Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „DS rodent models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "DS rodent models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "DS rodent models"
Zhang, Tan, Xin Wang, Hannah M. Jester, Xueyan Zhou und Tao Ma. „Characterization of Apathy-Like Behaviors in Mouse Models of Down Syndrome“. Journal of Alzheimer's Disease 101, Nr. 4 (08.10.2024): 1217–26. http://dx.doi.org/10.3233/jad-240675.
Der volle Inhalt der QuelleBartesaghi, Renata, Stefano Vicari und William C. Mobley. „Prenatal and Postnatal Pharmacotherapy in Down Syndrome: The Search to Prevent or Ameliorate Neurodevelopmental and Neurodegenerative Disorders“. Annual Review of Pharmacology and Toxicology 62, Nr. 1 (06.01.2022): 211–33. http://dx.doi.org/10.1146/annurev-pharmtox-041521-103641.
Der volle Inhalt der QuelleDeckert, Jutta, Jenny Thirlway, Yun-Hee Park, Ho Young Song, Chul-Woong Chung, Xuesong Wang, Zhenshan Zhang und Robert J. Lutz. „Abstract 1753: IKS014, a HER2-targeting antibody drug conjugate incorporating novel bioconjugation and tumor-selective linker technology with improved in vivo efficacy and tolerability“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 1753. http://dx.doi.org/10.1158/1538-7445.am2022-1753.
Der volle Inhalt der QuelleZhang, Xichen, Michael W. Epperly, Mark A. Kay, Zhi-Ying Chen, Tracy Smith, Darcy Franicola, Benjamin Greenberger, Paavani Komanduri und Joel S. Greenberger. „Minicircle Plasmid Containing the Human Manganese Superoxide Dismutase (MnSOD) Transgene Confers Radioprotection to Hematopoietic Progenitor Cell Line 32Dcl3.“ Blood 110, Nr. 11 (16.11.2007): 5138. http://dx.doi.org/10.1182/blood.v110.11.5138.5138.
Der volle Inhalt der QuelleJin, Shanshan, Xiaochen Zhang, Yunlu Jia, Yongchao Dai, Fengwei Xu, Yongfeng Huang, Xun Wang et al. „The design, preclinical study and phase I dose escalation plan of a HER2 targeted immunoliposome (HF-K1) for HER2 low solid tumor treatment.“ Journal of Clinical Oncology 42, Nr. 16_suppl (01.06.2024): 3035. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.3035.
Der volle Inhalt der QuelleNonoguchi, Hannah A., Timothy Wee Shang Kouo, Sandhya Kortagere, Joshua Hillman, David L. Boyle und Chitra D. Mandyam. „Lipopolysaccharide Exposure Differentially Alters Plasma and Brain Inflammatory Markers in Adult Male and Female Rats“. Brain Sciences 12, Nr. 8 (24.07.2022): 972. http://dx.doi.org/10.3390/brainsci12080972.
Der volle Inhalt der QuelleVenkateshappa, Chandregowda, Kishore Narayanan, Rashmi Nair, Aravind AB, Ramakishore VP Putta, Jwala Nagaraj, Megha Goyal et al. „Abstract 4432: A highly differentiated A2AR inhibitor for potential use in cancer therapy“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 4432. http://dx.doi.org/10.1158/1538-7445.am2023-4432.
Der volle Inhalt der QuelleKhare, Leena, Ramulu Poddutoori, Subhendu Mukherjee, Samiulla DS, Devaraja TS, Sivapriya Marappan, Shilpa Nayak et al. „Abstract B172: Potent anti-tumor activity of a selective and orally bioavailable reversible covalent CDK12 inhibitor“. Molecular Cancer Therapeutics 22, Nr. 12_Supplement (01.12.2023): B172. http://dx.doi.org/10.1158/1535-7163.targ-23-b172.
Der volle Inhalt der QuelleFarrell, Clíona, Paige Mumford, Millie Beament, Gloria Lau, Yixing Wu, Marion Pellen, Monika Rataj Baniowska et al. „Modelling of the development and response to amyloid‐β accumulation in the context of trisomy21 in the rodent brain“. Alzheimer's & Dementia 19, S12 (Dezember 2023). http://dx.doi.org/10.1002/alz.075677.
Der volle Inhalt der QuelleFarrell, Clíona, Paige Mumford und Frances K. Wiseman. „Rodent Modeling of Alzheimer's Disease in Down Syndrome: In vivo and ex vivo Approaches“. Frontiers in Neuroscience 16 (07.06.2022). http://dx.doi.org/10.3389/fnins.2022.909669.
Der volle Inhalt der QuelleDissertationen zum Thema "DS rodent models"
Ahumada, Saavedra José Tomás. „Craniofacial analysis of Down syndrome rodent models“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAJ041.
Der volle Inhalt der QuelleThe most frequent and distinctive alterations found in Down syndrome (DS) are learning disability and craniofacial (CF) dysmorphism. The CF phenotype includes reduced head dimensions, brachycephaly, reduced mediolateral orbital region, reduced bizygomatic breadth, small maxilla, small mandible, and increased individual variability. Until now, the cellular and molecular mechanisms underlying this CF phenotype remain unknown. This thesis, using a new panel of rats and mice models proposed new candidate genes for the DS-CF phenotype. We confirmed the role of Dyrk1a in neurocranium brachycephaly and identified the overdosage of the transcription factor Ripply3 for midface shortening through the downregulation of Tbx1, another transcription factor involved in similar phenotypes was found in Di George Syndrome. We defined new dosage-sensitive genes responsible for DS-CF malformations, and new models were proposed to rescue the DS-CF phenotype. This new knowledge may also lead to insights for specific brain and cardiovascular phenotypes observed in Tbx1 mutants and DS models