classes of topological groups. In this work we follow basically the pattern and terminology given by Vilenkin in 1998.
Lim, Johnny. „Analytic Pontryagin Duality“. Thesis, 2019. http://hdl.handle.net/2440/124554.
Der volle Inhalt der QuelleThesis (Ph.D.) -- University of Adelaide, School of Mathematical Sciences, 2019
Černohorská, Eva. „Homotopické struktury v algebře, geometrii a matematické fyzice“. Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-313715.
Der volle Inhalt der QuelleBücher zum Thema "Dualité de Pontryagin"
Außenhofer, Lydia, Dikran Dikranjan und Anna Giordano Bruno. Topological Groups and the Pontryagin-van Kampen Duality. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936.
Der volle Inhalt der QuelleDikranjan, Dikran, Anna Giordano Bruno und Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Den vollen Inhalt der Quelle findenStralka, A., M. Mislove und K. H. Hofmann. Pontryagin Duality of Compact o-Dimensional Semilattices and Its Applications. Springer London, Limited, 2006.
Den vollen Inhalt der Quelle findenDikranjan, Dikran, Anna Giordano Bruno und Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Den vollen Inhalt der Quelle findenDikranjan, Dikran, Anna Giordano Bruno und Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Den vollen Inhalt der Quelle findenMorris, Sidney A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenMorris, Sidney A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge University Press, 2011.
Den vollen Inhalt der Quelle findenZhang, Xu, und Qi Lü. General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions. Springer London, Limited, 2014.
Den vollen Inhalt der Quelle findenGeneral Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions. Springer, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Dualité de Pontryagin"
Banaszczyk, Wojciech. „Pontryagin duality“. In Lecture Notes in Mathematics, 132–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0089152.
Der volle Inhalt der QuelleVourdas, Apostolos. „Partial Orders and Pontryagin Duality“. In Quantum Science and Technology, 7–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59495-8_2.
Der volle Inhalt der QuelleJayakumar, S., S. S. Iyengar und Naveen Kumar Chaudhary. „Sensor Fusion and Pontryagin Duality“. In Lecture Notes in Electrical Engineering, 123–37. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5091-1_10.
Der volle Inhalt der QuelleLisica, Yu T. „The alexander-pontryagin duality theorem for coherent homology and cohomology with coefficients in sheaves of modules“. In Lecture Notes in Mathematics, 148–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0081425.
Der volle Inhalt der QuelleGamkrelidze, R. V. „Topological Duality Theorems“. In L. S. Pontryagin Selected Works, 347–74. CRC Press, 2019. http://dx.doi.org/10.1201/9780367813758-25.
Der volle Inhalt der Quelle„13 The Pontryagin-van Kampen duality“. In Topological Groups and the Pontryagin-van Kampen Duality, 201–28. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-013.
Der volle Inhalt der QuelleGamkrelidze, R. V. „The General Topological Theorem of Duality for Closed Sets *“. In L. S. Pontryagin Selected Works, 137–50. CRC Press, 2019. http://dx.doi.org/10.1201/9780367813758-9.
Der volle Inhalt der Quelle„14 Applications of the duality theorem“. In Topological Groups and the Pontryagin-van Kampen Duality, 229–62. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-014.
Der volle Inhalt der Quelle„7 Completeness and completion“. In Topological Groups and the Pontryagin-van Kampen Duality, 97–114. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-007.
Der volle Inhalt der Quelle„11 The Følner theorem“. In Topological Groups and the Pontryagin-van Kampen Duality, 159–86. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-011.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dualité de Pontryagin"
Akbarov, Sergei S. „Pontryagin duality and topological algebras“. In Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-5.
Der volle Inhalt der QuelleGauthier, Jean Paul. „Hypoelliptic diffusion, Chu duality and human vision“. In International Conference "Optimal Control and Differential Games" dedicated to the 110th anniversary of L. S. Pontryagin. Moscow: Steklov Mathematical Institute, 2018. http://dx.doi.org/10.4213/proc22841.
Der volle Inhalt der Quelle